Loading...
HomeMy WebLinkAbout20110628Addendum.pdf~. ROCKY MOUNTAINPOER A DIVIION OF PAClACRP RECE\VED 16\\ JUN 28 l\~\ \0: 25 201 South Main, Suite 2300 Salt lake City, Utah 84111 June 28, 201 1 VI OVERNGHT DELIVERY Idaho Public Utilities Commission 472 West Washigton Boise, Idaho 83702 Attention:Jean Jewell Commission Secreta RE: Case No. PAC-E-ll-10 PacifCorp's 2011 Integrated Resource Plan - Addendum PacifiCorp (or Company) fied its 2011 Integrted Resoure Plan (2011 IR) with the Idao Public Utilties Commssion (Commssion) on March 31, 2011. At that time, the Company indicated that it would be fiing supplementa inormation to the 2011 IR at a later date. To tht end, please fid enclosed the origina and seven copies of the Addendum to the 2011 IR. As cited in Chapter 2, page 21 of the 201 1 IR, ths Addendum includes the following additiona studies: . Stochasic anysis of the Energy Gateway transmission scenaos documented in Chapter 4 of the 2011 IR; · Stochatic production cost simulation of revised Energy Gateway and minial Energy Gateway portolios; the revised portfolios account for tranmission operational constrnts not captued with the System Optiize capacity expansion model, as well as an alternate strtegy for representing out-year generation resources; . An energy effciency (Class 2 demad-side management) avoided cost stdy; and . An evaluaon of wid capita cost and capacity factors recommendations and associated supportg data provided by Interwest Energy Alliance. Copies of the 2011 IRP and ths Addendum are available electronically on PacifiCorp's website, at ww.pacificorp.com. Idaho Public Utilties Commission June 28, 201 1 Page 2 All formal correspondence and data requests regardig ths filig should be addressed as follows: Bye-mail (preferrd):datareguest(ßpacificorp.com irp(ßpacificorp.com ted. weston(ßpacificorp.com yyonne.hogle(ßpacificorp.com By reguar mail:Data Request Response Center PacifiCorp 825 NE Multnomah Strt, Suite 2000 Portland, Oregon, 97232 With copies to:Ted Weston Idaho Regulatory Affais Manger Rocky Mountain Power 201 South Mai Street, One Uta Center, Suite 2300 Salt Lae City, Uta 84111 Yvonne R. Hogle Rocky Mountan Power 201 South Mai Street, One Uta Center, Suite 2300 Salt Lake City, Uta 84111 Informal inquies may be directed to Pete Waren, Manger, Integrated Resource Plang at (503) 813-5518 or Ted Weston, Idaho Reguatory Affai Manager, at (801) 220-2963. Sincerely, ~~~~::~ Enclosures cc: Terr Carlock - Idaho Pulic Utilities Commission Rick Sterling - Idao Public Utilties Commission Rady Lobb - Idao Public Utilties Commssion Mark Stokes - Idao Power Company Nancy Kelly - Western Resource Advocates Radall Budge - Raine, Olson, Nye, Budge & Bailey Eric Olson - Racine, Olson, Nye, Budge & Bailey D (D k)0 0. (D C (D (D (D (1 )0 n (D .I . -D A C xi D (- . on o .c . c mD D (D 1 For more information,contact: PacifiCorp IRP Resource Planning 825 N.E.Multnomah,Suite 600 Portland,Oregon 97232 (503)813-5245 irp(pacificorp.com http://www.pacificorp.com Cover Photos (Left to Right): Wind:McFadden Ridge I Thermal-Gas:Lake Side Power Plant Hydroelectric:Lemolo]on North Umpqua River Transmission:Distribution Transformers Solar:Salt Palace Convention Center Photovoltaic Solar Project Wind Turbine:Dunlap I Wind Project PAdnICoaP —2011 IRP TsLE OF CONTENTS TABLE OF CONTENTS TABLE OF CONTENTS I INDEX OF TABLES II INDEX OF FIGURES II ADDENDUM INTRODUCTION III CHAPTER 1-STOCHASTIC RESULTS FOR ENERGY GATEWAY SCENARIOS 1 Infroduction 1 Stochastic Production Cost Modeling Results 4 Conclusion 5 SuPPLEINTAL LIwuTED ENERGY GATEWAY ScENA1U0 ANALYsIs 5 Introduction 5 Study Approach Details 6 Study Results 7 Conclusion 11 CHAPTER 2-CLASS 2 DSM DECREMENT STUDY 13 MODELING APPR0ACII 13 Generation Resource Capacity Deferral Benefit Methodology 14 CLAss 2 DSM DEcREMENT VALUE RESULTS 14 CHAPTER 3-APPRAISAL OF INTERWEST ENERGY ALLIANCE’S WIND CAPITAL COST AND CAPACITY FACTOR RECOMMENDATIONS 25 INTRODUCTION 25 CAJITAL CosTs 25 Capacity Factors 27 CoNcLusIoN 28 APPENDIX A -COMMENTS AND DATA SUBMISSION FROM INTERWEST ENERGY ALLIANCE ...29 PACWICORP —2011 IRP ADDENDUM INDEX OF TABLES AND FIGuREs INDEX OF TABLES TABLE 1 —STOCHASTIC MEAN PVRR COST COMPARIsON FOR ENERGY GATEwAY ScENARIOs,No CO2 TAx (“GREEN RESOURCE FuTURE”)4 TABLE 2—SToCsTIC MEAN PVRR COST C0MPA1usON FOR ENERGY GATEwAY SCENARIOS,MEDrur’1 CO2 TAx SCENARIO (“GREEN RESOURCE FuTuRE”)4 TABLE 3—RESOURCE PORTFOLIO,REVISED FULL ENERGY GATEwAY SCENAJuo (“GREEN RESOURCE FuTuRE”)8 TABLE 4—RESOURCE PORTFOLIO,REVISED ENERGY GATEWAY-LIIvIIThD SCENARIO (“GREEN RESOURCE FuTuRE”).9 TABLE 5—RESOURCE PORTFOLIO DIFFERENCES,REVISED FULL ENERGY GATEWAY SCENARIO LESS ENERGY GATEwAY-LIMrFED SCENARIO 10 TABLE 6—PORTFOLIO STOCHASTIC AvE1GE PVRR CoMPARISoN,GATEwAY-LIMrrED VS.FULL GATEwAY SCENARIOS 11 TABLE 7—LEVELIzED CLASS 2 DSM AvoIDED COSTS BY CARBON DIOxIDE TAX ScENARIO,20-YEAR NET PRESENT VALUE (2011-2030)16 TABLE 8—Ajqr’mAL NOMIL CLASS 2 DSM AvoIDED COSTS,No CO2 Tx SCENARIO,20 11-2030 17 TABLE 9—ANNuAL NOMll’.&L CLASS 2 DSM AVoIDED COSTS,Low TO VERY HIGH CO2 TAX SCENARIo,2011-2030 18 TABLE 10—ANNUAL NOMINAL CLASS 2 DSM AVOIDED COSTS,MEDHJM CO2 TAX SCENARIO,2011-2030 20 INDEX OF FIGuREs FIGuRE 1—ENERGY GATEWAY SCENARIO 1 (“GATEWAY-LIMITED”)2 FIGURE 2—ENERGY GATEWAY SCENARIO 2 2 FIGuRE 3—ENERGY GATEwAY SCENARIO 3 3 FIGURE 4—ENERGY GATEWAY SCENARIO 4 (“FULL GATEWAY”)3 FIGURE 5—TNSMIsSION SYsTEM MODEL TOPOLOGY 7 FIGURE 6—EAST CLASS 2 DSM NOMINAL AVOIDED COST TRENDs,Low TO VERY HIGH CO2 TAX SCENARIO 22 FIGURE 7—WEST CLASS 2 DSM NOMINAL AvOIDED COST TRENDS,Low TO VERY HIGH CO2 TAX SCENARIO 22 FIGuRE 8—EAST CLASS 2 DSM NOMINAL AVOIDED COST TRENDs,MEDIUivI CO2 TAX SCENARIO 23 FIGuRE 9-WEST CLASS 2 DSM NOMINAL AVOIDED COST TRENDS,MEDIuM CO2 TAX SCARIo 23 FIGuRE 10-EAST CLASS 2 DSM NOMINAL AVOIDED COST TRENDS,No CO2 TAX SCENARIO 24 FIGURE 11 —WEST CLASS 2 DSM NOMINAL AVOIDED COST TRENDS,No CO2 TAX SCENARIO 24 11 PAcwICo1 —2011 IRP ADDENDUM ADDENDUM INTRODUCTION ADDENDuM INTRODUCTION This addendum to the 2011 IRP includes the results of additional studies and analysis that could not be completed in time to include in the original filed IRP document.These studies and analysis consist of the following: •Development of stochastic cost results for 16 Energy Gateway scenarios documented in Chapter 4 of the 2011 IRP. •Stochastic production cost simulation of revised full Energy Gateway and minimal Energy Gateway portfolios;the revised portfolios account for transmission operational constraints not captured with the System Optimizer capacity expansion model,as well as an alternate strategy for representing out-year generation resources. •An energy efficiency (Class 2 demand-side management)avoided cost study,referred to as the DSM decrement analysis. •An evaluation of wind capital cost and capacity factor recommendations and associated supporting data provided by Jnterwest Energy Alliance. 111 PAc[FIC0RP —2011 IRP ADDENDUM CHAPTER 1 —STocsTIc RESULTS FOR ENERGY GAmwAY CHAPTER 1 —STOCHASTIC RESULTS FOR ENERGY GATEWAY SCENARIoS Introduction PacifiCorp conducted stochastic Monte Carlo production cost simulation of the portfolios and associated transmission assumptions for the “Green Resource Future”Energy Gateway expansion scenarios described in Chapter 4 of the 2011 IRP.(Refer to the “Transmission Scenario Analysis”section,beginning on page 66,for background information on these scenarios and associated resource modeling assumptions.)As noted in the IRP,PacifiCorp assumes that state and federal energy policies will continue to emphasize strong support for renewables development.Hence,the Company focused on the “Green Resource Future”set of scenarios for stochastic modeling.The Company also concluded that the full Energy Gateway configuration provides a number of strategic benefits.These benefits include insurance for regulatory uncertainty and risk mitigation associated with increased resource diversity and operational flexibility. These production cost simulations,performed with the Planning and Risk (PaR)model,are consistent with the stochastic simulations conducted for the core portfolio cases1,utilizing two carbon dioxide (C02)tax scenarios:$0/ton and $19/ton (or “medium”scenario).2 Figures 1 through 4 are maps of the four Energy Gateway expansion scenarios. ‘Refer to the “Monte Carlo Production Cost Simulation”section of Chapter 7,beginning on page 182,for background on stochastic production cost modeling conducted for the IRP. 2 Refer to page 159 of the 2011 IRP for definition of the CO2 tax scenarios. 1 LUz0U..Cl)UU0C) I .—I. — H .CC 0UU a I 0. i c 0 U II 0• a PAcwICo1u —2011 IRP ADDENI)uM CHAPTER 1 —STOCHASTIC RESULTS FOR ENERGY GATEWAY Figure 3—Energy Gateway Scenario 3 b.stWmdtar / PcCr erc ra Red Butt.• Pmad nw*n —so w rn w oge —i4SVnirvoige 23Vwn’urnvce o T:t?i •Sjstc, •Ge’i aniti Figure 4 —Energy Gateway Scenario 4 (“Full Gateway”) e*r*naa Cd.Cross4nj P-c-erce re led —500 v o T’s • •Gv.,-;’a.:ztc 3 PACIFICORP —2011 IRP ADDENDUM CHTER 1 —STOCHASTIC RESULTS FOR ERGY GATEWAY Stochastic Production Cost Modeling Results Tables 1 and 2 report the stochastic mean Present Value Revenue Requirement (PVRR)for the two CO2 tax scenarios along with the PVRR cost component details. Table 1 —Stochastic Mean PVRR Cost Comparison for Energy Gateway Scenarios,No CO2 Tax (“Green Resource Future”) Scenario Scenario Scenario Scenario Cost Component (Million $)1 2 3 4* Scenario Scenario Scenario Scenario 1 2 3 4* $18,821 $18,829 $18,827 $18,789 $19,411 $19,412 $19,525 $19,412 $12,067 $11,131 $11,159 $11,201 —$12,128 $11,362 $11,111 $11,336 *Scenario 4 corresponds to Scenario 7 in Table 4.2,page 78,ofthe 2011 IRP. Table 2 —Stochastic Mean PVRR Cost Comparison for Energy Gateway Scenarios, Medium CO2 Tax Scenario (“Green Resource Future”) Scenario Scenario Scenario Scenario CostComponent (Million$)1 2 3 4* Scenario Scenario Scenario Scenario 1 2 3 4* $26,858 $26,830 $26,826 $26,729 $27,368 $27,287 $27,452 $27,237 $12,067 $11,131 $11,159 $11,201 -$12,128 $11,362 $11,111 $11,336 *Scenario 4 corresponds to Scenario 7 in Table 4.2,page 78,ofthe 2011 IRP. Medium Natural Gas Price Forecast huh Natural Gas Price Forecast Variable Costs Fuel &O&M Emission Cost FOT’s &Iong TermContracts Demand Side Management Renewables SystemBalancing Sales SystemBalancing Purchases Energy Not Served Dump Power Reserve Deficiency Total Variable Costs Capital and Fixed Costs Total PVRR 15,295 2 3,857 3,373 699 (6,031) 1,715 44 (133) 0 15,235 2 3,858 3,421 699 (6,008) 1,705 48 (131) 0 15,232 2 3,858 3,421 699 (6,007) 1,705 48 (131) 0 15,184 2 3,858 3,421 699 (6,017) 1,727 47 (132) 0 15,327 2 3,819 4,059 700 (6,084) 1,683 42 (137) 0 15,211 2 3,811 4,137 681 (6,014) 1,673 50 (140) 0 15,288 2 3,800 4,139 681 (5,989) 1,695 50 (140) 0 15,181 2 3,807 4,137 681 (6,011) 1,709 49 (141) 0 $30,888 $29,960 $29,986 $29,990 $31,540 $30,774 $30,636 $30,748 Medium Natural Gas Price Forecast High Natural Gas Price Forecast Variable Costs Fuel&O&M 15,231 15,165 15,155 15,048 15,300 15,181 15,263 15,087 Emission Cost 7,409 7,332 7,335 7,230 7,331 7,190 7,238 7,096 FOT’s &Iong Term Contracts 4,063 4,064 4,064 4,064 4,018 4,008 3,994 4,003 Demand Side Management 3,373 3,421 3,421 3,421 4,059 4,137 4,139 4,137 Renewables 693 693 693 693 694 681 681 681 SystemBalancing Sales (6,458)(6,413)(6,413)(6,387)(6,528)(6,422)(6,399)(6,387) System Balancing Purchases 2,631 2,646 2,647 2,740 2,583 2,597 2,623 2,710 Energy Not Served 44 48 48 47 42 50 49 48 Dump Power (127)(12 (126)(128)(131)(135)(135)(137) Reserve Deficiency 0 0 0 0 0 0 0 0 Total Variable Costs ______________________________________________________________________ Capital and Fixed Costs __________________________________________________________________ Total PVRR $38,925 $37,961 $37,985 $37,930 $39,496 $38,650 $38,563 $38,573 4 PAcWICORP —2011 IRP ADDEi.iiurvl CHAPTER 1—STOCHASTIC RESULTS FOR ENERGY GATEWAY Conclusion The stochastic modeling results indicate that the full Energy Gateway configuration is cost- effective when compared to the Limited Gateway configuration in all CO2 taxlnatural gas price scenarios and outperforms Energy Gateway Scenarios 2 and 3 with medium natural gas prices and medium CO2 prices.Consistent with the deterministic modeling results using the System Optimizer model,the stochastic PVRR range for Energy Gateway expansion scenarios 2 through 4 is narrow,suggesting that economics does not drive a clear selection of the alternatives.As noted in the 2011 IRP,the Company continues to conclude that proceeding with the full Energy Gateway expansion scenario is the most prudent strategy. Supplemental Limited Energy Gateway Scenario Analysis Introduction The 2011 IRP contemplated seven different scenarios of the Company’s Energy Gateway transmission expansion program.The “base case”(Scenario 1)is a minimum-build transmission plan that,while part of the overall Energy Gateway strategy,needs to be constructed regardless of other Energy Gateway options due to specific load and reliability requirements.This group of projects—referred to as “Gateway-Limited”for the purpose of this IRP addendum—includes Populus to Terminal,Mona to Oquirrh and Sigurd to Red Butte.