Loading...
HomeMy WebLinkAbout20160526Rosentrater Exhibit 7.pdf DAVID J. MEYER VICE PRESIDENT AND CHIEF COUNSEL FOR REGULATORY & GOVERNMENTAL AFFAIRS AVISTA CORPORATION P.O. BOX 3727 1411 EAST MISSION AVENUE SPOKANE, WASHINGTON 99220-3727 TELEPHONE: (509) 495-4316 FACSIMILE: (509) 495-8851 DAVID.MEYER@AVISTACORP.COM BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION IN THE MATTER OF THE APPLICATION ) CASE NO. AVU-E-16-03 OF AVISTA CORPORATION FOR THE ) AUTHORITY TO INCREASE ITS RATES ) AND CHARGES FOR ELECTRIC SERVICE ) EXHIBIT NO. 7 TO ELECTRIC CUSTOMERS IN THE ) STATE OF IDAHO ) HEATHER L. ROSENTRATER ) FOR AVISTA CORPORATION (ELECTRIC) Electric kwh Schedule No. of Customers (000s)% of Total kwh Residential Sch. 1 104,621 1,124,033 37% General Sch. 11&12 21,154 366,126 12% Lge. General Sch. 21&22 1,157 706,267 23% Ex. Lge. General Sch. 25 8 316,352 10% Ex. Lge. General Sch. 25P 1 450,717 15% Pumping Sch. 31&32 1,437 66,287 2% Street & Area Lights 148 14,189 0% 128,526 3,043,971 100% Customer Usage State of Idaho - Electric As of December 31, 2015 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 1, Page 1 of 1       2016 Mary Jensen, Rubal  Gill  Asset Management       Avista Corp.  02‐01‐2016  Electric Transmission System 2016 Asset Management Plan Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 1 of 61 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 2 of 61   3 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Table of Contents Purpose ................................................................................................................................................................... 6  Executive Summary ................................................................................................................................................. 6  Assets ...................................................................................................................................................................... 9  Key Performance Indicators (KPIs) ........................................................................................................................ 11  Capital Replacement and Maintenance Investment ............................................................................................. 13  Process Capability ................................................................................................................................................. 20  Risk Prioritization .................................................................................................................................................. 20  Unplanned Spending ............................................................................................................................................. 24  Outages ................................................................................................................................................................. 26  Programs ............................................................................................................................................................... 30  1.  Major Rebuilds ............................................................................................................................................. 30  2.  Minor Rebuilds ............................................................................................................................................. 31  3.  Air Switch Replacements .............................................................................................................................. 32  4.  Structural Ground Inspections (Wood Pole Management) .......................................................................... 36  5.  Structural Aerial Patrols ............................................................................................................................... 37  6.  Vegetation Aerial Patrols and Follow‐up Work ............................................................................................ 37  7.  Fire Retardant Coatings ................................................................................................................................ 38  8.  230kV Foundation Grouting ......................................................................................................................... 39  9.  Polymer Insulators ........................................................................................................................................ 39  10.  Conductor & Compression Sleeves ............................................................................................................ 40  Program Ranking Criteria .................................................................................................................................. 40  Benchmarking ....................................................................................................................................................... 41  Data Integrity ........................................................................................................................................................ 45  Material Usage ...................................................................................................................................................... 47  Root Cause Analysis (RCA) .................................................................................................................................... 