(Refer to Chapter 10 of the 2011 IRP3 for detailed information on each of the planned Energy Gateway segments).To analyze these transmission planning scenarios,PacifiCorp used its System Optimizer model to select optimal resource portfolios constrained by the transmission topology defined for each Energy Gateway scenario.Both the System Optimizer results reported in the 2011 IRP and the stochastic production cost simulations described in the previous section indicate that the full Energy Gateway strategy has a lower PVRR than the Gateway-Limited strategy under a range of alternative natural gas and CO2 price assumptions.These two Energy Gateway scenarios are shown in Figures 1 and 4 above. As an extension of this Energy Gateway scenario analysis,the Company wanted to investigate the extent to which operational limitations of the transmission system under the Gateway- Limited scenario constrain the location of thermal resources as determined by System Optimizer. At issue is whether System Optimizer is adequately accounting for the need (and associated cost) to site thermal resources at alternative locations given such operational constraints.A particular focus is on growth resources that the model uses to balance capacity in the outer years of the simulations.Growth resources,which are assigned forward market prices,serve as proxies for unspecified electricity supply options.They are also made available within load bubbles as opposed to acquiring them from market hubs.4 Use of growth resources circumvents transmission constraints as a limiting factor for adding future resources,and thus may not be a suitable out-year resource modeling strategy when evaluating transmission expansion scenarios. For this supplemental Energy Gateway scenario analysis,the Company’s goal was thus to determine the resource selection and cost impact of applying locational resource constraints PacifiCorp IRP documents are available at www.pacificorp.comles/irp.html Growth resources are described on page 179 ofthe 2011 IRP. 5 PAcIFICORP —2011 IRP ADDENDUM CHAPTER 1 —STocasTIc RESULTS FOR ENERGY GATEWAY based on transmission capacity limits,as well as removing growth resources as future resource options.To this end,PacifiCorp developed revised Full Gateway and Gateway-Limited portfolios reflecting application of these resource modeling changes,and then simulated them with the PaR production cost model to provide a PVRR cost comparison.Subsequent sections provide more details on the revised portfolio development approach and the results of the scenario analysis. Study Approach Details As noted above,the study approach consisted of developing Gateway-Limited and Full Gateway portfolios using System Optimizer,and then simulating both portfolios using the Planning and Risk production cost model.The main modeling assumptions for the study are as follows: •The expected load,natural gas price,wholesale electricity price,CO2 price forecasts from the 2011 IRP (described on pages 175-176),developed in September 2010,were used. •With the exception of growth resources (previously available beginning in 2021)and geothermal5,all resource options specified for the 2011 J.RP were available for System Optimizer selection.Gas-fired combined-cycle combustion turbine plants acquired after 2019 are represented by two technology options:Mitsubishi G/General Electric H class lx 16,and General Electric F class 2x1,both with duct firing.(System Optimizer is allowed to select a fractional amount of duct-firing capacity up to the specified megawatt limits.)All east-side CCCTs beyond 2014 are assumed to be dry-cooled. •Consistent with the Green Resource Future outlined in Chapter 4 of the 2011 IRP (“Transmission Planning”),portfolios are required to meet minimum annual renewable generation requirements based on the Waxman-Markey proposed targets (6 percent by 2012, 9.5 percent by 2014,13 percent by 2016,16.5%by 2018,and 20%by 2020).The model is allowed to select an optimal amount of wind resources subject to the minimum renewable generation requirements. •System Optimizer was allowed to select a variable amount of market purchases (front office transaction proxy resources)up to the annual market hub limits. •Consistent with the original minimum-build Energy Gateway scenario,incremental wind resources in Wyoming were excluded as model options in the Gateway-Limited scenario. •The base transmission topology for the 2011 IRP was used,which is shown in Figure 5. To account for operational transmission constraints under the Gateway-Limited scenario, PacifiCorp first ran System Optimizer based on the above assumptions to create a base Gateway- Limited portfolio for inspection by the Transmission Department.Based on this inspection, PacifiCorp conducted a final System Optimizer run that incorporated the following resource changes needed to account for a 700 MW incremental capacity transfer limit from the “Utah South”to “Utah North”topology bubbles once the Mona-Oquirrh transmission project is in place: Geothermal resources are excluded as resource options due to recovery risk for resource development costs,a procurement issue identified in the 2011 IRP.Geothermal projects will nevertheless be included as eligible resources in future Requests for Proposals. 6 The C and H class CCCTs are assumed to have the same capacity and other attributes,and are considered interchangeable. 6 PAc[FIC0RP -2011 IRP ADDENDUM CHAPTER 1—STocsTIc RESULTS FOR ENERGY GAmwAY •The model was constrained to locate 300 MW of Utah wind (“Utah South”bubble)to the west side of the system (Oregon and Washington). •The 2019 CCCT resource originally selected by the model at Currant Creek (“Utah South” Bubble)was manually moved to the “Utah North”bubble. •The 2025 CCCT resource originally selected by the model for the “Utah North”bubble was moved to the Borah bubble located in Idaho. Weat E Q Load Generation PurchasetSaieMarkets Contradssohanges 4—+ModeiedTransmisdon 4-—a.PiannedEnergyGateyeyTrannmisdon Wind BubbIe Used forseieion Olend resourcesrequiring inc,ementaltranstnisnron intedment. PacifiCorp simulated the Full Gateway and final Gateway-Limited portfolios using the PaR model.Transmission investment costs were incorporated in the PVRRs,consistent with the approach used for the original minimal-build and full Energy Gateway scenarios. Study Results Tables 4 and 5 show the revised Full Gateway and Gateway-Limited portfolio resources respectively after running System Optimizer with the resource modifications described above. Table 6 provides the resource differences between the two portfolios.The major resource changes consist of a location shift of a simple-cycle combustion turbine plant and the Wyoming wind to the west. Figure 5—Transmission System Model Topology ___________ Wa shin Ot on -,Yakam M o n t a n a Energy Gateway Sensitivity Topology January 10,2011 (2Ollto 2030) II e vada California Redthte A Mead _____ Colorado -V,4:b ICornels a// *PS ChoP.4— Palo Verde II e w M e a I c o At I zo na 7 C)) C)) zC F - C U C? C?C?I. CMC? C?C? C? C? C? — C?CM .C? I. C?C?I CMC? C?— 00 PA c W I C 0 J U ’ —2 0 1 1 IR P AD D E N D U M CH i t p 1— ST o c H s T 1 c RE S U L T S FO R ER G Y GA m w A Y Ta b l e 4 — Re s o u r c e Po r t f o l i o , Re v i s e d En e r g y Ga t e w a y - L i m i t e d Sc e n a r i o (“ G r e e n Re s o u r c e Fu t u r e ” ) Re s o u r c e Ca p a c i t y (M W ) 20 1 1 I 20 1 2 I 20 1 3 20 1 4 I 20 1 5 I 20 1 6 I 20 1 7 I 20 1 8 20 1 9 I 20 2 0 20 2 1 I 20 2 2 1 23 _ J 20 2 4 I 20 2 5 I 20 2 6 I 20 2 7 20 2 8 20 2 9 I 20 3 0 Ea s t We a t CC C T F 2 x I : U l a h N o r t h , U l a h S o u t h - - - 62 5 - 59 7 - - - - - - - - - - - - - CC C T G 1 x 1 : G o s h e n , t j l a h N o r t h - - - - - - - - - - - - - - 38 8 - 38 8 - - CC C T H lx l , U t a h So u t h - - - - - - - - 47 5 - - - - - - - - - - - IC Ae r o , Clo s h e n - - - - - - - - - - - - - - - - - - 93 Co a l Pl a n t Tu r b i n e Up g r a d e s 12 . 1 18 3 1.8 - - 1& 0 - - - - 2. 4 - - - - - - - - - Wi n d , Go s h e n , 29 % Ca p Fa c t o r - - - - - 10 0 10 0 - - - - - - - - - - - - - Wi n d , U l a b , 2 9 % C a p F a c t o r - - - - - - 94 10 0 10 0 10 0 18 88 - - - - - - - To t a l Wi n d - - - - - 10 0 19 4 10 0 10 0 10 0 18 88 - - - - - - - CH P - B i o m a s s 1. 0 1.0 1.0 1.0 1.0 1.0 1. 0 1. 0 1. 0 1.0 1.0 1.0 1.0 1. 0 1. 0 1. 0 1. 0 1.0 1. 0 1. 0 OS M , Cla s s I To t a l 6 69 3 20 79 - - - - - - 2 - - - 17 - - - - DS M , C t a s s 2 , G o s h e n 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 DS M , Cl a s s 2, Uta h 45 48 41 43 44 47 49 50 52 57 60 64 64 67 71 92 63 67 70 90 DS M , C l a s s 2 , W y o m i n g 3 4 4 5 5 6 6 7 7 8 9 10 11 14 15 19 20 24 29 31 DS M , C l a s s 2 T o t a l 48 53 46 49 51 55 57 59 61 66 71 76 78 84 89 11 4 86 94 10 2 12 4 Mic r o S o l a r - H o t W a l e r H e u t i i g - 2. 6 4 2. 6 4 2.6 4 2. 6 4 2.6 4 2. 6 4 2. 6 4 2.6 4 2. 6 4 2. 6 4 2.6 4 2. 6 4 2. 6 4 2. 6 4 2. 6 4 2. 6 4 2.6 4 2. 6 4 2.6 4 FO T M e a d Q 3 - 16 8 26 4 26 4 99 15 - - - - - - - - - - - - - - FO T U I a h Q 3 20 0 20 0 20 0 8 25 0 - 52 19 5 - 17 1 - 3 10 1 14 0 80 20 2 - 11 1 18 9 20 0 FO T Mo a n - 3 Q3 - - - 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 FO T Mo n a - 4 Q3 15 0 Re s o u r c e To t a l s 10 - y e a r I 20 - y e a r 1.2 2 2 1, 2 2 2 - 77 6 47 5 47 5 - 93 51 53 20 0 20 0 39 4 50 0 59 4 70 0 10 20 17 7 19 6 14 40 47 7 1, 1 8 6 55 23 6 54 5 1,4 6 3 24 50 81 40 12 8 11 5 21 0 25 5 15 8 12 12 - 10 2 10 0 10 0 - 10 4 31 9 84 4 10 0 10 0 51 9 1,1 4 8 50 50 42 84 72 78 45 91 55 0 1,0 1 8 64 14 1 65 9 1,2 5 0 9 9 10 10 16 34 65 32 35 7 37 5 48 24 40 43 Co a l Pl a n t Tu r b i n e Up g r a d e s - - 17 - - - - 8.3 - - - - - - - - - - - - IC Ae r o , So u t h - C e n t r a l Or e g o n / C a l i f o m - - - - - - - - - - - - - - - - - - 10 2 - Win d , Ya k i m a , 29 % Ca p Fa c t o r - - - 10 0 - - - - - - - - - - - - - - - - Win d , Or e g o n , 29 % Ca p Fa c t o r - - - - - - - - - - - - - - - 20 - - - 84 Win d , Wa s h i n g t o n , 29 % Ca p Fa c t o r - - - - - 13 6 10 0 10 0 10 0 - - 43 57 26 10 0 58 95 45 10 0 Win d , W u U a W a l a , 2 9 % C a p F a c t o r - - - 10 0 - - - - - - - - - - - - - - - - To t a l Wi n d - - - 20 0 - 13 6 10 0 10 0 10 0 - - 43 57 26 12 0 58 95 45 18 4 Uti l i t y Bio m a s s - - - - - - - - - 50 - - - - - - - - - - CH P - B i o m a s s 4. 2 4.2 4. 2 4.2 4. 2 4. 2 4.2 4. 2 4.2 4. 2 4. 2 4.2 4. 2 4.2 4. 2 4.2 4. 2 4.2 4. 2 4.2 DS M , Cla s s 1 To t a l - - 62 6 4 - - - - - - - - - - 7 - - - - DS M , C l a s s 2 , W a l l a W a l a 4 4 4 5 55 5 45 55 5 5 5 5 5 4 4 4 4 DS M , Cl a s s 2, Ca l i f o m i n / O r e g o n 51 51 54 59 60 60 59 52 52 52 52 52 52 52 53 52 44 37 37 36 IJ S M , C t a s s 2 , Y a k i m a 6 6 6 6 6 6 77 7 8 9 9 9 9 7 6 7 6 7 DS M , Cla s s 2 To t a l 61 62 6 70 72 70 70 63 63 64 65 66 66 67 67 64 55 47 47 47 OR So l a r Ca p St a n d a r d - 2 2 3 - - - - - - - - - - - - - - - OR S o l a r P i l o t 4 2 2 1 - - - - - - - - - - - - - - - - lv l i c r o S o l a r - H o t W a t e r H e a t i n g - 1.8 1 l. 8 t 1.8 1 1. 8 1 1.8 1 1.8 1 1. 8 1 1.8 1 1. 8 1 1. 8 1 1.8 1 1. 8 1 1.8 1 1.8 1 1.8 1 1. 8 1 1.8 1 1. 8 1 1.8 1 FO T C O B Q 3 15 0 15 0 15 0 15 0 50 - - - - - - - - - - - - - - - FO T M i d C o l u m b i n Q 3 - 40 0 40 0 40 0 40 0 40 0 40 0 40 0 37 0 40 0 32 8 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 PO T Mid C o l a m b i n Q3 - 2 - 27 1 21 1 - - - - - - - - - - - - - - - - - A,, , , , , I A’ 1 ’ 1 o I “- “ Te r m Re s o u r c e s 13 6 21 7 19 6 91 3 21 8 FO T S o u t h - C e n t r a l O r e g o u / N o r t h C u l Q - 50 50 50 50 50 50 50 - 50 - 50 50 50 50 50 50 50 50 50 - 86 3 33 7 34 0 80 8 38 9 16 6 24 2 km s u a l A d d i t i o n s , S h o r t T e r m R e z c o a 35 0 1, 2 3 9 1,4 2 5 1,1 7 2 1, 1 4 9 76 5 80 2 94 5 67 0 92 1 62 8 75 3 85 1 89 0 83 1 1 95 2 75 0 86 1 93 9 95 0 To t a t A n n u a t Ad d i t i o n s 48 6 L4 5 6 L6 2 1 2J 5 5 36 7 62 8 1, 1 3 9 1, 2 8 5 j, 4 j 79 4 99 5 04 8 1j 0 7 1,4 1 0 j j j j 1A 0 8 Fr o n t of f i c e tr a n s a c t i o n s (P 0 1 ) are no t ad d i t i v e . Fo r th e 10 - Y e a r co l o r i s t , FO T ar e a 10 - y e a r av e r a g e Iti r 20 1 1 - 2 0 2 0 , wl a r r e a s th e 20 - Y e a r co l o r i s t re p o r t a 10 - y e a r av e r a g e fo r 20 2 1- 2 0 3 0 . 19 7 21 7 58 0 33 1 59 7 24 5 30 6 45 8 9 PA c W I C 0 R P —2 0 1 1 IR P SU P P L E M E I s r r 10 CH m R 1- ER G Y GA T E W A Y AD D f F I O N A L AN A L Y S I S Ta b l e 5 — Re s o u r c e Po r t f o l i o Di f f e r e n c e s , Re v i s e d Fu l l En e r g y Ga t e w a y Sc e n a r i o le s s En e r g y Ga t e w a y - L i m i t e d Sc e n a r i o Ca p a c i t y , MW Re s o u r c e To t a l s * Re s o u r c e 20 1 1 1 2 0 1 2 1 2 0 1 3 1 2 0 1 4 1 2 0 1 5 1 2 0 1 6 1 2 0 1 7 1 20 1 8 1 2 0 1 9 1 20 2 0 12 0 2 1 1 2 0 2 2 1 2 0 2 3 1 2 0 2 4 1 20 2 5 12 0 2 6 1 2 0 2 7 1 2 0 2 8 1 2 0 2 9 1 20 3 0 IO Y e a r I 2O Y e a r Ea s t IC Ae r o (3 o s h e n - - - - - - - - - - - - 93 - - SC C T Ac r o Ut a h So u t h .. - - - - - - (1 1 8 ) Win d , Go s h e n , 29 % Ca p Fa c t o r - - - - - 10 0 30 - - - - - - - 13 0 13 0 Win d , Ut a h , 29 % Ca p Fa c t o r - - - - - - ff i ) 10 0 10 0 10 0 18 88 - - - - - - 29 4 40 0 Win d , Wy o m i n g , 35 % Ca p Fa c t o r Q) .2 2 2 ) .2 2 2 ) .Q ) Z) .) •• • ) ) •) .• ) ) (4 4 0 ) (1 , 0 8 7 ) To t a l Wi n d - - - - - 10 0 23 ) (1 0 0 ) (1 0 0 ) 3 15 (3 8 ) (4 8 ) (2 0 ) (9 9 ) j (7 8 ) (4 0 ) (1 8 7 ) (1 7 7 ) (7 1 8 ) DS M , Cla s s 1, Ut a h , DL C - R e s i d e n t i a l - - - - - - - - - - - - - - 12 - - - - (7 0 DS M , Cla s s 2, Ut a h - - - 15 - Mi c r o So l a r - Ho t Wa t e r He a t i n g - - - - - - - - - - - - - - - 3 - 0 FO T Me a d Q3 — J) . - - - - - - - - - (2 (2 FO T Ut a h Q3 J) .- J) ) - J9 ) J2 ) - (8 ) (2 6 ) We s t IC Ac r o , So u t h - C e n t r a l Or e g o n / C A - - - - 10 2 - - 10 2 Wi n d , Ya k i r n a , 29 % Ca p Fa c t o r - - - - - - - - - - - - - - - - - - Win d , Wa s h i n g t o n , 29 % Ca p Fa c t o r 6 - 43 57 26 10 0 58 95 45 10 0 31 9 84 4 Win d , Or e g o n , 29 % Ca p Fa c t o r - 20 - - - 84 - 10 4 Win d , Wa l l a Wa l l a , 29 % Ca p Fa c t o r - - - - - - - - - - - - - - - - - - To t a l Wi n d - - - - - 13 6 10 0 10 0 10 0 - - 43 57 26 12 0 58 95 45 18 4 31 9 94 8 DS M , Cl a s s 2, Wa l l s Wa l l a - - - - - - - - - - - - - - - - - - - (0 ) (0 ) DS M , Cl a s s 2, Ca l i f o r n i a / O r e g o n - - - - - - - - - - - - - - - - - - - OA - 0 DS M , Cl a s s 2 To t a l - - - - - - - - - - - - - - - - - 01 (0 ) (0 ) Mi c r o So l a r - Ho t Wa t e r He a t i n g - - - - - - - - - - - - - - - - - 1 1 1 - 2 FO T Mi d C o h j m b l a Q3 - - - - - - - - - J) - - - - - - (1 ) (1 ) An n u a l Ad d i t i o n s , Lo n g Te r m Re s o u r c e s - - - - J1 11 3 30 - - - 3 15 6 9 28 9 17 16 An n u a l Ad d i t i o n s , Sh o r t Te r m Re s o u r c e s - - - - 7 (2 ) (5 ) (5 ) j) J) J) ) ) 7 - J9 ) - To t a l An n u a t Ad d i t i o n s - - - - ff i ) II I 24 J) 9 1 4 28 9 17 7 Jf l ) Fr o n t of f i c e tr a n s a c t i o n s (F O T ) ar e no t ad d i t i v e . Fo r th e 10 - Y e a r co l u m n , FO T ar e a 1 0- y e a r av e r a g e th r 20 1 1 - 2 0 2 0 , wh e r e a s th e 20 - Y e a r co l u m n re p o r t a 10 - y e a r av e r a g e fo r 20 2 1- 2 0 3 0 . PACIFICORP —2011 IRP ADDENDuM CHApTER 1 —STocHAsTIc RESULTS FOR ENERGY GATEwAY Table 6 reports the stochastic average PVRR and cost component details for the revised Full Gateway and Gateway-Limited scenarios under the Green Resource Future scenario assuming medium CO2 and medium natural gas prices.A comparison of these PVRR results with the original Full and Gateway-Limited PVRR results is also provided.As indicated,the generation resource changes,which account for transmission operational constraints,resulted in higher PVRRs for both scenarios.The table also shows that the PVRR difference between the revised Full Gateway and Gateway-Limited scenario portfolios increased by $89 million ($1 .084 billion less $995 million)relative to the difference for the original portfolios. Table 6 —Portfolio Stochastic Average PVRR Comparison,Gateway-Limited vs.Full Gateway Scenarios Difference Original (Original Gateway-Original Full Gateway Limited Gateway Limited less Cost Component (MillionS)Scenario Scenario Full Gateway) Variable Costs Fuel&O&M $15,231 $15,048 $183 Emission Cost 7,409 7,230 179 FOT’s &Long Term Contracts 4,063 4,064 (1) Demand Side Management 3,373 3,421 (48) Renewables 693 693 0 System Balancing Sales (6,458)(6,387)(71) System Balancing Purchases 2,631 2,740 (109) Energy Not Served 44 47 (3) Dump Power (127)(127)0 Reserve Deficiency 0 0 0 Total Variable Costs $26,858 $26,729 $129 Capital and Fixed Costs $12,067 $11,201 $866 Total PVRR $38,925 $37,930 $995 Dilfere nce Revised (Original Gateway-Revised Full Gateway Limited Gateway Limited less Scenario Scenario Full Gateway) $14,858 $14,586 $272 7,448 7,172 276 4,195 4,195 (0) 3,657 3,639 18 665 665 (0) (6,529)(6,250)(279) 2,586 2,744 (158) 46 38 8 (125)(124)(1) 0 0 0 $26,802 $26,666 $136 $12,693 $11,745 $948 $39,495 $38,411 $1,084 Conclusion Based on these results,PacifiCorp concludes that for future Energy Gateway and other transmission expansion scenarios conducted for the IRP,a review of initial System Optimizer portfolio results in light of operational transmission constraints—followed by manual resource adjustments as needed—is a worthwhile modeling refinement.However,the cost impact is relatively small such that it would not be expected to change relative cost rankings of alternative transmission expansion scenarios.Excluding growth resources as a resource option has a more significant impact,raising portfolio costs due to the higher fixed costs associated with generation plant.The Company will revisit the efficacy of the growth resource approach for the next IRP. Original Energy Gateway °ortfolios Revised Energy Gateway lortfolios 11 PAcWIC0Ri -2011 IRP ADDENDUM CHmR 2-DSM DEcREMErr ANALYSIS CHAPTER 2-CLASS 2 DSM DEcREMENT STUDY This section presents the methodology and results of the energy efficiency (Class 2 demand-side management)decrement study.For this analysis,the 2011 JRP preferred portfolio was used to calculate the decrement value (“avoided cost”)of various types of Class 2 DSM resources. PacifiCorp will use these decrement values when evaluating the cost-effectiveness of current programs and potential new programs between IRP cycles. The Class 2 DSM decrement study was enhanced for the 2011 IRP.To align with the resource costs applied for resource portfolio development using the System Optimizer capacity expansion model,cost credits were applied to the Class 2 DSM decrement values reflecting (1)a transmission and distribution (T&D)investment deferral benefit,(2)a generation capacity investment deferral benefit,and (3)a stochastic risk reduction benefit associated with clean,no- fuel resources.7 Decrement values for two new energy efficiency load shapes were also estimated:residential water heating and “plug”loads (i.e.,energy consumed by electronic devices plugged into sockets.) Modeling Approach To determine the Class 2 DSM decrement values,PacifiCorp defined 17 shaped Class 2 DSM resources,each at 100 megawatts at the time of peak load,and available starting in 2011 and for the duration of the 20-year IRP study period.In contrast,the valuation study for the 2008 IRP focused on 13 resources.The added resources consist of residential water heating and plug loads for both east and west control areas.Adding these new energy efficiency resources to the analysis is intended to provide a refmed valuation for energy savings and further aid in developing program initiatives for such applications as showerheads,heat pump water heaters, and consumer electronics. Consistent with prior valuation studies,PacifiCorp first determined the system production cost with and without each Class 2 DSM resources using the PaR production cost model in Monte Carlo stochastics mode.The difference in production cost (stochastic mean PVRR)for the two runs indicates the system value attributable to the DSM resource through lower spot market transaction activity and resource re-optimization with the DSM resource in the portfolio.The cost credits mentioned above are then added separately outside of the model,thereby increasing Class 2 DSM decrement values.The resource deferral benefit,as a new step for deriving the decrement values value,is described below.The PaR decrement values were determined for three CO2 tax scenarios:zero,medium (starting at $19/ton and escalating to $39/ton by 2030), and low-to-very high (starting as $12/ton and escalating to $93/ton by 2030). Refer to Volume 1,page 147 of the 2011 IRP for a summary ofthe T&D investment deferral and stochastic risk reduction cost credits applied to the System Optimizer energy efficiency resource options. 13 PAcWIC0RP —2011 IRP ADDENDUM CTER 2—DSM DECREMENT ANALYSIS Generation Resource Capacity Deferral Benefit Methodology PacifiCorp used the System Optimizer model to determine the generation resource capacity deferral benefit.The approach is similar to the stochastic production cost difference method, except that only the fixed cost benefit of adding each 1 00-megawatt Class 2 DSM resource is calculated.This is accomplished by running System Optimizer with a base resource portfolio that excludes each 100-megawatt Class 2 DSM program,and then comparing the fixed portfolio costs against the cost of the same portfolio derived by System Optimizer that includes the DSM program at zero cost.The simulation period is 20 years.As a simplifying assumption,PacifiCorp applied the East “system”load shape for the generic DSM program,which has a capacity planning contribution of 93 percent and a capacity factor of 69 percent.The resource deferral fixed cost benefit is comprised of the deferred capital recovery and fixed operation and maintenance costs of a “next best alternative”resource—a combined-cycle combustion turbine (CCCT).The difference in the portfolio fixed cost represents the resource deferral benefit of the DSM program.(Note that System Optimizer’s production cost benefits were not taken into account to avoid double-counting the benefit extracted from stochastic PaR model results.) Since a 100-megawatt Class 2 DSM is not sufficiently large enough to defer a CCCT,System Optimizer was configured to allow fractional CCCT unit sizes for both the base portfolio and each of the 17 Class 2 DSM resource portfolios.Deferral of CCCT capacity can begin starting in 2015,the year after the Lake Side 2 CCCT is planned to be in service.Note that each Class 2 DSM resource can also defer front office transactions (a market resource representing a range of forward firm market purchase products). The resource capacity deferral benefit is calculated in two steps: 1.Fixed Cost Deferral Benefit Determination Fixed cost benefits are obtained by calculating the differences in annual fixed and capital recovery costs (millions of 2010 dollars)between the base portfolio and the portfolio with the Class 2 DSM program addition.The stream of annual benefits is then converted into a net present value (NPV)using the 2011 IRP discount rate (7.17 percent). 2.Levelized Value Calculation The fixed cost resource deferral benefit value obtained from step 1 is divided by the Class 2 DSM program energy in megawatt-hours (also converted to a NPV)to yield a value in dollars per megawatt-hour-year ($/MWh-yr). This value,along with the T&D investment deferral credit and stochastic risk reduction credit, are added to the PaR model decrement values to yield the final adjusted values. Class 2 DSM Decrement Value Results Table 7 reports the NPV levelized avoided costs by DSM resource and CO2 tax scenario for 2011 through 2030,along with a breakdown of the three cost credits (capacity deferral,T&D investment deferral,and stochastic risk reduction).Tables 8,9,and 10 report the annual nominal dollar avoided costs,in $/MWh,for each CO2 tax scenario.Figures 6 through 11 graphically 14 PAcWIC0Rp —2011 IRP ADDENDUM CHAPTER 2—DSM DECREMENT ANALYSIS show the avoided annual cost trends for the three CO2 tax scenarios by east and west location, along with average annual forward market prices for the relevant location (Palo Verde (PV)for the east and Mid-Columbia (Mid-C)for the west.) Consistent with the results for the 2008 JRP,the residential air conditioning decrements produce the highest value for both the east and west locations.The water heating (new),plug loads (new), and system load shapes provide the lowest avoided costs.Much of their end use shapes reduce loads during a greater percentage of off-peak hours than the other shapes and during all seasons, not just the summer. 15 PA c W I C 0 R P —2 0 1 1 IR P AD D E N D U M CH A P T E R 2- DS M DE c R E M E f AN A L Y S I S Ta b l e 7 — Le v e l i z e d Cl a s s 2 DS M Av o i d e d Co s t s by Ca r b o n Di o x i d e Ta x Sc e n a r i o , 20 - Y e a r Ne t Pr e s e n t Va l u e (2 0 1 1 - 2 0 3 0 ) To t a l Av o i d e d Co s t s by Ca r b o n Di o x i d e Ta x Sc e n a r i o , In c l u d i n g al l Co s t Cr e d i t s Co s t Cr e d i t Co m p o n e n t s ($ I M W h ) ($ / M W h ) Ca p a c i t y T& D Lo a d Re s o u r c e In v e s t m e n t St o c h a s t i c Ri s k Re s o u r c e Lo c a t i o n Fa c t o r Lo w to Ve r y Hi g h Me d i u m No n e De f e r r a l De f e r r a l Re d u c t i o n To t a l Cr e d i t Re s i d e n t i a l Co o l i n g Ea s t 10 % 11 4 . 9 4 11 6 . 4 6 10 1 . 5 5 16 . 6 9 11 . 8 0 14 . 9 8 43 . 4 7 Re s i d e n t i a l Li g h t i n g Ea s t 48 % 91 . 1 7 91 . 7 1 78 . 4 9 16 . 6 9 2. 3 5 14 . 9 8 34 . 0 2 Re s i d e n t i a l Wh o l e Ho u s e Ea s t 35 % 94 . 3 7 94 . 8 9 81 . 4 8 16 . 6 9 3. 2 3 14 . 9 8 34 . 9 1 Co m m e r c i a l Co o l i n g Ea s t 20 % 10 2 . 0 5 10 2 . 9 6 88 . 8 8 16 . 6 9 1. 9 1 14 . 9 8 33 . 5 8 Co m m e r c i a l Li g h t i n g Ea s t 48 % 93 . 2 7 93 . 5 9 79 . 9 1 16 . 6 9 1. 9 7 14 . 9 8 33 . 6 4 Wa t e r He a t i n g Ea s t 57 % 90 . 5 7 90 . 9 5 77 . 7 2 16 . 6 9 5. 8 3 14 . 9 8 37 . 5 0 Pl u g Lo a d s Ea s t 59 % 90 . 1 6 90 . 4 9 77 . 4 0 16 . 6 9 2. 3 3 14 . 9 8 34 . 0 0 Sy s t e m L o a d S h a p e Ea s t 69 % 90 . 3 1 90 . 7 2 77 . 5 3 16 . 6 9 1. 6 2 14 . 9 8 33 . 2 9 Re s i d e n t i a l Co o l i n g We s t 7% 11 1 . 1 7 12 3 . 0 3 11 2 . 0 4 16 . 6 9 16 . 6 3 14 . 9 8 48 . 3 0 Re s i d e n t i a l He a t i n g We s t 25 % 90 . 4 4 99 . 3 1 88 . 6 9 16 . 6 9 5. 5 9 14 . 9 8 37 . 2 6 Re s i d e n t i a l L i g h t i n g We s t 48 % 88 . 8 2 97 . 8 1 88 . 0 2 16 . 6 9 2. 4 8 14 . 9 8 34 . 1 5 Co m m e r c i a l Co o l i n g We s t 16 % 96 . 0 4 10 6 . 3 1 96 . 4 3 16 . 6 9 2. 6 0 14 . 9 8 34 . 2 7 Re s i d e n t i a l Wh o l e Ho u s e We s t 49 % 88 . 8 1 97 . 9 6 87 . 8 6 16 . 6 9 2. 0 3 14 . 9 8 33 . 7 0 Co m m e r c i a l Li g h t i n g We s t 48 % 89 . 4 0 98 . 5 6 88 . 8 6 16 . 6 9 2. 2 0 14 . 9 8 33 . 8 7 Wa t e r He a t i n g We s t 56 % 87 . 3 5 96 . 1 2 86 . 5 3 16 . 6 9 7. 1 1 14 . 9 8 38 . 7 9 Pl u g Lo a d s We s t 59 % 87 . 6 1 96 . 3 5 86 . 7 2 16 . 6 9 2. 4 6 14 . 9 8 34 . 1 3 Sy s t e m Lo a d Sh a p e We s t 71 % 87 . 3 8 96 . 2 6 86 . 5 4 16 . 6 9 1.7 5 14 . 9 8 33 . 4 2 16 PA c W I C 0 R P -2 0 1 1 IR P AD D E N r U M CH A P T E R 2- DS M DE c R E M E N T AN A L Y S I S Ta b l e 8 — An n u a l No m i n a l Cl a s s 2 DS M Av o i d e d Co s t s , No CO2 Ta x Sc e n a r i o , 20 1 1 - 2 0 3 0 Av o i d e d Co s t Va l u e s (N o m i n a l $/ M W h ) Ac t u a l Lo a d Re s o u r c e Fa c t o r 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 EA S T Re s i d e n t i a l Co o l i n g 10 % 92 . 5 9 93 . 4 5 98 . 6 7 96 . 3 4 10 1 . 8 0 98 . 2 2 96 . 6 0 97 . 0 5 98 . 6 0 97 . 2 1 Re s i d e n t i a l Li g h t i n g 48 % 68 . 5 2 71 . 8 8 75 . 5 3 76 . 9 5 79 . 3 7 77 . 6 8 77 . 2 6 75 . 5 6 75 . 8 0 77 . 6 7 Re s i d e n t i a l Wh o l e H o u s e 35 % 71 . 5 3 74 . 7 3 78 . 6 9 79 . 4 5 81 . 6 3 80 . 2 7 79 . 9 4 77 . 9 8 78 . 7 3 80 . 6 7 Co m m e r c i a l Co o l i n g 20 % 78 . 0 4 80 . 1 3 85 . 3 2 84 . 9 3 89 . 1 2 86 . 4 5 85 . 2 3 85 . 0 2 86 . 6 0 87 . 6 8 Co m m e r c i a l Li g h t i n g 48 % 69 . 0 1 72 . 9 1 77 . 1 4 77 . 6 6 80 . 1 9 78 . 9 9 78 . 0 8 77 . 1 3 78 . 3 2 79 . 0 2 Wa t e r He a t i n g 57 % 67 . 1 8 70 . 8 1 74 . 2 6 75 . 8 1 78 . 0 5 76 . 7 8 76 . 3 6 74 . 8 0 75 . 4 0 77 . 2 9 Pl u g L o a d s 59 % 67 . 1 5 70 . 6 1 74 . 1 1 75 . 5 2 77 . 6 7 76 . 2 2 76 . 1 7 74 . 6 4 75 . 4 2 76 . 5 4 Sy s t e m Lo a d Sh a p e 69 % 67 . 