47  System Planning Projects ...................................................................................................................................... 48  Area Work Plans .................................................................................................................................................... 52  References ............................................................................................................................................................. 56    Figure 1:  Example Transmission Asset Components and Expected Service Life .................................................. 10  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 3 of 61   4 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Figure 2:  Transmission and Distribution System Replacement Values, Average Service Life, and Levelized  Replacement Spending ......................................................................................................................................... 14  Figure 3:  Replacement Cost vs. Remaining Service Life ....................................................................................... 15  Figure 4:  2014 Planned Capital, O&M, and Emergency Spending ....................................................................... 18  Figure 5:  30‐year Transmission Planned Capital and Maintenance Recommendations ...................................... 19  Figure 6:  115kV and 230kV Total Unplanned Capital Spending ........................................................................... 25  Figure 7:  Transmission outage causes affecting customers in 2015 .................................................................... 30  Figure 8:  Air Switch Replacement Value vs. Remaining Service Life .................................................................... 34  Figure 9:  3‐year Transmission Lines Replacement Capital Spending per Asset  (First Quartile Consulting, 2008)  ............................................................................................................................................................................... 42   Figure 10:  Idaho Power Long‐term Replacement Costs ...................................................................................... 44  Figure 11:  Maintenance Benchmarking: Aerial Patrols (left) and Pole Inspections (right) .................................. 45    Table 1:  Primary Assets of the Electric Transmission System – Circuits ................................................................ 9  Table 2:  Component Assets and Quantities ........................................................................................................... 9  Table 3:  Transmission Structures and Poles ......................................................................................................... 10  Table 4:  115kV vs 230kV Pole Materials .............................................................................................................. 11  Table 5:  Transmission KPIs and Unity Box Metrics ............................................................................................... 12  Table 6:  Additional Performance Measures, 2010‐2015 ..................................................................................... 13  Table 7:  Levelized Replacement Spending Options ............................................................................................. 16  Table 8:  2015 Transmission Spending .................................................................................................................. 17  Table 9:  2015 Planned Capital Projects (Non‐Reimburseable) ............................................................................ 17  Table 10:  30‐year Planned Capital and O&M Recommendations ........................................................................ 19  Table 11:  Probability Index Criteria and Weightings ............................................................................................ 21  Table 12:  Consequence Index Criteria .................................................................................................................. 22  Table 13:  Top 20 Most at Risk Circuits according to the Reliability Risk Index .................................................... 23  Table 14:  Transmission Unplanned and Emergency Spending, 2006 ‐ 2015 ....................................................... 25  Table 15:  Transmission lines with the most unplanned outages in 2014 ............................................................ 27  Table 16:  Transmission lines that caused the most customer hours lost in 2015 ............................................... 27  Table 17:  Transmission Lines causing the most customer outages greater than 3 hours in 2015 ...................... 28  Table 18:  Transmission Outage Causes, 2009‐2015 ............................................................................................. 29  Table 19:  Major Rebuild Projects, 2016 – 2020 ................................................................................................... 31  Table 20:  Minor Rebuild and Switch Upgrade Budget, 2016 – 2020 ................................................................... 32  Table 21:  Airswitch Priority List for Repairs and Replacements .......................................................................... 35  Table 22:  Program Ranking Criteria ..................................................................................................................... 41  Table 23:  Avista Transmission Lines Replacement Capital Spending per Asset ................................................... 43  Table 24:  Transmission Asset Data Integrity ........................................................................................................ 46  Table 25:  Relative Material Purchases, 10/2010 – 10/2012 ................................................................................ 47  Table 26:  Corrective System Planning Projects (Big Bend, CDA & Lewiston/Clarkston) ...................................... 49  Table 27:  Corrective System Planning Projects (Palouse, Spokane and System) ................................................. 50  Table 28:  Non‐Corrective System Planning Projects (Big Bend, CDA & Lewiston/Clarkston) .............................. 51  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 4 of 61   5 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Table 29:  Non‐Corrective System Planning Projects (Palouse, Spokane and System) ......................................... 52  Table 30:  Project Type Key ................................................................................................................................... 53  Table 31:  Area Work Plans – Major Projects ........................................................................................................ 54  Table 32:  Minor Rebuilds ..................................................................................................................................... 55  Table 33:  Ground Inspection Plan ........................................................................................................................ 55      Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 5 of 61   6 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Purpose  System asset management plans are meant to serve a general audience from the perspective of long‐term,  balanced optimization of lifecycle costs, performance, and risk management.  The intent is to help the reader  become rapidly familiar with the system’s physical assets, performance, risks, operational plans, and primary  replacement and maintenance programs.  Consistent annual updates of this plan provide the continuity  required for useful historical information and continuous improvement of asset management practices.  For easy reference, a “Quick Facts” sheet is used to highlight key information and recommendations of this  system‐level asset management plan.  At the individual program and project level, additional “Quick Facts”  sheets may also be available.  For more details, please visit the Asset Management Sharepoint site at Asset  Management Plans.  This update reflects the best available information as of December 31, 2015.    Executive Summary  Consistent with last year’s assessment, the primary message of this asset management plan is that the  company must commit itself to sustainably replace the bulk of the aging transmission system over the next  three decades.   This is essential to achieve the company’s strategic objectives of maintaining reliability levels  while minimizing total lifecycle costs, requiring over $624 million in capital replacement investment.  As this  represents a significant increase in capital investment as well as internal and external workloads from recent  years, success demands strong company support and management.  In order to be most effective and  beneficial to customers and the company, it also requires fact‐based prioritization and targeting of available  funds to the riskiest elements of the system.   Key performance indicators (Table 5) for the transmission system showed results lower than targeted for 2015.   Completed ground inspections were lower than planned and aerial inspections were on‐track.  Aging 115kV  pole replacements were 80% below target, while aging 230kV pole replacements were 37% above target.   Customer outages were 97% higher than targeted, while emergency spending was 50% higher than targeted.   Finally, the follow‐up repair backlog increased, ending the year with five category 4 items overdue and the  oldest item in the backlog at 35 months.  Much of this may be due to improved identification and tracking  methods that were recently implemented.  Replacement budget recommendations remain relatively unchanged at $12 million for 115kV and $9 million  for 230kV.  Planned budgets for 2016 and 2017 are relatively close to this recommendation.  Additional  mandated, growth and reimbursable capital projects, as well as O&M work puts the total planned budget for  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 6 of 61   7 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Transmission Engineering at approximately $25 million for 2016, and is expected to remain at this level or  increase for many years.  This output level is nearly triple that of just a few years ago, while dedicated staff  have only increased from five to six in the transmission engineering group.  In order to reduce operational  risks, it is strongly recommended that management consider assigning additional dedicated staff members, as  well as proper equipment for safe and effective fieldwork.  