1 7 70 . 5 0 74 . 0 1 75 . 2 3 77 . 4 2 76 . 3 1 75 . 8 9 74 . 8 1 75 . 5 0 76 . 7 8 WE S T Re s i d e n t i a l C o o l i n g 7% 87 . 5 0 93 . 5 5 98 . 8 2 10 3 . 9 1 11 0 . 6 5 11 0 . 5 5 10 8 . 6 4 10 9 . 6 4 11 3 . 6 2 11 5 . 9 6 Re s i d e n t i a l He a t i n g 25 % 70 . 9 1 76 . 5 8 81 . 0 6 84 . 6 9 85 . 7 7 85 . 6 1 85 . 7 8 86 . 5 1 89 . 4 5 91 . 4 7 Re s i d e n t i a l Li g h t i n g 48 % 69 . 0 0 74 . 0 9 78 . 9 0 83 . 4 3 86 . 4 0 85 . 4 8 84 . 8 2 86 . 3 4 88 . 9 4 90 . 7 5 Co m m e r c i a l Co o l i n g 16 % 74 . 5 8 79 . 9 6 84 . 8 1 89 . 7 6 94 . 9 3 94 . 4 9 93 . 2 3 95 . 0 7 97 . 8 4 10 0 . 1 6 Re s i d e n t i a l Wh o l e Ho u s e 49 % 68 . 8 7 74 . 3 2 78 . 8 8 83 . 1 4 85 . 8 1 85 . 1 2 84 . 7 4 86 . 1 4 88 . 7 3 90 . 7 5 Co m m e r c i a l Li g h t i n g 48 % 68 . 9 4 74 . 7 8 79 . 9 0 84 . 4 2 87 . 2 3 86 . 5 7 86 . 0 8 87 . 1 3 89 . 4 6 91 . 6 8 Wa t e r He a t i n g 56 % 67 . 7 8 72 . 9 7 77 . 5 6 82 . 0 4 84 . 7 9 84 . 0 9 83 . 4 5 84 . 9 3 87 . 2 6 89 . 2 3 Pl u g Lo a d s 59 % 68 . 1 0 73 . 2 3 77 . 8 5 82 . 1 5 84 . 8 1 84 . 2 0 83 . 7 5 85 . 0 1 87 . 5 7 89 . 4 7 Sy s t e m L o a d S h a p e 71 % 67 . 6 9 72 . 8 7 77 . 4 9 82 . 0 0 84 . 6 6 84 . 1 1 83 . 5 4 84 . 9 0 87 . 3 1 89 . 4 1 Av o i d e d Co s t Va l u e s (N o m i n a l $/ M W h ) Ac t u a l Lo a d Re s o u r c e Fa c t o r 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 EA S T Re s i d e n t i a l Co o l i n g 10 % 10 2 . 9 8 10 5 . 5 1 10 6 . 5 3 10 9 . 8 0 10 8 . 1 4 10 3 . 4 4 10 2 . 2 3 12 3 . 8 4 12 7 . 8 9 13 7 . 2 9 Re s i d e n t i a l Li g h t i n g j 48 % 79 . 8 3 81 . 7 8 82 . 9 5 82 . 0 3 83 . 1 1 82 . 8 9 81 . 4 0 91 . 9 9 93 . 9 7 10 0 . 8 3 Re s i d e n t i a l Wh o l e Ho u s e 35 % 82 . 5 7 84 . 7 2 85 . 4 9 86 . 0 8 86 . 8 3 86 . 6 4 83 . 0 4 96 . 6 8 98 . 6 7 10 6 . 2 2 Co m m e r c i a l C o o l i n g j 20 % 90 . 7 0 92 . 7 9 94 . 8 3 96 . 9 5 95 . 4 0 93 . 6 3 91 . 8 2 10 7 . 3 9 11 0 . 8 2 11 8 . 3 1 Co m m e r c i a l Li g h t i n g L 48 % 80 . 9 9 83 . 3 6 84 . 9 0 84 . 9 2 85 . 2 0 84 . 3 2 82 . 2 1 94 . 0 2 97 . 1 1 10 4 . 0 6 17 PA C I F I C O R P —2 0 1 1 IR P AD D E N D U M CH A P m R 2- DS M DE c I E M E N T AN A L Y S I S Av o i d e d Co s t Va l u e s (N o m i n a l $/ M W h 1 Ac t u a l Lo a d Re s o u r c e Fa c t o r 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 Wa t e r H e a t i n g 57 % 79 . 3 8 81 . 0 2 82 . 0 0 82 . 1 1 83 . 1 8 82 . 8 8 80 . 6 8 92 . 2 5 93 . 9 4 10 0 . 9 5 Pl u g Lo a d s 59 % 78 . 8 7 80 . 5 4 81 . 8 8 81 . 8 0 82 . 2 9 82 . 1 6 80 . 7 9 91 . 5 7 93 . 2 4 10 0 . 3 8 Sy s t e m L o a d S h a p e 69 % 78 . 7 4 80 . 9 8 82 . 2 1 82 . 4 1 82 . 9 7 82 . 5 2 80 . 6 9 92 . 4 6 94 . 5 5 10 1 . 6 8 WE S T Re s i d e n t i a l Co o l i n g 7% 12 0 . 2 7 12 3 . 2 7 12 4 . 8 4 12 5 . 6 3 12 5 . 4 0 12 9 . 0 1 13 3 . 3 3 13 8 . 6 1 13 8 . 6 1 14 3 . 1 7 Re s i d e n t i a l H e a t i n g 25 % 92 . 8 0 95 . 1 6 97 . 0 2 98 . 7 9 99 . 2 2 10 4 . 2 6 10 3 . 1 9 10 7 . 0 4 10 8 . 9 1 11 1 . 7 3 Re s i d e n t i a l Li g h t i n g 48 % 93 . 0 8 95 . 6 4 97 . 1 7 99 . 1 0 98 . 7 0 10 2 . 2 8 10 3 . 7 7 10 8 . 1 0 10 9 . 5 8 11 2 . 8 3 Co m m e r c i a l C o o l i n g 16 % 10 3 . 1 1 10 5 . 9 4 10 7 . 3 0 10 8 . 8 1 10 8 . 7 6 11 1 . 4 5 11 4 . 5 4 11 9 . 9 9 12 0 . 8 8 12 4 . 4 9 Re s i d e n t i a l Wh o l e H o u s e 49 % 92 . 9 0 95 . 3 5 96 . 8 3 98 . 6 7 98 . 6 6 10 2 . 8 4 10 3 . 5 3 10 7 . 8 5 10 9 . 3 7 11 2 . 4 7 Co n i m e r c i a l L i g h t i n g 48 % 93 . 7 3 96 . 2 9 98 . 0 4 99 . 8 1 99 . 8 2 10 3 . 6 1 10 4 . 8 9 10 9 . 1 0 11 0 . 9 1 11 4 . 1 2 Wa t e r H e a t i n g 56 % 91 . 5 6 93 . 7 8 95 . 4 0 97 . 3 9 97 . 3 7 10 0 . 5 4 10 1 . 9 2 10 6 . 0 1 10 7 . 9 7 11 0 . 7 9 Pl u g L o a d s 59 % 91 . 6 4 94 . 0 6 95 . 5 2 97 . 5 5 97 . 3 0 10 0 . 7 6 10 2 . 0 0 10 6 . 3 8 10 8 . 1 7 11 0 . 9 9 Sy s t e m L o a d S h a p e 71 % 91 . 5 9 93 . 9 4 95 . 4 9 97 . 3 6 97 . 3 4 10 0 . 8 4 10 1 . 9 5 10 6 . 3 6 10 8 . 0 6 11 0 . 8 4 Ta b l e 9 — An n u a l No m i n a l Cl a s s 2 DS M Av o i d e d Co s t s , Lo w to Ve r y Hi g h CO2 Ta x Sc e n a r i o , 20 1 1 - 2 0 3 0 Av o i d e d Co s t Va l u e s (N o m i n a l $/ M W h ) Ac t u a l Lo a d Re s o u r c e Fa c t o r 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 EA S T Re s i d e n t i a l Co o l i n g 10 % 89 . 0 2 91 . 1 0 92 . 3 3 92 . 1 6 10 3 . 8 7 10 4 . 2 2 10 1 . 2 0 10 7 . 0 9 10 8 . 2 3 10 7 . 7 2 Re s i d e n t i a l Li g h t i n g 48 % 66 . 0 1 69 . 5 8 70 . 8 0 71 . 9 0 82 . 5 6 83 . 1 9 84 . 4 3 84 . 4 4 85 . 9 9 88 . 0 6 Re s i d e n t i a l Wh o l e Ho u s e 35 % 68 . 6 2 72 . 0 5 73 . 3 2 74 . 4 1 85 . 3 8 85 . 6 1 86 . 0 7 86 . 8 7 88 . 6 9 90 . 5 7 Co m m e r c i a l Co o l i n g 20 % 74 . 9 1 78 . 0 3 79 . 4 8 80 . 0 2 92 . 0 9 92 . 0 5 92 . 1 8 94 . 3 3 95 . 6 4 97 . 1 6 Co m m e r c i a l Li g h t i n g 48 % 66 . 7 7 70 . 0 7 71 . 8 7 72 . 7 5 83 . 7 1 84 . 7 0 85 . 8 2 85 . 8 8 87 . 7 0 90 . 1 4 Wa t e r H e a t i n g 57 % 64 . 8 1 68 . 1 7 69 . 3 7 70 . 7 9 81 . 3 9 82 . 3 3 83 . 1 5 83 . 5 6 85 . 4 5 87 . 5 0 Pl u g Lo a d s 59 % 64 . 7 7 68 . 0 2 69 . 7 4 70 . 7 0 80 . 9 6 82 . 0 8 83 . 2 9 83 . 1 8 84 . 5 4 87 . 2 6 Sy s t e m L o a d S h a p e 69 % 64 . 9 2 67 . 9 6 69 . 3 5 70 . 6 1 81 . 0 2 82 . 0 0 82 . 7 9 83 . 2 0 84 . 5 5 86 . 8 7 WE S T Re s i d e n t i a l Co o l i n g 7% 81 . 2 7 85 . 0 7 86 . 4 7 88 . 0 0 97 . 8 8 10 0 . 5 5 10 1 . 4 5 10 5 . 2 6 10 8 . 1 0 11 0 . 9 0 Re s i d e n t i a l He a t i n g 25 % 65 . 8 1 69 . 5 8 71 . 5 1 72 . 8 5 78 . 5 6 80 . 3 4 82 . 1 4 84 . 1 7 86 . 3 1 89 . 7 9 18 PA C W I C 0 R P -2 0 1 1 IR P AD D E N m i M CH A P T E R 2- DS M DE c 1 M E N T AN A L Y S i S Av o i d e d Co s t Va l u e s (N o m i n a l $/ M W b ) Ac t u a l Lo a d Re s o u r c e Fa c t o r 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 Re s i d e n t i a l Li g h t i n g 48 % 63 . 5 1 66 . 5 8 68 . 6 2 69 . 8 8 77 . 3 3 78 . 8 8 80 . 2 8 82 . 8 7 85 . 3 1 88 . 2 7 Co m m e r c i a l Co o l i n g 16 % 69 . 0 5 71 . 8 0 73 . 8 4 75 . 1 6 84 . 0 2 86 . 4 7 87 . 3 0 90 . 7 5 93 . 1 5 95 . 8 9 Re s i d e n t i a l Wh o l e H o u s e 49 % 63 . 5 0 66 . 8 5 68 . 7 4 69 . 9 9 77 . 1 5 78 . 8 5 80 . 4 2 82 . 8 8 85 . 0 8 88 . 0 7 Co m m e r c i a l Li g h t i n g 48 % 63 . 6 3 66 . 8 0 68 . 8 4 70 . 1 0 77 . 7 1 79 . 3 1 80 . 9 5 83 . 3 1 85 . 7 1 89 . 0 6 Wa t e r He a t i n g 56 % 62 . 4 1 65 . 5 2 67 . 5 5 68 . 7 5 75 . 9 2 77 . 7 0 79 . 1 0 81 . 5 0 83 . 8 4 86 . 5 3 Pl u g Lo a d s 59 % 62 . 6 9 65 . 8 8 67 . 7 4 69 . 0 5 76 . 1 5 77 . 7 0 79 . 3 1 81 . 7 5 84 . 1 0 86 . 8 6 Sy s t e m Lo a d Sh a p e 71 % 62 . 3 3 65 . 6 0 67 . 4 5 68 . 7 1 75 . 8 4 77 . 5 8 79 . 0 8 81 . 4 4 83 . 9 4 86 . 5 3 j Av o i d e d Co s t Va l u e s (N o m i n a l $/ M W h ) Ac t u a l Lo a d Re s o u r c e Fa c t o r 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 EA S T Re s i d e n t i a l C o o l i n g 10 % 11 5 . 8 5 12 3 . 6 1 12 8 . 0 8 13 7 . 4 7 14 2 . 0 6 14 3 . 4 2 15 4 . 9 0 18 0 . 5 7 19 5 . 1 1 21 8 . 3 0 Re s i d e n t i a l L i g h t i n g 48 % 92 . 6 2 98 . 3 2 10 1 . 6 9 10 7 . 9 7 11 4 . 5 9 12 0 . 8 7 12 7 . 1 3 14 5 . 7 7 15 5 . 1 1 17 3 . 7 0 Re s i d e n t i a l Wh o l e H o u s e 35 % 95 . 4 4 10 1 . 0 9 10 5 . 1 7 11 2 . 7 2 11 8 . 6 9 12 5 . 0 5 13 1 . 3 6 15 3 . 2 6 16 2 . 5 2 18 2 . 7 0 Co m m e r c i a l Co o l i n g 20 % 10 4 . 7 3 10 9 . 1 4 11 4 . 8 3 12 3 . 9 3 13 0 . 8 0 13 3 . 0 9 14 0 . 0 6 16 3 . 3 2 17 2 . 9 3 20 0 . 7 0 Co m m e r c i a l Li g h t i n g 48 % 94 . 9 1 10 0 . 0 6 10 5 . 4 7 11 1 . 8 7 11 7 . 9 6 12 4 . 0 3 13 0 . 4 7 15 1 . 2 0 16 2 . 6 0 18 2 . 5 8 Wa t e r H e a t i n g 57 % 92 . 1 2 96 . 9 7 10 1 . 9 5 10 8 . 1 6 11 4 . 8 8 12 1 . 0 2 12 7 . 9 3 14 6 . 8 7 15 6 . 6 4 17 7 . 1 6 Pl u g Lo a d s 59 % 91 . 6 6 96 . 7 0 10 1 . 4 9 10 7 . 1 6 11 4 . 3 2 12 0 . 3 2 12 6 . 7 3 14 5 . 5 5 15 4 . 2 6 17 5 . 5 7 Sy s t e m L o a d S h a p e 69 % 91 . 9 9 96 . 9 7 10 2 . 0 3 10 7 . 6 1 11 4 . 1 2 12 1 . 0 3 12 7 . 2 6 14 6 . 1 1 15 6 . 6 9 17 7 . 6 4 WE S T Re s i d e n t i a l C o o l i n g 7% 11 5 . 5 3 12 2 . 0 6 12 7 . 5 8 13 3 . 9 7 14 1 . 7 9 15 2 . 3 7 15 7 . 5 9 17 0 . 6 5 17 9 . 2 2 18 9 . 6 3 Re s i d e n t i a l H e a t i n g 25 % 91 . 9 9 96 . 3 5 10 2 . 3 7 10 9 . 1 5 11 6 . 0 2 13 1 . 4 6 13 1 . 0 7 13 8 . 8 1 14 8 . 0 6 15 6 . 3 9 Re s i d e n t i a l Li g h t i n g 48 % 90 . 7 8 96 . 2 5 10 1 . 8 5 10 8 . 3 0 11 5 . 0 4 12 7 . 2 7 13 0 . 1 7 13 9 . 6 1 14 8 . 5 9 15 6 . 8 9 Co m m e r c i a l C o o l i n g 16 % 99 . 3 0 10 4 . 8 1 11 0 . 5 4 11 6 . 5 3 12 3 . 9 5 13 3 . 7 0 13 8 . 6 1 15 0 . 4 5 15 9 . 4 6 16 7 . 5 7 Re s i d e n t i a l Wh o l e l l o u s e 49 % 90 . 9 8 95 . 9 9 10 1 . 6 4 10 8 . 1 8 11 5 . 2 7 12 7 . 7 9 12 9 . 8 8 13 9 . 2 7 14 8 . 3 0 15 6 . 8 2 Co m m e r c i a l Li g h t i n g 48 % 91 . 7 0 96 . 8 9 10 2 . 7 5 10 9 . 0 4 11 5 . 9 5 12 8 . 6 3 13 1 . 2 0 14 0 . 7 7 15 0 . 0 7 15 8 . 8 5 Wa t e r H e a t i n g 56 % 89 . 2 6 94 . 4 6 10 0 . 0 5 10 6 . 4 2 11 3 . 4 5 12 5 . 2 2 12 7 . 9 3 13 6 . 9 4 14 6 . 4 5 15 4 . 8 4 Pl u g L o a d s 59 % 89 . 4 9 94 . 6 0 10 0 . 5 0 10 6 . 7 5 11 3 . 6 1 12 5 . 5 8 12 8 . 4 2 13 7 . 4 0 14 6 . 6 8 15 5 . 0 9 Sy s t e m L o a d S h a p e 71 % 89 . 5 1 94 . 4 3 10 0 . 2 3 10 6 . 4 2 11 3 . 3 7 12 5 . 6 3 12 8 . 1 8 13 7 . 3 2 14 6 . 5 3 15 5 . 1 0 19 PA c W I C 0 I u -2 0 1 1 IR P AD D E N D u M CF i P m R 2- DS M DE c l M E r AN A L Y S I S Ta b l e 10 — An n u a l No m i n a l Cl a s s 2 DS M Av o i d e d Co s t s , Me d i u m CO2 Ta x Sc e n a r i o , 20 1 1 - 2 0 3 0 Av o i d e d Co s t Va l u e s (N o m i n a l $/ M W h ) Ac t u a l Lo a d Re s o u r c e Fa c t o r 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 EA S T Re s i d e n t i a l Co o l i n g 10 % 92 . 0 1 91 . 5 0 95 . 4 7 90 . 4 1 11 6 . 8 5 11 4 . 7 5 11 3 . 4 5 11 6 . 3 9 11 8 . 9 3 12 0 . 5 9 Re s i d e n t i a l Li g h t i n g 48 % 66 . 6 1 69 . 5 3 71 . 3 4 70 . 9 4 92 . 9 9 93 . 5 1 93 . 3 8 93 . 6 4 94 . 8 3 97 . 9 1 Re s i d e n t i a l Wh o l e Ho u s e 35 % 69 . 5 8 72 . 2 8 74 . 4 6 73 . 3 0 95 . 6 2 95 . 8 5 95 . 9 8 96 . 5 4 97 . 2 5 10 1 . 5 0 Co m m e r c i a l Co o l i n g 20 % 76 . 4 6 77 . 8 2 81 . 9 7 78 . 9 4 10 3 . 4 2 10 3 . 5 8 10 2 . 1 7 10 2 . 8 9 10 5 . 3 2 10 9 . 0 7 Co m m e r c i a l Li g h t i n g 48 % 67 . 2 5 70 . 3 8 73 . 0 4 71 . 8 8 93 . 9 8 95 . 2 6 95 . 0 4 95 . 7 1 96 . 7 7 10 0 . 3 0 Wa t e r H e a t i n g 57 % 65 . 1 8 68 . 0 6 69 . 9 7 69 . 8 9 91 . 9 2 92 . 6 4 92 . 9 7 92 . 5 4 93 . 9 6 97 . 4 1 Pl u g Lo a d s 59 % 65 . 1 6 67 . 9 7 70 . 0 5 69 . 5 6 91 . 4 0 92 . 1 0 92 . 4 2 92 . 1 5 94 . 0 8 96 . 6 7 Sy s t e m L o a d S h a p e 69 % 65 . 1 2 68 . 0 4 70 . 0 0 69 . 3 8 91 . 2 6 92 . 3 0 92 . 1 8 92 . 0 8 94 . 1 1 97 . 2 5 WE S T Re s i d e n t i a l Co o l i n g 7% 85 . 3 7 92 . 7 8 94 . 9 4 97 . 5 1 12 2 . 9 4 12 6 . 8 7 12 2 . 1 7 12 4 . 7 7 13 0 . 2 4 13 2 . 7 7 Re s i d e n t i a l He a t i n g 25 % 71 . 4 2 77 . 6 4 79 . 3 9 81 . 7 6 97 . 9 5 99 . 5 4 99 . 2 3 10 0 . 1 9 10 4 . 1 8 10 6 . 2 1 Re s i d e n t i a l Li g h t i n g 48 % 66 . 7 8 72 . 5 0 74 . 8 5 76 . 9 4 97 . 9 0 99 . 5 3 97 . 5 1 99 . 6 9 10 3 . 4 7 10 6 . 0 7 Co m m e r c i a l Co o l i n g 16 % 71 . 7 7 78 . 0 6 80 . 7 8 83 . 0 7 10 7 . 2 2 10 9 . 2 7 10 5 . 1 9 10 8 . 4 2 11 2 . 1 0 11 6 . 0 3 Re s i d e n t i a l Wh o l e Ho u s e 49 % 67 . 4 5 73 . 4 9 75 . 6 7 77 . 8 0 97 . 7 6 99 . 5 4 97 . 5 6 99 . 5 5 10 3 . 4 3 10 6 . 0 3 Co m m e r c i a l Li g h t i n g 48 % 67 . 0 7 73 . 4 9 75 . 7 0 78 . 0 0 98 . 6 8 10 0 . 1 9 97 . 8 2 10 0 . 1 8 10 3 . 9 2 10 7 . 0 7 Wa t e r H e a t i n g 56 % 65 . 4 7 71 . 3 4 73 . 5 4 75 . 7 1 96 . 2 6 97 . 7 3 95 . 8 6 98 . 0 4 10 1 . 7 0 10 4 . 3 7 Pl u g Lo a d s 59 % 65 . 8 6 71 . 7 7 73 . 9 0 75 . 9 6 96 . 5 4 97 . 8 4 96 . 1 8 98 . 1 4 10 1 . 8 5 10 4 . 8 5 Sy s t e m Lo a d Sh a p e 71 % 65 . 6 6 71 . 5 7 73 . 7 9 75 . 8 5 96 . 2 5 97 . 7 8 96 . 0 4 98 . 1 2 10 1 . 8 6 10 4 . 5 6 Av o i d e d Co s t Va l u e s (N o m i n a l $/ M W h ) Ac t u a l Lo a d Re s o u r c e Fa c t o r 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 EA S T Re s i d e n t i a l Co o l i n g 10 % 12 5 . 5 7 13 1 . 2 5 13 3 . 3 4 14 2 . 1 9 14 1 . 4 7 13 1 . 1 8 13 0 . 3 7 15 3 . 0 7 15 8 . 4 3 17 1 . 0 0 Re s i d e n t i a l Li g h t i n g 48 % 10 1 . 7 0 10 4 . 1 8 10 6 . 6 6 10 9 . 1 4 11 0 . 5 7 10 8 . 5 7 10 7 . 9 4 11 8 . 6 7 12 3 . 5 3 13 0 . 4 3 Re s i d e n t i a l Wh o l e H o u s e 35 % 10 4 . 6 2 10 7 . 4 8 11 0 . 9 5 11 4 . 0 2 11 4 . 9 8 11 1 . 9 0 11 0 . 6 8 12 3 . 5 5 12 8 . 4 4 13 6 . 1 3 Co m m e r c i a l C o o l i n g 20 % 11 4 . 8 1 11 7 . 0 6 12 1 . 0 0 12 5 . 4 2 12 5 . 9 0 11 9 . 4 1 11 7 . 4 3 13 5 . 0 9 14 0 . 9 9 15 2 . 2 8 20 PA c w I C o 1 p -2 0 1 1 LR P AD D E N D U M CH A P T E R 2— DS M DE C R E M E N T AN A L Y S I S Av o i d e d Co s t Va l u e s (N o m i n a l $I M W h ) Ac t u a l Lo a d Re s o u r c e Fa c t o r 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 Co m m e r c i a l Li g h t i n g 48 % 10 4 . 0 2 10 5 . 7 5 11 0 . 0 4 11 2 . 6 7 11 4 . 0 1 11 0 . 3 1 10 9 . 8 3 12 1 . 3 5 12 6 . 8 1 13 6 . 2 7 Wa t e r H e a t i n g 57 % 10 1 . 0 5 10 3 . 5 9 10 6 . 9 4 10 9 . 6 1 11 1 . 0 0 10 8 . 1 5 10 7 . 1 7 11 8 . 9 2 12 2 . 5 2 13 1 . 3 4 Pl u g L o a d s 59 % 10 0 . 3 6 10 2 . 5 1 10 6 . 0 8 10 8 . 8 3 10 9 . 8 9 10 7 . 3 8 10 6 . 8 0 11 7 . 6 4 12 1 . 9 5 13 0 . 4 7 Sy s t e m L o a d S h a p e 69 % 10 0 . 7 5 10 2 . 9 1 10 6 . 5 9 10 9 . 2 6 10 9 . 9 3 10 7 . 9 3 10 7 . 4 2 11 8 . 9 0 12 3 . 8 6 13 1 . 8 8 WE S T Re s i d e n t i a l Co o l i n g 7% 13 5 . 6 3 14 0 . 7 7 14 6 . 3 5 15 2 . 8 1 15 0 . 6 2 14 9 . 8 3 14 7 . 8 8 15 8 . 0 4 16 0 . 1 7 16 8 . 1 4 Re s i d e n t i a l H e a t i n g 25 % 10 8 . 1 2 11 1 . 3 9 11 6 . 1 4 12 0 . 4 7 12 0 . 9 9 12 3 . 0 5 11 9 . 5 0 12 3 . 7 9 12 7 . 2 7 13 1 . 9 0 Re s i d e n t i a l Li g h t i n g 48 % 10 8 . 0 9 11 1 . 6 9 11 7 . 1 1 12 1 . 9 6 12 1 . 4 7 12 1 . 7 0 11 9 . 2 9 12 5 . 5 0 12 9 . 2 9 13 3 . 