Outages and unplanned spending was $2 million in 2015 , mostly as the result of a severe winter wind storm  that raised overall unplanned spending on the 230 kV and 115kV systems by $700k.    Notable achievements in 2015 include:  1. Design and project management of an expanded number of mandated and system planning projects  including LiDAR mitigation, at $16.4 million in 2015 compared to $7.5 million in 2014.  2. Completion of minor rebuild and LiDAR mitigation on Moscow ‐ Orofino 230kV, Devil’s Gap – Stratford  115 kV, and Noxon – Hot Springs 230 kV  3. Total rebuild on Bronx – Cabinet 230 kV, tie line to the new Noxon reactor, and structure replacement  projects on Benewah‐Moscow 230 kV and Devils Gap‐Lind 115 kV.    4. Approved 2015 budget closely matching the recommended replacement budget of $12 million for  115kV and $9 million for 230kV.    5. Effective transition of administrative maintenance work from departing staff, as well as hiring and  productive output of new engineering staff.  6. Published a comprehensive set of construction standards for transmission engineering and effectively  integrated the use of PLS‐CADD software.  Consistently using both as a baseline for continuous  improvement, as a collaborative team effort.   7. Confirmation of system pole data including material and location, allowing for detailed expected  service life information on each transmission line.  8. Began simulation studies for Lolo – Oxbow 230kV and Noxon – Pine Creek 230kV circuits.  9. In cooperation with other utilities, continued a major project to determine best design, construction,  inspection and maintenance of self‐weathering steel structures.  Beyond execution of approved construction, below is a list of recommended initiatives to further improve  the long‐term performance and stewardship of transmission assets.  1. Provide additional dedicated staff as appropriate, to handle long‐term increased workloads in the  Transmission Engineering group and support processes.    Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 7 of 61   8 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    2. Engage asset stakeholders within each major region of the transmission system in order to develop  a comprehensive, prioritized capital project plan for the next 20 years.  3. Continue improving the transmission construction standards to reflect best practices in design and  construction work.  Engage line crews and regional staff.  4. Monitor the lead time for as‐built construction updates to AFM, Plan and Profile (P&P) drawings,  and the engineering vault files, with a target of six months.  Carry out periodic quality audits of  construction in the field and recorded data.  5. Develop a comprehensive inspection and planned maintenance program for steel transmission  structures.  6. Develop a systematic air switch risk ranking method, replacement schedule, and inspection and  maintenance program.  7. Complete rebuild simulation studies and business cases for Lolo – Oxbow 230kV and Noxon – Pine  Creek 230kV circuits.  8. Determine the risks and appropriate mitigation work resulting from structural loads of distribution  underbuild.  9. Complete a system‐wide simulation study to support optimal Transmission asset inspection  intervals as well as planned and unplanned replacement budget targets, including annual minor vs.  major rebuild budgets.   10. Implement transmission outage software which will allow for accurate and efficient analysis of  outages and causes on each transmission line and aerial patrol inspection software for follow up  tracking.     Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 8 of 61   9 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Assets  The tables and charts below provide a high‐level summary of physical assets in the transmission system,  replacement values, and expected service lives.  Replacement values represent the cost to replace existing  assets with equivalent new equipment in 2015 dollars, not including right‐of‐way purchases, capacity or ratings  upgrades, mandated projects, and other work associated with growth‐related installations.      Circuit Type Installation Cost/Mile Removal Cost/Mile Miles Total Replacement Cost 69kV Circuit $250,000 $20,000 0.4 $113,400 115 Single Circuit $400,000 $20,000 1457.1 $611,986,200 115 Underground Circuit $3,600,000 $180,000 2.8 $10,584,000 115 Double Circuit $525,000 $20,000 23.9 $13,014,600 230 Single Circuit $700,000 $20,000 604.3 $435,081,600 115‐230 Double Circuit $850,000 $20,000 55.3 $48,145,800 230 Double Circuit $900,000 $20,000 25.8 $23,736,000 2169.6 $1,142,661,600 Average Asset Lifecycle (Years)70 Annual Levelized Replacement Spending over Lifecycle $16,323,737    Table 1:  Primary Assets of the Electric Transmission System – Circuits    Asset Category Quantity 230kV Quantity 115kV Quantity Total Expected Service Life (years) Structures 4990 16483 21473 65 Poles 9021 27401 36422 70 Air switches 2 188 190 40 Conductor (miles) 2055 4602 6657 100 Compression sleeves 1370 3068 4438 50 Insulators 22978 60202 83180 70     Table 2:  Component Assets and Quantities    Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 9 of 61   10 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans      Figure 1:  Example Transmission Asset Components and Expected Service Life   100 Steel Towers (galvanized steel) 50 Steel Pole/Tubular structures (galvanized or painted) 2585 Self‐Weathering Steel Structures 18817 Wood Pole Structures 4 Hybrid Concrete/Steel structures 0 Concrete Structures 0 Aluminum