9 7 Co m m e r c i a l Co o l i n g 16 % 11 7 . 9 5 12 2 . 1 8 12 8 . 5 9 13 3 . 5 6 13 2 . 0 6 13 0 . 8 0 12 8 . 5 1 13 7 . 3 1 14 0 . 7 9 14 6 . 7 6 Re s i d e n t i a l Wh o l e H o u s e 49 % 10 7 . 8 9 11 1 . 6 1 11 6 . 7 1 12 1 . 5 2 12 1 . 4 5 12 1 . 5 7 11 9 . 0 4 12 5 . 0 2 12 8 . 3 6 13 3 . 5 1 Co m m e r c i a l Li g h t i n g 48 % 10 8 . 9 5 11 2 . 3 2 11 7 . 7 4 12 2 . 8 7 12 2 . 0 5 12 2 . 4 8 12 0 . 0 8 12 6 . 5 5 13 0 . 7 5 13 5 . 4 1 Wa t e r F l e a t i n g 56 % 10 6 . 2 2 10 9 . 9 3 11 4 . 9 1 12 0 . 1 5 11 9 . 3 7 11 9 . 3 3 11 6 . 9 7 12 3 . 0 6 12 6 . 9 7 13 1 . 6 6 Pl u g L o a d s 59 % 10 6 . 3 6 11 0 . 0 7 11 5 . 2 3 11 9 . 8 4 11 9 . 5 0 11 9 . 3 3 11 7 . 2 1 12 3 . 2 4 12 7 . 0 8 13 1 . 9 0 Sy s t e m L o a d S h a p e 71 % 10 6 . 4 6 10 9 . 9 2 11 5 . 1 2 11 9 . 9 3 11 9 . 6 7 11 9 . 4 1 11 7 . 2 3 12 3 . 1 1 12 7 . 2 0 13 1 . 9 1 21 PAcWIC0IU —2011 IRP ADDENDUM CHAPTER 2—DSM DEcIMEr ANALYSIS Figure 6 —East Class 2 DSM Nominal Avoided Cost Trends,Low to Very High CO2 Tax Scenario East,Low to Very High C02 Tax Scenario / 7J/_ /j -—--1/.v ut ____________________________________ 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 -+—Palo Verde Flat (2011 IRP,Low to Very High C02 Tax)-Residential Cooling —*Residential Lighting Residential Whole House -Comrriercial Cooling —Commercial Lighting t—System Load Shape Water Heating Plug Loads Figure 7 —West Class 2 DSM Nominal Avoided Cost Trends,Low to Very High CO2 Tax Scenario West Low to Very High C02 Tax Scenario $200 $190 $180 $170 $160 $150 $140 $130 $120 .$110 $100 In $90 $80 $70 $60 $50 $40 $30 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 Residential Cooling -—---Residential Heating t Residential Lighting Commercial Cooling —a---—Residential Whole HoLes —Commercial Lighting —i—--Syslem Load Shape Mid Colombia Flal(2011 IRP,Lowlo Very High C02 Taut WaterHealing -Plug Loads 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 -C ha 22 PACIFICORP —2011 IRP ADDENDUM CHAPTER 2—DSM DEcREMENT ANALYSIS Figure 8—East Class 2 DSM Nominal Avoided Cost Trends,Medium CO2 Tax Scenario East,Medium C02 Tax Scenario /7 —.--- —---—- ———--, —--—4 .---- 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 ---+---PaloVerde FIat (2011 IRP,Medium C02 Tax)——Residential Cooling*ResidentialLighting Residential Whole House —*——Commercial Cooling ———Commercial Lighting—i—-—System Load Shape Water HeatingPlugLoads Figure 9—West Class 2 DSM Nominal Avoided Cost Trends,Medium CO2 Tax Scenario $180 $170 $160 $150 $140 $130 $120 $110 $100 $90 $80 $70 $60 $50 $40 $30 West,Medium C02 Tax Scenario 2011 2012 2013 2014 2019 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 —--—Reoidental Cooling —S——Residental Heating —t——Renidential Lighting Commercial Coning —--—Residental Whole Home —-—--Commercial Lightemg —‘—-—SystemLoad Shape -—-Mid Columbia Flat (2011 IRP,MediumC02 Tax)Water Heating Plug Loads 180 170 160 150 140 130 120 110 100 go 80 70 60 50 40 30 05 ---- -—--—-.--——------—------.--—-—------ 23 PAcWIC0RP —2011 IRP ADDENDUM CEIAPmR 2—DSM DEciuMEr ANALYSIS Figure 10 —East Class 2 DSM Nominal Avoided Cost Trends,No CO2 Tax Scenario East,$0 C02 Tax Scenario 150 140 130 120 110 !E 60 _._--.— 50 ---4,-- 40 30 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 PaloVerde Flat (2011 IRP,$0 C02 Tax)———Residential Cooling —&-——Residential Lighting Residential Whole House —Commercial Cooling —•—Commercial Lighting —1—System Load Shape Water Heating Plug Loads Figure 11 —West Class 2 DSM Nominal Avoided Cost Trends,No CO2 Tax Scenario West,$0 C02 Tax Scenario $150 :: __ $120 - $60 $50 -----—- $40 - $30 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 —4-----Residential Cooling —*-----Residential Heating —*——Residential Lighting CommercialCooling —4——Residential Whole Home —4----CommercialLighting —SystemLoad Shape Mid CotambeFlai(201I IRP,$0C02tax)Waler Healing Plug Loads 24 PAcWICORP -2011 IRP ADDENDUM CHAPTER 3-ADDITIONAL WIND ANALYSIS CHAPTER 3 -APPRAIsAL OF INTERWEST ENERGY ALLIANCE’S WIND CAPITAL COST AND CAPACITY FACTOR RECOMMENDATIONS Introduction At the 2011 IRP public input meeting held December 15,2010,Wasatch Wind (a wind project developer headquartered in Utah)and other participants contended that PacifiCorp’s planning capital cost value for east-side wind projects were too high,while the planning capacity factor value—35 percent for Wyoming and 29 percent for Utah—were too low.PacifiCorp agreed to review information supplied by participants and provide its assessment to all IRP public participants,also noting that it was too late to incorporate such information into the portfolio development process.8 At the Company’s discretion,a sensitivity analysis on wind selection impacts of alternative capital cost and capacity factor values may be conducted as warranted based on its findings.On January 10,2011,PacifiCorp received wind capital cost and net capacity factor information from Interwest Energy Alliance (TEA).This information is included as Appendix A.The sections below provide PaciflCorp’s response to both lEA’s capital cost and capacity factor recommendations. Capital Costs The Company has reviewed the TEA’s “ITC Grant Recipient”project cost overview and,while informative,the information is not viewed as a suitable replacement for PacifiCorp ‘5 own wind cost information.The reasons are summarized below. First,The TEA information is generally not representative of projects that would interconnect to PacifiCorp’s transmission system.None of the example projects are located in Wyoming and only one is located in Utah.In contrast,PacifiCorp’s wind capital cost estimates are informed by both actual project costs and regionally-adjusted capital costs used in an independently produced model (ICF International’s TPM®model).The 1PM model supports development of PacifiCorp’s forward price curve and,therefore,assumptions within the 1PM model are inherently important as it relates to the Company’s TRP. Second,the costs represented by LEA are derived by taking United States Treasury Department’s ITC Grants stemming from the 2009 Stimulus Bill and dividing by 0.285.The result is shown on a cost per unit basis ($/MW).lEA represents the divisor as being an adjustment factor to convert the amount of cost qualifying for the cash grant into “total wind project costs”.Tt is not known if the “total wind project costs”being promoted by lEA can accurately be compared to the capital PacifiCorp presented and discussed resource option characteristics,including those for wind,at the August 4, 2010,public input meeting.The subsequent meeting report,provided to IRP participants on October 5,2010 andpostedtoPacifiCorp’s IRP Web site,included the detailed table of resource characteristics. 25 PAcffICoIu -2011 IRP ADDENDuM CH.pTER 3—ADDITIONAL WIND ANALYSIS cost assumptions used by PacifiCorp in its most recent version of the IRP.PacifiCorp’s cost estimate is intended to represent all costs to develop,permit,construct,own and operate a representative wind-powered generation resource using PacifiCorp’s weighted average cost of capital and with an assumed economic life of 25 years. lEA’s estimate appears to rely on two key assumptions:(1)that LEA’s view of “total wind project costs”includes all of the factors included in PacifiCorp’s cost estimate,and (2)lEA has accurately interpreted Internal Revenue Service (IRS)guidance associated with such grants.It is uncertain if TEA’s interpretation of IRS guidance as applied to such a limited set of western project data can,or should,serve as definitive prediction of all costs that will affect the total bus bar costs of future wind-powered generation resources as seen from the customer’s perspective. For example,it is uncertain what portion of transmission-related costs the IRS considers as being “qualifying costs”under the 2009 Stimulus Bill and how transmission-related costs (e.g., generation tie line and/or transmission collector system costs)will change as future projects are brought to fruition. Third,the lEA’s sample data set data represents projects that were poised and ready to qualify for a cash grant under the 2009 Stimulus Act.As such,the data set does not account for significant new and prospective environmental regulatory actions or other policy decisions that are expected to change development costs for future projects.Examples include (1)Wyoming’s Greater sage-grouse core breeding area plan,(2)the effect of emerging “Land-Based Wind Energy Guidelines”by the U.S.Fish and Wildlife Service,and (3)federal,state or local tax and/or permitting policies.(As noted above,none of the sample projects in the TEA data set include projects in Wyoming,which are subject to Wyoming’s sales tax and generation excise tax policies.) Fourth,even if TEAs estimates include all of the cost elements included in PacifiCorp’s estimate, because of the factors that led to the 2009 Stimulus Act,it is impossible to ascertain what cost concessions developers were able to extract from major equipment suppliers and/or construction contractors during then-current market conditions.Furthermore,because PacifiCorp is planning for the long-term,any long-run cost improvements can reasonably be expected to be offset to some degree by supply chain pricing dynamics and/or the effects of domestic and/or international market demand,depth and liquidity.Finally,it can also reasonably be expected that market forces will result in the development of increasingly less desirable and/or more costly sites as the more optimal sites are utilized (i.e.,moving higher up the cost-supply curve). In summary,PacifiCorp does not see definitive evidence suggesting that the capital cost estimates in the JRP for wind-powered generation resources are inappropriately high.However, to get a sense for what TEA’s capital cost recommendation would do in terms of a wind resource selection impact,we refer to the alternate wind integration cost sensitivity results on page 244 of the 2011 LRP.The lower wind integration cost used for this sensitivity study,$5.3 8/MWh, equates to a fixed cost reduction of $195/kW.Using the alternative wind integration cost value resulted in 81 MW of additional wind.Based on the $346/kW capital cost reduction advocated by lEA ($2,239/kW from IRP Table 6.5 less $1,893/kW from page 1 of lEA’s materials),the capacity impact is not likely to exceed 150 MW. 26 PAcIFICORP —2011 IRP ADDENDUM CHAPTER 3—ADDITIONAL WIND ANALYSIS Capacity Factors lEA makes multiple generalized assumptions and,using these assumptions as a basis,suggests that PacifiCorp should use a 43.6%or higher net capacity factor (NCF)for modeling future Wyoming wind projects.Below is a discussion of these generalized assumptions and their suitability for characterizing NCFs for use in the IRP context. lEA assumes that the NCF associated with PacifiCorp owned wind resources in Wyoming should serve as a base-level assumption for future wind projects.lEA determines the average NCF for seven selected resources.Using this average NCF,TEA represents that it can “back into”an annual average wind speed (in meters per second)that should be associated with future wind projects constructed in Wyoming.lEA concludes that 8.6 meters per second should be assumed as the annual average wind speed.Using this average wind assumption,lEA further concludes a theoretical NCF increase of 112 percent can be achieved if a General Electric (GE) model 1.5 megawatt (MW)“XLE”wind turbine generator (WTG)is used instead of a GE 1.5 MW “SLE”WTG.The GE 1.5 MW XLE WTG has longer blades and a larger rotor diameter (82.5 meters)than the GE 1.5 MW SLE WTG (77 meter rotor diameter).TEA considers the GE 1.5 XLE to be an “advanced”WTG design.lEA likewise considers the Vestas V90 and Siemens 2.3 MW WTGs,with 90 meter and 101 meter rotor diameters respectively,to be advanced WTG designs.Applying the 112 percent enhancement to the Dunlap I NCF,lEA represents it has demonstrated its theory. In short lEA suggest that PacifiCorp should assume that all future wind projects in Wyoming are suitable for WTGs with increased rotor diameters.While PacifiCorp agrees that WTG design evolutions may favorably impact performance for those sites for which they are suitable,the Company makes the following observations regarding lEA’s NCF recommendation and the assumptions it is based on. First,TEA’s NCF recommendation assumes all Wyoming wind developments could utilize WTGs with increased rotor diameters.In arriving at this conclusion,TEA points toward an unreferenced GE determination that,depending on final layouts and turbulence intensity,the GE XLE model is “meteorologically suitable for some wind projects at 7500’altitude with annual average wind speeds of 8.5 mIs to over 10 mis”.TEA’s representation that WTG suitability for a site is primarily based on average annual wind speed and turbulence intensity is flawed.The suitability of a WTG model(s)for any given site can only be determined using a site specific mechanical loads assessment performed by the turbine manufacturer.TEA has provided no evidence of such assessments demonstrating that WTGs with rotor diameters as large as 101 meters are broadly suitable for use in Wyoming.Further,TEA fails to adequately discuss that WTG suitability is often driven by 50-year peak gusts and turbulence intensity at high wind speeds.Without a sufficient amount of reliable data from the site towers,it is difficult to conclusively determine if a WTG is suitable for a given site,let alone if specific WTG models are broadly suitable for use in Wyoming.Indeed,manufacturers may require more site data to be collected to verify that their WTGs are suitable,and in the event that site conditions are more extreme than was indicated by the data provided to the manufacturer (e.g.,higher wind gusts or higher overall average wind speeds),they may not honor warranties in the event of failures associated with greater than estimated environmental conditions at the site.For these reasons, PacifiCorp’s IRP does not rely on generalized WTG assumptions. 