Structures 40 Laminated Wood Structures 21596 Total Transmission Structures 9.7 average # structures/mile 3277 # self‐weathering (cor‐ten) steel poles 50 # tubular galvanized steel poles 8 # hybrid concrete/steel poles 7602 # larch poles 366 # fir poles 25079 # cedar poles 40 # laminated wood poles 36422 Total # Poles 5660 # beyond expected service life 16% % beyond expected service life 80 # of structures with buried galvanized steel foundations 1014 # of structures with coated buried steel foundations unknown # of structures with caisson concrete foundations 2700 # of structures with anchors     Table 3:  Transmission Structures and Poles    Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 10 of 61   11 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans                    pole material larch cedar steel other total service life 55 65 150 70 69 # 115 poles 2347 21198 1506 597 25648 # 230 poles 2545 4312 1813 635 9305 total # poles 4892 25510 3319 1232 34953     Table 4:  115kV vs 230kV Pole Materials    Key Performance Indicators (KPIs)  The table below shows overall KPI results for 2015, which are monitored and recorded on a monthly  basis throughout the year.  The first four are leading indicators over which we have direct operational  control.  The final two KPIs are lagging indicators of system performance, which should have a causal link  to the leading indicators.  In other words, if we consistently execute well as demonstrated by the leading  indicators, over time we should see satisfactory outcomes as manifested by the lagging indicators, and  vice versa.  When this does not occur, deeper investigation and root‐cause analysis is justified, as  something other than the expected causal relationship is potentially at play.     By these measures, performance was lower than targeted for structural ground inspections.  Aerial  patrol inspections remained on‐track overall.   System‐wide follow‐up repairs from ground and aerial  patrol inspections were higher than planned for category 4 and 5 items.  This may be primarily due to  improved tracking methods.  Aging infrastructure replacement was less than the levelized investment  required to maintain system reliability over the long term for 115kV, as roughly indicated by the number  of older poles replaced.  Reliability performance and emergency spending were higher than targeted.  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 11 of 61   12 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Completed Structural Ground Inspections Projected Actual Normalized # wood poles ground inspected 2400 2145 0.89 Completed Structural Aerial Inspections Projected Actual Normalized % of 230kV system inspected 100 100 1.00 % of 115kV system inspected 70 70 1.00 Followup Repair Backlog Projected Actual Normalized # worksites overdue (> 1 year after inspection year)10 8 0.80 # Category 4 or 5 items overdue (> 6 months since inspection, ground + aerial) 1 5 5.00 oldest item in backlog (# months since inspection)18 35 1.94 Aging Infrastructure Replacement Projected Actual Normalized # 115kV wood poles  older than 60 years replaced with steel 500 98 0.20 # 230kV wood poles  older than 50 years replaced with steel 175 240 1.37 # air switches > 40 yrs old replaced 4 1 0.25 Reliability Performance Projected Actual Normalized Extended Unplanned Outages due to Transmission (Customer‐Hrs)133,142             262,949       1.97 # of Customers with Unplanned Transmission Outages > 3 Hrs 10,182               24,927          2.45 Emergency Spending Projected Actual Normalized 230kV Emergency Spending $204,022 388,272$     1.83 115kV Emergency Spending 1,116,997$       1,792,649$  1.44 total Emergency Spending 1,321,019$       2,180,921$  1.50   Unity Box Metrics ‐ Monthly Weighting 2015 Result Completed Structural Ground Inspections 20.00%0.89 Completed Structural Aerial Inspections 20.00%1.00 Followup Repair Backlog 15.00%3.19 Aging Infrastructure Replacement 15.00%0.73 Reliability Performance 15.00%2.31 Emergency Spending 15.00%1.50 Sum of Weight * Value 100.00%1.54   Results 1 = Planned/On‐Track <1 = Better than Planned >1 = Worse than Planned   Table 5:  Transmission KPIs and Unity Box Metrics  It is strongly recommended that $21 million per year over a 30‐year timeframe is allocated for worn‐out  infrastructure replacements – $12 million for 115kV, and $9 million for 230kV.  As we ramp up  replacement construction in the years ahead, we expect to meet or exceed these goals.  We will  continue to replace equipment primarily on the basis of recent inspection and condition assessments,  however the age and respective service life of the system at a high‐level provides a strong leading  indicator of long‐term system reliability.    Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 12 of 61   13 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Additional performance measures are tabulated below since 2010:  Performance Measure Goal 2010 2011 2012 2013 2014 2015 Remarks Customer‐Hours  unplanned, extended  outage due to  transmission issues        113,142 255,426 64,453 82,908 238,861 200,977 262,949 # of customers of Tx  related unplanned  outages greater than 3  hrs         10,182 16,478 6,644 5,409 17,135 17,609 24,927 Tx emergency repair  costs $1,321,019 $1,442,969 $1,029,597 $1,409,972 $1,630,943 $3,040,313 $2,180,921 Avista crew safety: #  recordable injuries  from Transmission  work 0 not avail not avail not avail not avail not avail not avail Unable to  isolate to  Transmission Top 10 worst  performing  components ‐ by  failures NA not avail not avail not avail not avail not avail not avail Not available  from OMT data Top 10 worst  performing circuits by #  of component failures NA not avail not avail not avail not avail not avail not avail Not available  from OMT data   Table 6:  Additional Performance Measures, 2010‐2015  Note that important performance measures currently cannot be evaluated due to inadequate data  availability.  