27 PACWICORP —2011 IRP ADDENDuM CH.pTER 3—ADDITIONAL WIND ANALYSIS Second,lEA’s assumed NCF improvement (12 percent applied broadly)associated with the GE XLE WTG over the GE SLE WTG is significantly higher than that indicated by a recent Company procurement process.In its “2009R”renewable Request for Proposals,PacifiCorp received two separate bids from the same developer using the same site and based on the GE SLE WTG versus GE XLE WTG.The capacity factor difference was only 1.8 percentage points in favor of the GE 1.5 XLE WTG,a difference of 4.6 percent.This is in contrast to the 12 percent capacity factor improvement recommended by lEA.9 Of note is that the bid based on the GE XLE WTG commanded a price premium relative to the bid based on the GE SLE WTG. PacifiCorp further notes that LEA’s recommendation to reduce assumed capital costs (discussed above)relied on information where the model of WTG was not disclosed. Finally,in selecting the seven wind projects that serve as the source of the average NCF assumption that,in turn,serves as the starting point for all of lEA’s subsequent assumptions and resulting adjustments,TEA fails to consider all of PacifiCorp’s owned and contracted wind resources in Wyoming.lEA dismisses this choice by stating that “We did not average the capacity factors for projects in western Wyoming as those projects do not reflect the higher capacity factors experienced in the central Wyoming projects”.PacifiCorp believes there is no basis to assume that all future Wyoming resources would be restricted to locations in just central Wyoming.PacifiCorp’s IRP assumption of a 35 percent NCF for planning purposes is informed by those wind resources that are actually in the current portfolio.The NCF for operating Wyoming wind resources—both owned and acquired through power purchase contracts—is 34.98 percent based on weighted averaging with each resource’s nameplate capacity.This weighted average NCF reflects capacity factor updates utilized in the latest Wyoming General Rate Case.Of note is that Dunlap I has a NCF of 36.4 percent rather than the 38.6 percent NCF cited by lEA.This is in comparison to TEA’s starting-point assumption of 37.6 percent. PacifiCorp emphasizes that the NCF assumption in the IRP is not intended to be based on idealistic or theoretical assumptions of what may find its way into the portfolio.Indeed,NCF is not what will determine which individual renewable resources will be added to PacifiCorp’s portfolio in the future.The cost and risk to customers of those case-by-case decisions is what will be the determining factor. Conclusion For the reasons cited above,PacifiCorp does not find TEA’s recommendations to change the IRP cost or NCF assumptions associated with wind-powered generation resources to be warranted. PacifiCorp will continue to rely on its procurement practice of making decisions regarding individual renewable resource additions on a case-by-case basis,and the standard for such decisions will continue to be established regulatory principals regarding prudence and benefit to customers. Mechanical load suitability of the alternate GE XLE WTG is uncertain. 28 PAcWIC0RP —2011 IRP ADDENDUM APPENDIX A—TEA COMMENTS AND DATA APPENDIX A -COMMENTS AND DATA SuBMIssIoN FROM INTERWEST ENERGY ALLIANCE 29 1,P% INTERWEST ENERGY ALUANCE 10 January2011 Pete Wamken PacifiCorp IRP Team IRP@PacifiCorp.corn Re:2011 IRP Modeling Dear Mr.Warnken: Interwest Energy Alliance appreciates the opportunity to provide input to promote accurate cost analysis of wmd and solar energy in the public process related to development of PacifiCorp’s 2011 IRP.We ask you to consider some of the enclosed materials related to wind development costs and net capacity factors as you develop modeling inputs and consider the results.Several questions raised at the public meeting held on December 15, 2010,by Wasatch Wind and others,which require further response and consideration.We want to provide any support you may require to inform the resource planning process related to these issues. First,wind costs are lower than PacifiCorp assumes in its modeling,due to decreases in turbine prices and related costs.See attached Schedule 1 “Recent Turbines Using the ITC Grant Proxy”,and “ITC Grant Recipients —CAPEX For U.S.Wind Farms”attached thereto. Second,please consider the information related to net capacity factors attached as Schedule 2,with Appendix A “Wind Turbine Brochure Information”and Appendix B “Summary of Utah WREZ Prospects”attached thereto.Your modeling should reflect the increased net capacity factors available from this new equipment available to the market. We appreciate the opportunity to provide this input. Best regards. Sincerely, Craig Cox Executive Director P.O.Box 261311,Denver,Colorado 80226 •303-679-9331 •www.interwest.org I Recent Turbine Prices using the ITC Grant Proxy Under the 2009 Stimulus bill,wind projects became eligible to receive a cash grant (the “ITC Grant”)from the US Treasury Department equal to 30%of the “qualified costs”of a wind project within 60 days after the wind project achieved commercial operations.Qualified costs include approximately 95%of total wind project costs. The US Treasury Department published the recipient,date,and amount of the ITC Grant.Based on the recipient information,we were able to identify the location of the wind project (and the related MW).Based on the amount of the ITC Grant,we were able to approximate the cost of the wind project.This cost approximation assumes that since the ITC Grant represents 30%of 95%of the wind project costs,then by simply taking the ITC Grant amount and dividing it by the product of 30%and 95%(or 28.5%)the total wind project costs are calculated.For example,assume that the ITC Grant was $100 million.Based on the above assumptions,the wind project cost would be approximated at $350.9 million ($100 million 1(30%x 95%)). Using this data from Appendix A we plotted below a polynomial 2’’order trend line to determine the cost per MW for each region of the US.The dataset may reflect higher prices than market as of Dec 2010 due to l)Developers with frame agreements prior to 2009 when turbine prices were higher placing those turbines on projects in 2009 and 2010 2)A perverse ITC incentive that encourages an increase in capex by requiring turbine suppliers to bundle O/M contracts with the turbine supply. Looking at the Western US installed cost per MW graph below the trend line indicates turbine prices decreasing beginning in 2Q2010 and ending at $1,893,430 per MW on July 30,2010 $1500000 $1,000,000 y =-9.4161x +757835x -2E+10 R2=0.1501 $3,000,000 $2,500,000 Western US Wind Project Installed Cost/MW $2,000,000 . ••, $500,000 7(612009 8(2512009 10/1412009 121312009 112212010 3/13/2010 5/212010 6/21/2010 8/10/2010 9/2912010 Other regions are below as reference: Texas Wind Project Installed Cost/MW $2,500,000 . $2,000,000 $1,500,000 y =0.3298x2 -26431x +5E+Q8 $1,000,000 R2=0.0037 $500,000 71612009 812512009 10/14/2009 1213/2009 1122/2010 3/1312010 5/2/2010 6/21/2010 8/10/2010 9/2912010 Midwest US Wind Project Installed Cost/MW $3,000,000 $2500000 .,4 $2,000,000 •• $1,500,000 $t000 000 y =-1 .058x2 +84948x -2Ei-09 R2 0.0291 $500,000 $0 7/6/2009 8/25/2009 10/14/2009 12/3/2009 1122)2010 3/13/2010 512)2010 6/21/2010 8Il012010 9/29/2010 11/18/2010 1/7/2011 Eastern US Wind Project Installed Cost/MW $3,000,000 —-_____ _________________ $2,500,000 $2,000,000 -* $1,500,000 y=-3.1227x2 +251766x-5E÷09 $1,000,000 -R2=0.2847 $500,000 l 7(6/2009 8/25/2009 10114/2009 12/3/2009 1/22/2010 3/13/2010 5/2/2010 6/21/2010 8/10/2010 9/29/2010 11/18/2010 Ze o w t3 C C C Cfl oW C 9 C, —. 0 H 6,-4 OS 0 6 J 0 CS S a t CD Cd C,0 b_ I CDCD—a CD C,tCD ‘1 (# 2 I Cr,CC CC tiC 0 JT C Gr a n t Re e l p e n t s Es t i m a t e d CA P E X fo r U. S . Wi n d Fa r m s As s u m p t i o n s IT C Gr a n t % of El i g i b l e CA P E X CA P E X % El i g i b l e fo r IT C Gr a n t Mm . Pr o j e c t Si z e $ Bu s i n e s s By Re g i o n As of No v . 3, 2 0 1 0 Pr o p e r t y Re g i o n Pr o p e r t y Lo c a t i o n Ty p e 30 . 0 0 % 95 . 0 0 % $1 7 , 0 0 0 , 0 0 0 Am o u n t Aw a r d e d Aw a r d Da t e Pr n j e c t Si z e 5 v MA C R S Ca n E x Ot h e r To t a l Co s t / M W Ee e n Wi n d Po w e r V, LL C Ma i n e Ea s Wi n d $4 0 , 4 4 1 , 4 7 1 9/ 1 / 2 0 0 9 57 . W M W $1 3 4 8 0 4 , 9 0 3 $7 , 0 9 4 , 9 9 5 $1 4 1 , 8 9 9 , 8 9 8 2, 8 9 , 4 7 2 St e t s o n Wi n d H, LL C Ma i n e s Wi n d $1 9 , 3 2 8 , 8 6 5 51 2 7 / 2 0 1 0 25 . 5 MW $6 4 , 4 2 9 , 5 5 0 $3 , 3 9 1 , 0 2 9 $6 7 , 8 2 0 , 5 7 9 $2 , 6 5 9 , 6 3 1 an a n d a i g u a Po w e r Pa r t n e r s II , LL C — Ne w Yo r k Ea s Wi n d $2 2 , 2 9 6 , 4 9 4 9/ 1 / 2 0 0 9 37 . 6 M W $7 4 , 3 2 1 , 6 4 7 $3 , 9 1 i6 6 $7 8 , 2 3 3 , 3 1 2 $2 , 0 7 8 , 7 7 5 Ca n a n d a i g t a Po w e r Pa r t n e r s , LL C Ne w Yo r k Ea s Wi n d $5 2 , 3 5 2 , 3 3 4 9/ 1 1 2 0 0 88 . 4 MW $1 7 4 , 5 0 7 , 7 8 0 $9 , 1 8 4 , 6 2 0 $1 8 3 , 6 9 2 , 4 0 $2 , ô 7 8 i No b l e We t h e r a f i e l d Wi n d p a r k , LL C Ne w Yo r k Ea s Wi n d $8 1 , 7 7 6 , 6 8 4 6/ 9 / 2 0 1 12 6 . 0 MW $2 7 2 , 5 8 8 , 9 4 7 $1 4 , 3 4 6 , 7 8 7 $2 8 6 , 9 3 5 , 7 3 $2 , 2 7 7 , 2 6 8 No b l e Ch a t e a u g a y Wi n d p a r k , LL C Ne w Yo r k Ea s Wi n d $7 1 , 8 4 0 , 7 8 0 6/ 9 / 2 0 1 0 10 6 . 5 MW $2 3 9 , 4 6 9 , 2 6 7 $1 2 , 6 0 3 , 6 4 6 S2 5 2 , 0 7 2 , 9 No b l e Al t o n a Wi n d p a r k , U. C Ne w Yo r k La s Wi n d $6 7 , 8 0 4 , 5 8 9 61 7 / 2 0 1 97 . 5 MW $2 2 6 , 0 1 5 , 2 9 7 $1 1 , 8 9 5 , 5 4 2 23 7 , 9 1 O , 8 3 $2 , 4 4 0 , 1 1 1 Pe n n s y l v a n i a Ea s Wi n d $5 9 , 1 6 2 , 0 6 4 9/ 1 / 2 0 0 10 2 . 0 MW $1 9 7 , 2 0 6 , 8 8 0 $1 0 , 3 7 9 , 3 0 9 $2 0 7 , 5 8 $2 , 0 3 5 , 1 5 9 SL C r e e k Wi n d Fa r m , ti C Pe n n s y l v a n i a Ea s t Wi n d $3 3 , 9 1 8 , 3 6 8 6/ 9 ) 2 0 1 52 . 5 MW $1 1 3 , 0 6 1 , 2 2 7 $5 , 9 5 0 , 5 9 1 $1 19 , 0 1 1 , 8 $2 , 2 6 6 , 8 9 2 Kj Wi n d LL C Fe n n s y l y a n f r Ea s Wi n d $4 2 , 2 0 4 , 5 6 2 9/ 1 ) 2 0 0 62 . 5 MW $1 4 0 , 6 8 1 , 8 7 3 $7 , 4 0 4 , 3 0 9 $1 4 8 , 0 8 6 , 1 8 $2 , 3 6 AE S Ar m e n i a Mo u n t a i n W1 n d LL C — Pe n n s y l v a n i a Ea s Wi n d $6 9 , 4 6 0 , 8 9 2 2/ 2 6 / 2 0 1 10 0 , 5 MW $2 3 1 , 5 3 6 30 7 $1 2 , 1 8 6 , 1 2 1 $2 4 3 , 7 2 2 , 4 2 $2 , 4 2 5 , 0 9 9 &e c h Ri d g e En e r g y LL C We s t Vi r i i i i i La s Wi n d $6 8 , 6 0 9 , 4 5 9 9/ 2 2 / 2 1 ) 1 0 10 0 , 5 MW $2 2 8 , 6 9 8 : T 9 7 $1 2 , 0 6 , 7 4 7 $2 4 0 , 7 3 4 9 $2 , 3 9 5 , 3 7 3 Bl a c k s t o n e Wi n d Fa r m . ti C Il l i n o i s Mi d w e s Wi n d —- $5 5 , 2 0 2 , 4 2 0 11 / 2 0 / 2 0 0 9 10 2 . 0 MW $1 8 4 , O V Ô L $9 68 4 , 6 3 5 $1 9 3 , 6 9 2 , 7 0 $1 , 8 9 8 , 9 4 8 Il l i n o i s Mi d w e s Wi n d $1 7 0 , 1 1 5 , 8 7 0 7/ 2 2 / 2 0 1 0 30 0 . 0 MW $5 6 7 , 0 5 2 $2 9 , 8 4 4 , 8 8 9 $5 9 6 , 8 9 7 , 7 8 9 $1 , 9 8 9 , 6 5 9 au Sp l i t t e r Wi n d Fa r m , LL C Il l i n o i s Mi d w e s Wi n d $6 1 , 4 4 7 , 3 4 4 10 / 2 3 / 2 0 0 10 0 . 5 MW $2 0 4 , 8 2 4 . 4 $1 0 , 7 8 0 , 2 3 6 S2 1 5 , 6 0 4 , 7 6 $, 1 4 5 , 3 2 1 Gr a n d Ri d g e En e r g y IV LL C Il l i n o i s Mi d w e s t Wl j $5 , 7 0 6 , 9 0 7 4/ 2 9 / 2 0 9. 1 MW $1 9 , 0 2 3 . $1 0 0 1 2 1 2 S2 0 , 0 2 4 , 2 3 $2 , 2 1 0 , 5 8 2 Gr a n d Ri d g e En e r g y 11 1 LL C Il l i n o i s Mi d w e s Wh j . j $3 2 , 0 9 4 , 0 5 3 2/ 1 9 / 2 0 50 . 9 MW $1 0 6 , 9 8 0 . 77 $S , 6 3 0 , 5 3 6 $1 1 2 , 6 1 0 , 7 1 2 $2 , 2 1 0 , 5 8 2 Gr a n d Ri d g e En e r g y 11 LL C Il l i n o i s V Mi d w e s — Wi n d $3 2 , 3 0 0 , 1 6 5 2/ 1 9 / 2 0 51 . 0 MW $1 0 7 , 6 6 7 , 2 $5 , 6 6 6 , 6 9 6 $1 1 3 , 3 3 3 . 9 2 $2 , 2 2 2 , 2 3 4 FP L En e r g y Il l i n o i s Wi n d , LL C Il l i n o i s Mi d w e s Wi n d $1 3 8 , 8 5 4 , 0 4 7 4/ 2 / 2 0 21 7 5 MW .$ 4 6 2 , 8 4 6 , $2 4 , 3 6 0 , 3 5 9 $4 8 7 , 2 0 7 , J g $2 , 2 4 0 , 0 3 3 co O r o v e Wi n d ti c Il l i n o i s Mi d w e s Wi n d $6 7 , 8 6 8 , 8 0 7 10 / 3 0 / 2 0 0 10 0 . 5 MW $2 2 6 , 2 2 9 . $1 1 , 9 0 6 , 8 0 8 $2 3 8 , 1 3 6 , 1 6 $2 , 3 6 9 . 5 14 Me a d o w La k e Wi n d Fa n n i l LL C In d i a n a Mi d w e s Wi n d $5 5 , 2 1 2 , 5 0 5 10 / 1 9 ) 2 0 1 99 . 0 M W $1 8 4 , 0 4 1 . $9 , 6 8 6 , 4 0 4 $1 9 3 , 7 2 8 , 0 R $1 , 9 5 6 , 8 4 9 Me a d o w La k e Wi n d Fa r m LL C in d i a n a Mi d w e s — Wi n d $1 13 , 1 8 1 , 5 1 11 1 2 0 / 2 0 9 9 19 9 . 7 MW $3 7 7 , 2 7 1 , 7 $1 9 , 8 5 6 , 4 0 7 $3 9 7 , 1 2 8 . 1 33 $1 , 9 8 9 , 1 2 2 Me a d o w La k e Wi n d Fa r m 1] ] LL C in d i a n a Mi d w e s Wd $5 8 , 8 8 6 , 9 6 11 / 3 / 2 0 1 10 3 . 5 MW $1 9 6 , 2 8 9 8 $1 0 , 3 3 1 , 0 4 7 $2 0 6 , 6 2 0 , 9 4 0 $1 , 9 9 6 , 3 3 8 oo s i e r Wi n d Pr o j e c j , L L C — In d i a n a Mi d w e s Wi n d $6 9 , 5 9 5 1/ 1 5 / 2 0 1 10 6 . 0 MW $2 3 1, 8 5 0 , 6 $1 2 , 2 0 2 , 6 6 8 $2 4 4 , 0 5 3 , 3 5 1 $2 , 3 0 2 , 3 9 0 ar d e n Wi n d , LL C V Io w a Mi d w e s Wi n d $8 3 , 5 7 6 , ? ? 4/ 1 4 / 2 0 1 16 0 . 0 MW $2 7 8 , 5 , 2 $1 4 , 6 6 2 , 5 9 3 $2 9 3 , 2 5 1 , 8 5 3 $1 , 8 3 2 , 8 2 4 ry s t a l La k e Wi n d HI , LL C Io w a Mi d w e s Wi n d $3 6 , 2 6 7 , 7 3/ 3 1 / 2 0 1 0 66 . 0 MW $1 2 0 , 8 9 0 . 8 ,3 6 2 , 6 7 3 $1 2 7 , 2 5 3 , 5 6 8 - $1 , 9 2 8 , 0 8 4 Lo s t La k e s Wi n d Fa r m LL C Io w a Mi d w e Wi n d $5 , 5 4 4 , 4/ 2 1 / 2 0 1 10 0 . 7 MW $1 8 5 , 1 4 9 . $9 , 7 4 4 , 7 1 7 $1 9 4 , 8 9 4 , 3 4 4 $1 , 9 3 6 , 3 5 7 Ba r t o n Wi n d p o w e r ti c Io w a Mi d w e s Wi n d $9 3 , 4 1 9 . 9/ 2 1 / 2 0 0 9 16 0 , 0 M W $3 1 1, 3 9 $1 6 , 3 8 9 , 4 5 3 $3 2 7 , 7 8 9 , 0 6 3 $2 , 0 4 8 , 6 8 2 He r i t a g e St o n e y Co r n e r s Mi c h i g a n Mi d w e s Wi n $9 , 0 1 6 2/ 5 / 2 0 1 0 14 . i ) MW $3 0 , 0 5 4 , 2 2 $1 , 5 8 1 , 8 0 1 $3 1 , 6 3 6 , 0 2 1 $2 , 2 5 9 , 7 1 6 Mo r a i n e Wi n d 11 LL C Mi n n e s o t a Mi d w e s Wi n d $2 8 0 I 9 , 9/ 1 1 2 0 0 49 . 5 MW $9 3 , 3 9 8 . 4 $4 , 9 1 5 , 7 0 5 $9 8 , 3 1 4 , 1 0 5 $1 , 9 8 6 , 1 4 4 Fi n d T L Mi s s o u r Mi d w e s — Wi n $8 4 , 9 7 9/ 2 1 / 2 0 0 14 6 . 0 MW $2 8 3 , 1 9 9 . 5 $1 4 , 9 0 5 , 2 3 3 $2 9 8 , 1 0 4 , 7 6 1 $2 , 0 4 1 , 8 1 3 Lo s t Cr e e k Wi n d , LL C Mi s s o u r Mi d ’ , s Wi n d $1 0 7 , 6 8 5 , 0 4 3 7/ 6 / 2 0 1 14 8 . 5 MW $3 5 8 , 9 5 0 . $1 8 , 8 9 2 , 1 1 3 $3 7 7 , 8 4 2 , 2 5 6 $2 , 5 4 4 , 3 9 2 Ru g b y Wi n d LL C No r t h Da k o t a Mi d w e — Wi n d $7 3 , 0 9 4 , 2 3 6 5/ I 1 / . ô l 14 9 . 0 MW $2 4 3 , 6 4 7 . 4 $1 2 , 8 2 3 , 5 5 0 $2 5 6 , 4 7 1 , 0 0 4 $1 , 7 2 1 , 2 8 2 Ot t e r T a i l Po w e r Co m p a n y No r t h Da k o t a Mi d w e s t Wi n $3 0 , 1 8 2 , 1 0 4 10 / 2 ] ö O V 49 . 5 MW 51 0 0 , 6 0 7 , 0 1 $5 , 2 9 5 , 1 0 6 $1 0 5 , 9 0 2 . 1 19 $2 , 1 3 9 , 4 3 7 El k Ci t y Wi n d Ok l a h o m a Mi d w e s Wi n d 55 2 , 2 5 4 , 3 3 3 4/ 2 7 / 2 0 1 98 . 9 MW $1 7 4 , 1 8 1 . 1 1 $9 , 1 6 7 , 4 2 7 $1 8 3 , 3 4 8 , 5 3 7 $1 , 8 5 3 , 8 7 8 Da y Co u n W W n d , j e ’ ’ So U t h Da k o t a Mi d w e s Wi n d $5 4 , 5 1 8 . 7 4 6/ 8 / 2 0 1 99 . 0 MW $1 8 1 ,7 2 9 , T 4 $9 , 5 6 4 , 6 9 2 $1 9 1 , 2 9 3 , 8 3 5 $1 , 9 3 2 , 2 6 1 In a d a l e Wi n d Fa r m , LL C Te x Win c i $9 4 , 1 6 3 ) 0 2 4 1/ 2 5 / 2 0 1 0 19 7 , 0 MW $3 1 3 , 8 7 6 , 7 4 7 $1 6 , 5 1 9 , 8 2 9 $3 3 0 , 3 9 6 , 5 7 5 $1 , 6 7 7 , 1 4 W Pa n t h e r C r e e k W j u d F L j C Te x a s Te s a s Wi n d 1/ t l 2 0 1 C 19 9 5 MW $3 5 8 , 7 8 9 , 5 4 3 51 8 . 8 8 3 . 6 6 0 $3 7 7 , 6 7 3 , 2 0 4 $1 0 7 , 6 3 6 , 8 6 3 51 . 8 9 3 . 0 9 9 Ca p E x Pr o p e r t y Pr o p e r t y Am o u n t Aw a r d e d Aw a r d Da t e Pr o j e c t Si z e Re g i o n Tv n e Lo c a t i o n Bu s i n e s s 5 Ye a r MA C R S Ot h e r To t a l Co s t / M W Pe n a s c a l 11 Wi n d Pr o j e c t LL . C - Te x a s Te x a s Wi n d 51 0 8 , 7 8 9 , 5 0 7/ 3 0 / 2 0 1 20 1 . 6 MW $3 6 2 , 6 3 1 , 6 7 7 $1 9 , 0 8 5 , 8 7 8 - 53 8 1 , 7 1 7 , 5 51 , 8 9 3 , 4 4 0 Go a t Wi n d , LP - Te x a s Te x a s Wi n d $3 8 , 4 9 9 . 0 5 4/ 7 / 2 0 1 69 . 6 MW $1 2 8 , 3 3 0 , 1 8 7 $6 , 7 5 4 , 2 2 0 51 3 5 , 0 8 4 , 4 $1 , 9 4 0 , 8 6 8 La n g f ’ o r d Wi n d Po w e r , LL C Te x a s Te x a s Wi n d $8 4 ; 2 0 1 , 6 4 5/ 2 4 / 2 0 1 15 0 . 0 MW 52 5 0 , 6 7 2 , 1 5 0 $1 4 , 7 7 2 , 2 1 8 52 9 5 , 4 4 4 , 3 $1 , 9 6 9 , 6 2 9 Pe n a s c a l Wi n d Po w e r L L C Te x a s Te x a s Wi n d 51 1 4 , 0 7 1 , 6 4 9/ 1 / 2 0 0 $3 8 0 , 2 3 8 , 8 2 0 $2 0 , 0 1 2 , 5 6 9 54 0 0 , 2 5 1 , 3 $1 , 9 8 5 , 3 7 4 ou t h T r e n t Wi n d LL C Te x a s Te x a s Wi n d $5 9 , 4 9 4 4 5/ 6 / 2 0 1 10 1 . 2 MW $1 9 8 , 3 1 4 , 7 1 0 $1 0 , 4 3 7 , 6 1 6 52 0 8 , 7 5 2 , 3 $2 , 0 6 2 , 7 1 0 No t r e c s Wi n d p o w e r LP Te x a s Te x a s Wi n d $9 0 3 5 4 . 6/ 8 / 2 0 1 15 2 . 6 MW $3 0 1 , 1 8 2 , 0 8 3 $, $ 5 l , 6 8 9 53 1 7 , 0 3 3 , 7 7 $2 , 0 7 7 , 4 1 2 Ba r t o n Ch a p e l Wi n d , L L C Te x a s Te x a s Wd $7 2 , 5 7 3 , 9/ 2 1 / 2 0 0 12 0 . 0 M W $2 4 1 , 9 1 2 , 0 9 0 $1 2 , 7 3 2 , 2 1 5 52 5 4 , 6 4 4 , 3 0 $2 , 1 2 2 , 0 3 6 E. O N Cl i m a t e & Re n e w a b l e s Te x a s Te x a s Wi n d $1 2 1 , 9 0 3 , 9/ 2 1 / 2 0 0 19 9 . 5 MW $4 0 6 , 3 4 4 , 3 5 3 $2 1 , 3 8 6 , 5 4 5 $4 2 7 , ’ 7 0 , 8 52 . 1 4 4 , 0 1 5 Pa t t e r n Gu l f Wi n d Ho l d i n g s LE C Te x a s Te x a s Wi n d $1 7 8 , 0 0 4 , 64 - 12 / 2 3 i Q 28 3 . 2 M W 55 9 3 , 3 4 7 , 5 4 7 $3 1 , 2 2 8 , 8 1 8 56 2 4 , 5 7 6 , 3 52 , 2 0 5 , 4 2 5 Lo j e i n d p P r o ’ e c t L L ç , , , Te x a s Te x a s Wi n d 56 3 , 2 1 9 . 7 8 7 51 2 6 / 2 0 1 0 1 00 . 5 i j W $2 1C ) , 2 , 6 2 3 $1 1 , 0 9 1 , 1 9 1 $2 2 1 , 8 2 3 , 8 1 4 $2 , 2 0 7 , 2 0 2 EC & R l’ a p a i o t e Cr e e k I, LL C Te x a s Te x a s — Wi n d $1 1 6 , 7 8 4 , 6 6 6 6/ 2 4 / 2 0 1 0 17 9 . 9 MW $3 8 9 , 2 8 2 , 2 2 0 $2 0 , 4 8 8 , 5 3 8 $4 0 9 , 7 7 0 , 7 5 8 $2 , 2 7 8 , 4 0 3 un r a y Wi n d LL C Te x a s Te x a s Wi n d $2 6 24 6 , 25 12 / 4 / 2 0 0 9 39 . 0 MW $8 7 , 4 8 9 , 4 1 7 $4 , 6 0 4 , 7 0 6 59 2 , 0 9 4 , 1 $2 , 3 6 1 , 3 8 8 Bu l l Cr e e k Wi n d LL C Te x i s Te x a s Wi i i $9 i 3 9 0 , 9/ 2 1 / 2 0 6 18 0 . 0 MW 53 0 4 4 6 3 4 , 9 9 0 $1 6 , 0 3 3 , 4 2 1 53 2 0 , 6 6 8 , 4 $1 , 7 8 1 , 4 9 1 De Wi n d Po w e r 1., L C Ar i z o i Wa s Wi n d 53 1 , 3 4 5 , 7 1 lJ 2 0 f 2 0 9 63 . 0 MW $1 0 4 , 4 8 5 , 9 9 7 — $5 , 4 9 9 , 2 6 3 51 0 9 , 9 8 5 , 2 51 , 7 4 5 , 7 9 8 or t h e r n Co l o r a d o Wi n d En e r g y . Li e Co l o r a d o Wa s Wi n d $9 9 , 9 0 0 . 11 / 2 0 / 2 0 0 9 17 4 . 3 MW $3 3 3 , 0 0 1 , 0 8 7 $1 7 , 5 2 6 , 3 7 3 53 5 0 , 5 2 7 , 4 $2 , 0 1 1 , 0 5 8 en e n t t Cr e e k Wi n d f a r m , LL C Id a h o Wa s Wi n d $9 , 7 6 2 . 6/ 2 1 / 2 0 1 0 .2 1 . 0 MW $3 2 , 5 4 2 , 3 4 7 $1 , 7 1 2 , 7 5 5 53 4 , 2 5 5 , 1 51 , 6 3 1 , 1 9 5 o! j i n ! f L L _ Id a h o Ws Wi n d $9 , 7 6 7 , .. 6) 2 2 / 2 0 1 0 21 . 0 MW $3 2 , 5 5 7 , 8 5 3 $1 , 7 1 3 , 5 7 1 53 4 , 2 7 1 , 4 £1 , 6 3 1 , 9 7 3 Ca s s i a Wi n d Fa r m LL C — Id a h o We s t — Wi n d 55 , 1 2 3 . 4 2 6 1/ 2 9 / 2 0 1 0 10 . 5 M W $1 7 , 0 7 8 , 0 8 7 $8 9 8 , 8 4 7 $1 7 , 9 7 6 , 9 $1 , 7 1 0 , 9 4 6 Ca s s i a Gu l c h Wi n d Pa r k L,L C Id a h o We s t Wi n d $9 , 2 1 2 . 1/ 2 9 / 2 0 ) 0 18 . 9 MW — $3 0 , 7 0 8 , 6 4 0 $1 , 6 1 6 , 2 4 4 53 2 , 3 2 4 , 8 $1 , 7 1 0 , 9 4 6 Id a h o We s t Wi n d $8 , 4 6 7 7/ 1 5 / 2 0 W 16 . 8 MW $2 5 , 2 2 6 , 0 8 3 $1 , 4 8 5 , 5 8 3 52 9 , 7 1 1 , 6 7 $1 , 7 6 8 , 5 5 2 at u r E n e r Gl a c i e r Wi n d En e r g y 2, LL C Mo n t a n a Wa s WI n d 56 2 , 2 4 9 , 25 11 / 2 0 / 2 0 0 9 10 3 . 5 MW 52 0 7 , 4 9 9 , 4 1 7 $1 0 , 9 2 1 , 0 2 2 52 1 8 , 4 2 0 , 4 52 , 1 1 0 , 3 4 2 1g b Lo n e s o m e Me s a , LL C Ne w Me x i c o Wa s Wi n d 55 3 , 6 3 2 , 9 7 4) 2 1 / 2 0 1 0 10 0 . 0 MW $1 7 8 , 7 7 6 , 5 8 3 $9 , 4 0 9 , 2 9 4 $1 8 8 , 1 8 5 . 8 $1 , 8 8 1 , 8 5 9 ay C a n y o n W i n d L L c Or e n Wa s — Wi n d 54 7 , 0 9 2 , 5 5 9/ 1 / 2 0 0 9 10 0 . 8 M W $1 5 6 , 9 7 5 , 1 8 3 $8 , 2 6 1 , 8 5 2 51 6 5 , 2 3 7 M $1 , 6 3 9 , 2 5 6 St a r Po i n t Wi n d Pr o j e c t LL C Or e g o n We s t Wi n d 54 6 , 4 5 4 , 0 6 6/ 7 / 2 0 1 0 98 . 7 MW S1 5 4 , 8 4 6 7 3 $8 , 1 4 9 , 8 5 $1 6 2 , 9 9 7 0 $1 , 6 5 1 , 4 3 6 Pe b b l e Sp r i n g s Wi n d LL C Or e g o n We s t Wi n d $4 6 , 5 4 3 , 2 1 9 9/ 1 / 2 0 6 9 98 . 7 MW $1 5 5 , 1 4 4 , 0 6 3 $8 , 1 6 5 , 4 7 7 $1 6 3 , 3 0 9 , $1 , 6 5 4 , 6 0 5 Wh e a t Fi e l d Wi n d Po w e r Pr o j e c t LL C Or e n We s t Wi n d 54 7 , 7 1 7 , 1 5 9/ 1 / 2 0 0 9 96 . 6 MW $1 5 9 , 0 5 7 , 1 8 3 $8 , 3 7 1 , 4 3 51 6 7 , 4 2 8 , 6 $1 , 7 3 3 , 2 1 5 FP L En e r g y St a t e l i n e TI , In c Or e g o n Wa s Wi n d 55 5 , 3 8 6 , 8 9 11 2 5 / 2 0 1 0 98 . 9 MW $1 8 4 , 6 2 2 , 9 9 3 59 , 7 1 7 , 0 0 0 51 9 4 , 3 3 9 , 9 $1 , 9 6 5 , 0 1 5 ut t e r Cr e e k Po w e r , LL C Or e g o n Wa s Wi n d $3 , 2 1 6 , 7 3 9 5/ 1 1 / 2 0 1 0 5. 0 MW $1 0 7 2 2 , 4 6 3 $5 6 4 , 3 4 0 — 51 1 , 2 8 6 . 8 $2 , 1 6 6 , 1 5 4 Wa g o r i Tr a i l , LL C Or e g o n Wa s Wi n d 52 , 1 4 4 , 6 8 5/ 5 / 2 0 1 0 3. 3 MW $7 , 1 4 8 , 9 4 0 $3 7 6 , 2 6 0 S7 , 5 2 5 2 $2 , 1 6 6 , 3 4 5 Wa r d l3 u t t e Wj n d f a j m , LL C P! n Wa s Wi n d 54 , 3 0 4 , 7 7 4 5/ 5 / 2 0 1 0 6. 6 MW 51 4 , 3 4 9 , 2 4 7 57 5 5 , 2 2 4 51 5 , 1 0 4 , 4 7 52 , 1 7 4 , 1 2 8 ur u s Co m b i n e Hi l l s 11 LL C We s t Wi n d $3 9 , 1 3 3 , 9 7 3 6/ 7 / 2 0 1 0 63 . 0 MW $1 3 0 , 4 4 6 , 5 7 7 $6 , 8 6 5 , 6 0 9 $1 3 7 , 3 1 2 , 52 , 1 7 9 , 5 5 9 Or e g o n Tr a i l Wi n d f a r m , LL C Or e g o n We s t — Wi n d $6 , 3 8 8 , 0 0 2 51 5 / 2 0 1 0 9. 9 MW 52 1 , 2 9 3 , 3 4 0 $1 , 1 2 0 , 7 0 2 52 2 , 4 1 4 , 0 52 , 2 6 4 . 0 4 5 an d Ra n c h Wi n d f a r m , LL C Or e g o n Wa s Wi n d 56 , 3 9 3 . 7 1 3 5/ 5 / 2 0 1 0 9. 9 MW $2 1 , 3 1 2 , 3 7 7 $1 , 1 2 1 , 7 0 4 52 2 , 4 3 4 , 0 $2 , 2 6 6 , 0 6 9 Pa c i f i c Ca n y o n Wi n d f a r m , LL C Or e g o n Wa s Wi n d $5 , 3 3 8 , 9 6 4 5/ 5 / 2 0 10 8. 3 MW $1 7 , 7 9 6 , 5 4 7 — $9 3 6 , 6 6 0 S18 , 7 3 3 , 2 7 $2 , 2 7 0 , 6 9 2 ig T o p , ti C Or c g n Wa s Wi n d $1 , 0 7 3 , 7 3 3 5/ 5 / 2 0 1 0 1,7 MW $3 , 5 7 9 , 1 1 0 $1 8 8 , 3 7 4 53 , 7 6 7 , 4 $2 , 2 8 3 , 3 2 4 ou r Mi l e Ca n y o n Wi n d f a n n , LL C 2n Wa s Wi n d $6 , 7 6 6 , 4 5 3 5/ 5 / 2 0 1 0 10 , 0 MW $2 2 , 5 5 4 , 8 4 3 $1 , 1 8 7 , 0 9 7 52 3 , 7 4 1 , 9 4 $2 , 3 7 4 , 1 9 4 Fo u r Co r n e r s Wi n d f a r t n , LL C Or e g o n Wa s Wi n d $7 , 1 2 4 , 8 7 0 5/ 5 1 2 0 1 0 10 . 0 MW 23 , 7 4 9 , 5 6 7 51 , 2 4 9 , 9 7 7 52 4 , 9 9 9 , 5 52 , 4 9 9 , 9 5 4 Th r e e m i l e Ca n y o n Wi n d I. LL C Or e g o n We s t Wi n d $7 , 2 5 2 , 6 5 3 4/ 6 / 2 0 1 0 9. 9 M W $2 4 , 1 7 0 $1 , 2 7 2 , 3 9 5 $2 5 , 4 4 7 . 9 5 52 , 5 7 0 , 4 9 5 Mi l f o r d Wi n d Co r r i d o r Ph a s e 1, LL C — Ut a h We s t Wi n d $1 2 0 , 1 4 7 , 8 1 0 3/ 1 0 / 2 0 1 0 20 3 . 5 MW 54 0 0 , 4 9 2 , 7 0 0 52 1 , 0 7 8 , 5 6 3 $4 2 1 , 5 7 1 , 2 $2 , 0 7 1 , 6 0 3 Wi n d y Fl a t s Pa r t n e r s , LL C Wa s o n We s t Wi n d $2 1 8 , 4 8 2 , 3 2 6 6/ 2 / 2 0 1 0 39 8 . 8 MW $7 2 8 , 2 7 4 , 4 2 0 $3 8 , 3 3 0 , 2 3 3 57 6 6 , 6 0 4 , 6 $1 , 9 2 2 , 2 7 8 ar v e s t Wi n d — Wa s h i n g t o n We s t Wi n d $6 0 , 7 5 5 , 7 0 6 41 2 / 2 0 1 0 98 . 9 M W $2 0 2 , 5 1 9 , 0 2 0 $1 0 , 6 5 8 , 8 9 6 $2 1 3 , 1 7 7 , 9 1 6 $2 , 1 5 5 , 4 9 0 Pu g e t So u n d En e r g y , In c . — Wa s h i n g t o n Wt Wi n d 52 8 , 6 7 4 , 6 6 4 2/ 1 9 / 2 0 1 0 44 . 0 MW $9 5 , 5 8 2 , 2 1 3 $5 , 0 3 0 , 6 4 3 $1 0 0 , 6 1 2 , 8 5 $2 , 2 8 6 , 6 5 6 To u t 51 5 , 3 8 4 , 5 0 2 , 7 1 7 S8 0 9 7 1 0. 6 6 9 $1 6 , 1 9 4 , 2 1 3 , 3 8 6 $3 , 0 0 0 , 0 0 0 $2 , 5 0 0 , 0 0 0 $2 , 0 0 0 , 0 0 0 $1 , 5 0 0 , 0 0 0 $1 , 0 0 0 , 0 0 0 $5 0 0 , 0 0 0 $0 Ea s t e r n US Wi n d Pr o j e c t In s t a l l e d Co s t / M W • •• • e • 4 Wi n d Pr o j e c t In s t a l l e d Co s t / M W $3 , 0 0 0 , 0 0 0 $2 5 0 0 0 0 0 $2 , 0 0 0 , 0 0 0 __ $1 , 5 0 0 , 0 0 0 $1 .0 0 0 , 00 0 - $5 0 0 , 0 0 0 $0 — 0 10 20 30 40 60 60 70 60 • lb •* • • y = 28 5 . 6 6 x2 - 26 5 9 5 x 4’ 2E + 0 6 R202 1 5 4 + y = -3 . 1 2 2 7 x2+ 25 1 76 8 x - 5E + 0 9 R2 = 0. 2 8 4 7 71 6 1 2 0 0 0 81 2 5 1 2 0 0 9 10 1 1 4 1 2 0 0 9 12 1 3 1 2 0 0 9 11 2 2 1 2 0 1 0 31 1 3 / 2 0 1 0 51 2 ) 2 0 1 0 6/ 2 1 / 2 0 1 0 6/1 0 / 2 0 1 0 91 2 9 1 2 0 1 0 11 1 1 8 1 2 0 1 0 Mi d w e s t US Wi n d Pr o j e c t In s t a l l e d Co s t ! M W $3 , 0 0 0 , 0 0 0 - -— - - - - - . - — — - - — — - __ _ _ _ _ _ $2 , 5 0 0 , 0 0 0 , e + $2 , 0 0 0 , 0 0 0 - , , $1 , 5 0 0 , 0 0 0 $1 , 0 0 0 , 0 0 0 y = -1 . 0 5 8 x2 + 84 9 4 8 x - 2E + 0 9 R2—0 02 9 1 $5 0 0 , 0 0 0 $0 -f l - - . - — 7/ 6 1 2 0 0 9 61 2 5 1 2 0 0 9 10 1 1 4 / 2 0 0 9 12 ) 3 / 2 0 0 9 1/2 2 1 2 0 1 0 31 1 3 / 2 0 1 0 51 2 1 2 0 1 0 6/ 2 1 1 2 0 1 0 81 4 0 ! 2 0 1 0 9/ 2 9 / 2 0 1 0 11 / 1 6 1 2 0 1 0 1/ 7 / 2 0 1 1 Te x a s Wi n d Pr o j e c t In s t a l l e d Co s t / M W $2 , 5 0 0 , 0 0 0 -- - - - - - - - - — - - — — - — - — - - - - - - - - - —- — - — - — — - - - - - - - - - - - - - - - - - - - - _ _ _ _ _ _ _ _ _ :: : : : : : y= - 3 3 6 8 . 8 x2+ 11 4 7 0 4 x + IE ’ - 0 6 si , o o o , o o o R2 = 0. 2 5 6 1 $6 0 0 , 0 0 0 $0 — —— - - - - - - - - - * . - — — —- - - - - 2 4 6 6 10 12 14 16 16 We s t e r n US Wi n d Pr o j e c t In s t a l l e d Co s t / M W __ -_ _ __ __ __ __ $2 , 0 0 0 , 0 0 0 $1 ,5 0 0 00 0 y = 79 . 4 7 8 x2 + 84 7 0 . 4 x + 2E + 0 6 $1 , 0 0 0 , 0 0 0 R2 = 01 7 1 4 $5 0 0 , 0 0 0 - $0 — . 0 5 10 15 20 25 30 35 40 45 50 Wyoming Capacity Factor Recommendations For IRP modeling,we recommend that Paciflcorp use a 43.6 percent or higher net capacity factor (NCF)for future Wyoming wind projects.One method Paciflcorp should consider is the average of the predicted capacity factors and adjusted costs ofthe already built projects using more recent,next generation turbine performance and cost data. GE 1.5 MW sle turbines where installed on all Pacificorp built sites from 2008 through 2010.The following chart illustrates the p50 capacity factor predicted for each of the sites according to various testimony in PUC dockets in Utah (10-035-23,10-035-89)and in Oregon (UE200,210). Wind Projects Built by Pacificorp (2008 through 2010) j Facility Name MW COD NCF TurbineType Glenrock Wind I 99 2008 37.40%65 x 1.5MW x 77m rotor,GE SLE Seen Mile Hill Wind 99 2008 41.00%66 x 1.5MW x 77m rotor,GE SLE Seen Mile Hill Wind Il 19.5 2008 40.30%66 x 1.5MW x 77m rotor,GE SLE Glenrock Wind III 39 2009 36.4%13x 1.5MWx 77m rotor,GE SLE Rolling Hills Wind 99 2009 33.80%66 x 1.5MW x 77m rotor,GE SLE High Plains 99 2009 35.30%66 x 1.5MW x 77m rotor,GE SLE McFadden Ridge 28.5 2009 34.50%19x 1.5MWx 77n1 rotor,GE SLE •Dunlap 111 2010 38.60%74 xl.5MW x 77m rotor,GE SLE AvgNCFwithRollingHills 37.2% lAvg NCF without Rolling Hills 376% Table 1:NCFs of Wyoming Pacificorp Projects We averaged the NCF with and without the Rolling Hills project to reflect the Oregon PUC disallowance of certain capital costs due to a lower than expected capacity factor. We did not average the capacity factors for projects in western Wyoming as those projects do not reflect the higher capacity factors experienced in the central Wyoming projects.Using the average NCF for existing Paciflcorp projects is arguably a reasonable proxy for capacity factors if the GE SLE turbine were the most appropriate turbine going forward.However,this turbine has lower NCF than newer turbines now on the market (cost analyis is covered later).These advanced turbines with longer,more efficient blades for a given nameplate capacity came on the market in 2009 and are being supplied in commercial quantities to projects by established,credible suppliers.Therefore,we recommend the NCF be adjusted upward to reflect these advances as follows. We selected the turbines in the below table for general wind suitability in Wyoming.To determine turbine potential improvements,in the below table we compared the NCF of three ofthe most prevalent “advanced”turbines with three “workhorse”turbines that have been supplied in the United States for several years.The advanced turbines have been erroniously classified by some as “low wind speed”turbines leading to inaccurate conclusions that they are not suitable in high wind speed areas.This generally is true at sea level but not at high altitude.In our experience,most sites above 7000 feet are suitable for these turbines as long as the average annual wind speeds do not exceed 9.3 m/s*.Increasing the 8.5 mIs sea level limit for Class 2 turbines is governed by the altitude derate ie.(alt density/sealevel density)’\33.We have found that many Wyoming sites also exhibit low turbulence and on a case by case basis the wind speed average upper limit can be even higher depending on turbine spacing and the wind rose. Competitive wind speeds in Wyoming generally average 8.5 to 9.5 mIs and while not definitive for the use of advanced turbine at all Wyoming sites,these turbines are suitable at most sites and should be modeled in the IRP.Ofnote,as further argument, GE has determined depending on final layouts and turbulence intensity that the xle model is meterologically suitable for some wind projects at 7500’altitiude with annual average wind speeds of 8.5 mIs to over 10 m/s. ReIati Annual Energy Yield Turbine Nameplate Rotor Rotor Area/for indicated a WS (7000’alt) .Class Size MW Dia (rn)MW size 9 m/s 8 rn/s 7 mIs — GE 1.5 sle 2 1.5 77 3104 100%100%100% Workhorse Suzion S88 2 2.1 88 2896 97%96%95% Clipper C96 2 -2.5 96 2895 97%—96%95% GE 1.Sxle 2b 1.5 82.5 3564 111%114%116.4% Advanced Vestas V90 2b 1.8 90 3534 110%114%115%— •Siemens 2.3 2b 2.3 101 3483 109%112%114% aFor normal turbulence,the advanced turbines are generally suitable for sea leval sites with less than an annual a wind speed limit of 8.5 mIs and somewhat higher for the workhorse turbines.At 7000 feet altitude,the limit can be_increased to approximately 9.3 rn/s and somewhat higher for lower turbulence intensity sites. Table 2:Increase in Energy Yield using Advanced Turbines Using the GE sle and xle power curves,we determined the increase in annual energy yield of the GE xle compared to the GE sle for a typical Wyoming wind distribution (Wiebull K=2)for three wind speeds.The capacity factor increase ranges from 111%to 116%.We ran Wk sensitivities of 1.8 to 2.2,which are the ranges of wind distributions in the NREL Western Wind and Solar Integration study for our random selection of commercially viable wind areas.The NCF increase for the advanced turbines across the expected Wk’s and wind speeds was 111%to 118%(see table below). Advanced Turbine Annual Energy Yield Increase 120.0% 118.0%- 116.0%..— -1.8OWk 110.0%-—2,00Wk ‘‘2.20Wk 108.0%- 106.0%-,.-r-------——r—,---,—r-, 7.0 7.1 7.2 73 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 2.3 8.4 8.5 8.6 8.7 $2 6.9 9.0 Annual Average Wind Speed rn/s Chart 1:Energy Yield Improvement using Advanced Turbines Back caiculating from the average NCF at the Pacificorp projects,with a 15%gross to net energy loss,reveals annual wind speeds of 8.2 to 9.2 mIs.For this wind speed range and 1.8 to 2.2 Wk the range of NCF increases ranged from 111%to 114%.We recommend that a 8.6 mIs wind speed represents the average wind speed for the Pacificorp projects thus by selecting 112%and an expected minimum Wk of 1.8 from Chart 1 gives a minimum capacity factor for Wyoming as follows: Using 3 7.6%NCF as the average from table 1 AdjustedNCF37.6%x 112%42.1% Next,we wanted to determine the NCF improvement of other advanced turbines compared to the GE xle results.We compared the rotor arealmw size “rotor ratio”for each turbine and made scaling adjustments to match the power curves.Generally,the capacity factor change is directly proportional to the change in rotor ratio.Using this method,the Vêstas V90-1.8 and the Siemens 2.3 improved the NCF by 109%to 115% greater than the GE sle and slightly lower than the GE xle.As expected,all three advanced turbines are in the same general range ofperformance improvement as all three turbines compete directly in the same markets.Therefore,for simplicity,we recommend using 112%NCF improvement for all three turbines over the older technology workhorse turbines.In summary,the evidence indicates a 42.1%NCF for Wyoming IRP modeling. Also it could be argued that the capacity factor to model should be from the latest RFP benchmark (Dunlap)as this process reflects the most recent robust competitive environment.Consider the Testimony of Stefan A Bird,PacifiCorp,in Utah Public Service Commission Docket No.10-035-89,Exhibit E,p.11,lines 232-235 (citing Benchmark memo at p.11-12):“Finally,the IE found that the estimated Benchmark capacity factor was within the range of capacity factors from proposals associated with potential resources in the nearby vicinity.”Since the estimated capacity factor for Dunlap is 38.6%the adjusted NCF with the bctter turbines is: Adjusted NCF =38.6%x 112%=43.2% Utah Capacity Factor Recommendations For IRP modeling,we recommend that Pacificorp use a 34 percent or higher net capacity factor (NCF)for future Utah wind projects up to 1,000 MW’s.See Exhibit 13.The was determined by using the same rationale as used above. Appendix A 1.5 MW Wind Turbine Brochure; http://www.gepower.corn/prod serv/products/wind turbines/en/i 5mw/index.htm rct !.4O C-,‘.c-: -. —* r•-- -i—-.— rrCal Ilqca -—r.j Lrr PLwgtCrt c . 1.5 T ---‘:1ie Tna Speciftii Vav; 37. 3:’ C-i;1T -3_s l t3I$1 1s .5 7V1mc Trruie Tei&SpecV’’ ,5xe ‘AxIe ts1e ‘Le £x ci’r--.rn 8ZS 7’82_s 7.E •;Sc!.SC7 E3 3 47 Freque,c 5C F’ ao .5 3_1 -J b.o SE.5-.C 5&C 7t:C Ci1*D±s 20 25 2 25 25 4: EdC1a --IECTCIJI+ECT2i .ECTClA EDTCb Su m m a r y of Ut a h WR E ? Pr o s p e c t s Ri c h Si m o n da t a Wa t a t c i t Da t a us i n g GE XL E Ca l m ta b l e Lo o k u p Alt Ac CF NC F Ef f o c i j v e We i b a l l Av g Ai r st a i r Gu m wi t h 15 % WS mi s k Te m p F De n s i t y de n s . MW lo s s Ri d g e / P l a t e a u / V a l l e y Si t e s Es t i m a t i o n SIt E PO t e n t i a l Te c h n i q u e Nu m b e r Na m e co u r r t , MW - fo r MW ’ SD e e d - 17 Bl u e Mtn Pla t e a u Uin t a h - 15 0 4 xi S RD 60 49 Rl e h r s l n r n b i s c ti r n t n d Wr n n 70 6M W / k m 72 I Go o s e ee k M t n 3 Bo e E d e r 6M W / k m 7:4 14 So u t h Mt n To o e l c 80 5 MW / k m 7 —— 23 Fo r d Rid g e 35 Mi n e r a l Mtn s 32 . Bla c k Ro c k Mi l l a r d a 7. 0 — 5 Cl a r k s t o n Mt n - Bo a Eld e r / C a c h e so 6M W / k m 7 1 12 Le w I s Fe e t Mg S S r n n m ! t j 4 Q 6M W / k r 71 22 Sc h o f i e l d mo n M t n s Ir o n — 60 6M W / k m 70 S2 M i i f o r d No r t h Bc e v ’ r / M 1 c 4 50 0 4a 1 5 RD 63 10 Po r c u p i n e Rid g e Su m m i t 20 0 5M W J k m 69 Zl W a s s t c l s p l a t e e u Sa r r p i r t e / U t h 22 0 6M W / k m 70 7 Cr a w f o r d Mt n Ric h is o 6M w / k m 6:8 8 Mo n t e Cr i s t u Ric h is m 9.8 29 Ga r r l s o y Mi l l a r d 22 0 4 15 RD 4?P i n t t i r a We h i r r c r n r s 33 We b Wa h Va l l e y Be a v r r r / M i l l I e r d 6 SO Sa n d _ M m W5 t h n0 __ _ _ _ _ _ _ _ 28 Ho r s e Po i n t Rid g e Gr a r i t i / U l o t a b __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 11 Mo r g a n Rid g e Mo r g a n / S u m m i t 19 Eu r e k a Uta h / J u a b f r o o e l e 38 0.9 6 #N I A 38 1. 0 8 42 4 % •_ 0.9 5 41 . 6 % 38 1. 0 4 41 , 1 % 38 0.9 1 40 . 9 % 38 1.0 3 40 . 8 % 38 0. 9 6 4G 4 . . 2 3N I A 70 36 , 1 % 13 5 .1 5 . 4 % 21 5 34 . 9 % 41 5 74 . 0 % -4 7 5 34 , 7 % 57 5 34 . 3 % Es t i m a t e d lo n g - T e r m Gr o s s Cf GE - 1 . S s I a 80 - r n at 1. 0 1 Ai r El e v t j Gr o s s Ca p . lm n r f De n s i t y (I t ) Fa c t o r ) Z __ _ _ _ _ _ _ _ _ _ _ 30 . 3 78 0 0 28 . 8 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 23 . 5 45 0 0 24 . 1 23 , 5 80 0 0 22 . 2 28 . 3 55 0 0 28 . 5 28 . 9 90 0 0 20 . 6 24 . 2 58 0 0 24 . 1 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 25 . 8 77 0 0 — 24 . 6 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 60 . 7 56 0 0 30 . 8 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 34 . 3 75 0 0 32 , 9 31 . 2 - 75 0 0 29 , 9 26 . 6 85 0 0 24 . 8 24 . 2 70 0 0 29 . 5 29 , 3 53 0 0 29 . 6 32 . 0 76 0 0 30 . 6 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 28 . 0 90 0 0 25 . 8 32 . 9 75 0 0 31 . 5 31 . 2 76 0 0 29 . 8 27 3 57 0 0 27 . 8 __ _ _ _ _ _ _ _ _ se e re m a r k s 26 . 3 68 0 0 25 . 6 10 0 4x l S 50 .5 28 . 0 46 0 0 29 . 6 __ _ _ _ _ _ _ _ _ _ _ _ _ _ 50 0 4x 1 5 RD .5 28 . 5 51 0 0 28 . 9 __ _ _ _ _ _ _ _ _ _ _ _ _ _ 70 4.5 MW / k m 6. 4 21 . 4 38 0 0 22 . 4 25 0 5 MW / k m 6.7 27 . 1 81 0 0 25 . 6 50 5M W / k m 6.0 32 . 9 72 0 0 31 7 20 0 4- 5 M W / k m 6.9 28 . 8 73 0 0 27 . 7 18 0 5 MW / k i i i , 6.7 28 . 0 85 0 0 26 . 1 50 0 4x 1 5 RD 6.4 28 . 5 48 0 0 ‘ 29 . 1 16 0 5 MW / k m s. s 24 . 7 58 0 0 24 . 6 __ _ _ _ _ _ _ _ _ 70 5 MW / k m 6. 4 3( 1 . 0 56 0 0 30 . 1 75 5 MW / k m 6. 5 32 , 0 70 0 0 31 . 1 50 0 4x 13 RD 63 26 . 0 70 0 0 25 . 2 25 0 4- 5 M W / l c r n 65 26 3 38 0 0 24 . 7 20 1 ) 6M W / k m . 6. 5 24 . 7 76 0 0 23 . 6 ‘/S e v i e r 25 9 4x 1 . 5 RI ) 66 26 3 85 0 0 24 5 23 0 6M W / k m 6.3 25 5 96 0 0 25 . 6 25 0 4x 15 5 0 62 33 . 7 50 0 0 34 . 3 50 0 4x 1 5 00 6.2 23 . 3 50 0 0 29 . 8 __ _ _ _ _ _ _ _ _ _ 12 0 5M W / k m 6. 3 27 . 1 66 0 0 26 . 6 __ _ _ _ _ _ _ _ _ _ 14 0 5M W / k m 65 28 . 0 80 0 0 25 . 8 __ _ _ _ _ _ _ _ 14 0 4- 6 M W / k m . - 6. 4 25 . 1 77 0 0 2 3 . 9 50 5 MW / k m 6. 2 32 . 0 63 0 0 31 . 6 15 0 5M W / k m . 6, 3 30 . 3 75 0 0 29 . 1 10 0 4s 15 RD 6. 2 25 . 9 52 0 0 25 . 6 25 0 5 MW / k m . 63 29 . 5 72 0 0 28 . 4 4x 1 5 SD , 6.1 32 . 2 52 0 0 32 . 7 11 0 6M W / k m 6.1 26 . 0 59 0 0 25 . 9 16 0 4a 1 S R D 6.1 23 . 4 97 0 0 . 2.3 3 a 12 0 5 MW / k m &i 25 . 5 70 0 0 24 . 7 75 4 MW / k m 6. 0 34 . 5 66 5 3 0 33 , 8 2.5 0 41 1 5 RD 5.8 31 . 1 4’ ’ 40 0 4e 1 5 RD . 6. 0 26 . 3 7 :o 7.4 9 2. 0 7.3 6 2.0 7.2 9 2. 0 7.2 7 2. 0 7. 2 5 2. 0 7. 1 9 2. 0 7.1 8 2. 0 7.1 1 2.0 7. 1 1 2.0 7. 1 2 2.0 7. 0 5 2.0 7.0 0 2.0 6.9 0 2.0 6.8 8 20 6.8 1 2. 0 6. 8 0 2. 0 6.7 6 2. 0 6. 7 7 2. 0 6. 7 5 2.0 6.7 1 2.0 6. 7 1 2.0 6.6 6 2. 0 6.6 3 2.0 6.6 3 2. 0 6.6 2 2. 0 6.6 3 2. 0 6.6 5 2. 0 6. 5 6 2. 0 6. 5 5 ‘ 20 6. 5 5 2.0 6.5 4 2.0 6.5 0 2. 0 6.5 3 2.0 6.4 6 2.0 6.4 1 2. 0 6.4 1 2. 0 6. 3 8 2. 0 6. 3 9 2. 0 6.3 9 20 6. 3 0 2. 0 2. 0 2.0 38 1.0 4 40 . 2 % 18 0. 9 7 36 . 4 % 38 0.9 7 36 . 4 % 0. 9 3 36 . 4 % 0.9 8 36 . 0 % 38 1. 0 5 35 . 6 % 38 0.9 6 34 . 6 % 38 0.9 1 34 , 2 % 38 0. 9 7 33 , 7 % 0. 9 6 33 . 7 % 38 1.0 3 33 . 3 % 0. 9 9 33 , 3 % 38 13 8 33 . 3 % 38 1.0 6 32 . 8 % 38 1.1 1 32 . 8 % 38 0.9 4 32 . 4 % 0.9 6 31 . 9 % 38 0.9 7 31 . 9 % 38 0.9 3 3 1.9 % 36 1.0 7 31 . 9 % 30 1.0 3 31 . 9 % 31 1 1.0 4 31 . 4 % 38 0. 9 8 31. 4 % 38 0.9 8 31 . 4 % 38 0.9 4 31 . 0 % 38 0.9 6 31 . 0 % 38 0.9 3 31 . 0 % 38 1.0 4 30 . 5 % 25 Ba d La n d Cli f f s Ou c h ca n e 30 Se v i e r De s e r t Mi l l a r d 30 Bl a c k Mt r i s Bu a v r - r / l r o n 6 Ju n c t I o n Hil l s Bo a Eld e r / C a c h e 9 Mu r p h y Rid g e RI c h — 44 Mo n t i c e l l o Sa n Jj a a 27 [l I l t Cr e e k Ex t c r s a i o s Ul n t a k / G r a n d 37 Ch l p m a n Pe a k Be a v e r / I r o n __ _ _ _ _ _ _ _ _ _ _ _ 40 Pa r k e r - I n c Wrr ’ , ” ’ r / i __ _ _ _ _ _ _ _ _ _ _ _ 45 En t n r p h - e Ir o n 2 Ce d a r Cr e a k Bo a rid e 34 Mi l f o r d So u t h Be a v e r 20 Do g Va l l e y Uta h / J u a b __ _ _ _ _ _ _ _ _ _ _ _ _ 24 Ar g y l e Rid g e Ou r h e s n a / C a r b o n 39 Bu r r v i l l e Pa s s Se v i e r __ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 Po I n t Lo o k o u t — Bo x El d e r 16 Dia m o n d Mt n Uin t u h 18 Bo u l t e r Su m m i t To c e l a / J u a b 26 Ce d e r Mt n Em e r 15 Cl a y Ho l l o w Sa l t La k e 42 St e v e n s Me s a Wa y n e / G a r f i e l d Si Li t t l e Cr a c k Mt n Wa s h i n g t o n 38 An t e l o p e Ra n g e Se v i e r / P i u l 3 We s t Hi l l s So S El d e r 13 Gr a s s y Mtr s Ga p bo d e 43 St. Jo h n s Va l l a y Ga r f i e l d 77 5 83 5 97 5 10 3 5 10 9 5 15 9 5 17 9 3 20 1 5 21 6 5 23 4 5 24 6 5 25 1 5 26 1 5 31 1 5 31 8 5 34 3 5 34 8 5 36 6 5 38 6 5 43 6 5 45 2 5 45 9 5 46 7 0 51 7 0 54 2 0 56 2 0 58 7 0 61 0 0 63 5 0 68 5 0 69 7 0 71 1 0 72 5 0 73 0 0 74 5 0 75 5 0 78 0 0 78 8 0 79 9 0 61 5 0 82 7 0 83 4 5 85 9 5 89 9 5 34 . 2 % 31 . 0 % 31 . 0 ’ 3 2 31 . 0 % 30 . 6 % 30 . 2 % 29 . 4 % 29 . 1 % 29 . 7 % 23 . 7 % 28 . 3 % 28 . 3 % 29 . 3 % 27 , 9 % 27 9 % 27 . 5 % 27 . 1 % 27 . 1 % 27 . 1 % 27 . 1 % 26 7 % 26 . 7 % 26 : 7 3 5 26 . 5 % 26 . 3 % 26 . 3 % 25 . 9 % 25 . 5 % 25 . 5 % 25 . 1 % 25 . 1 % 25 , 1 % 24 . 7 % 3.1 , 7 % 24 . 7 % 24 . 7 % 24 . 3 % 23 . 9 % 23 . 9 % 23 . 1 % 22 . 7 % 22 . 3 % 22 . 3 % TO T A L 38 1.0 6 30 . 0 % 38 1.0 6 30. 0 % 38 1.0 0 29 , 5 % 38 0.9 1 29 . 5 % 38 0. 9 6 29 . 5 % 38 1.0 1 29 . 1 % 38 o. W ” 29 . 1 % 38 1. 0 2 29 . 1 % 6.3 3 2.0 38 0.9 8 29 . 1 % 6.2 9 2.0 - - 38 1. 0 5 - 28 . 6 % 6. 2 . 3 2. 0 - 38 1. 0 3 28 . 1 % 6.2 5 2. 0 38 1. 0 3 28 . 1 % 6.1 5 2. 0 38 0.9 9 27 . 2 % 6. 0 8 2. 0 38 1.0 0 26 . 7 % — 6.0 3 2. 0 38 1.0 8 26 . 2 % 6. 0 2 2.0 38 0.9 7 26 . 2 % 12 9 4 5 MW / k m re f e r s to ri d g e t h r e s ; 4x )5 R1 2 is f a r ti e r ar e a s as s u m i n g ea c h 0. 0 ] kg / r n ‘c h a n g e in qi r d n s i t y is 0,8 % ch a n g e in en e r g y pr o d u c t i o n Su m m a r y of Ut a h WR E Z Pr o s p e c t s Dr a i n a g e Ca n y o n Si t e s Nu r s e Co u n t V Lo g a n Ca c h e Hy r u m Ca c h e Og d e n We b e r So u t h We b e r We b e r / D a v l s Em i g r a t i o r r Sa l t La k e Pa r l e y s Sa l t La k e Pm v o Ca n y o n Ut a h Sp a n i s h Fo r k Ut a h MI l i s i t e Re s e r v o I r Em e r y Es c a l a n t e Da r f i e l d Sp r i r i g d a i e Wa s h i n g t o n Ut a h Wi n d MW wi t h Ad v a n c e d Tu r b i n e s 40 . 0 % -- - - - - - -. 35 . 0 % -- - - 30 . 0 % - - - I 25 . 0 % -- — — — — - — - — 20 . 0 % ‘ - -- - -- 15 . 0 % —-- — — - -- - - ‘ 10 . 0 % -- - - - - - - - - - - — --- -- - - —- - - - - - - — —- 0.0 % i -- - - ‘ S 0 20 0 0 40 0 0 60 0 0 80 0 0 10 0 0 0 - Cu m u l a t i v e MW