This includes safety incidents from transmission work, the total number of annual failures  and respective failure modes for various transmission lines and system‐wide asset components such as  poles, air switches, crossarms, insulators, splice connections, and so forth.  An ongoing, long‐term effort  is necessary to make this information available and assimilate into our set of KPIs and circuit risk  rankings.  It is also essential to taking the next steps in evaluating the benefit and value of asset  management programs and projects for continuous improvement.  Capital Replacement and Maintenance Investment  Levelized replacement spending is the annual spending required to replace the asset category in a  perfectly level form over the asset’s service life in 2015 dollars, not including inflation.  Prior to adjusting  for uneven service life profiles, this provides a simple, rough‐cut measure to compare against actual  replacement spending each year, i.e. the minimum needed to keep up with aging infrastructure that  places reliability at risk.  This currently stands at $16.3 million per year for the transmission system.    Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 13 of 61   14 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Relative to other major areas of the transmission and distribution (T&D) system, transmission assets  have a longer service life, and the total replacement value of $1.1 billion is on par with substation’s $0.9  billion and about half of distribution’s $2.0 billion.  All together, levelized replacement spending is  roughly $84 million per year in perpetuity for Avista’s T&D system (2014 dollars).  However, as shorter  lived wood materials are replaced with steel in the decades ahead, we expect overall service life to  increase from 70 years to over 100 years for the transmission system.  Assuming all other factors being  equal, this in turn would reduce the minimum levelized spending to under $12 million/year, roughly 50  years from now.    Figure 2:  Transmission and Distribution System Replacement Values, Average Service Life,  and Levelized Replacement Spending    The next step is to look more closely at the replacement cost of actual installed assets compared to  remaining service life.  This provides the basis for levelized replacement budgets given actual remaining  service life profiles, as summarized in the following chart.  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 14 of 61   15 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans      0 50 100 150 200 250 ‐30 ‐20 ‐10 0 10 20 30 40 50 60 70 80 90 100 Re p l a c e m e n t  Co s t  ($ )  Mi l l i o n s Remaining Service Life (years) Transmission System Replacement Cost vs Remaining Service Life 115 kV 230 kV   Figure 3:  Replacement Cost vs. Remaining Service Life  Note that field assets costing $234 million to replace are currently beyond expected service life, based  on their age and statistical predictions of mean time to failure (everything to the left of 0 years in Figure  3 above).  The oldest and greatest quantities of these assets are 115kV transmission lines.  This  represents a significant risk to the continued reliability of the transmission system, particularly for those  115kV circuits with more than 10 years past normal service life.    To address this issue, several alternatives present themselves in terms of long‐term replacement  policies, as shown in the table below.  The 30‐year replacement period is recommended at $21.1 million  per year, split between $11.3 million for 115kV and $9.8 million for 230kV.  This policy, when coupled  with an ongoing, annual risk assessment and targeting of funds, over the long term will effectively  reduce risks and minimize total lifecycle costs.     The table below presents a simple levelization that reduces the volatility and operational business risk of  ramping up and down construction work from year‐to‐year, while responsibly maintaining system  performance.  Again, it should be emphasized that in order to be most effective, this level of  replacement spending must be targeted at those assets that pose the greatest overall risk, as discussed  in the Risk Prioritization section of this report.    Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 15 of 61   16 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Tx Capital Assets  Service Life (yrs) Levelized  Replacement Period  (yrs) 115kV 230kV Total Annual Levelized  Replacement  Spending ($)  ‐10 or less 0 or less 10 $134,307,405 $78,477,092 $212,784,497 $21,278,450 10 or less 10 $188,044,730 $110,751,445 $298,796,176 $29,879,618 20 or less 20 $246,950,622 $264,119,590 $511,070,211 $25,553,511 30 or less 30 $339,538,157 $294,522,966 $634,061,123 $21,135,371 40 or less 40 $473,944,191 $331,318,848 $805,263,038 $20,131,576 50 or less 50 $569,441,268 $356,005,350 $925,446,618 $18,508,932 60 or less 60 $602,081,970 $379,756,364 $981,838,334 $16,363,972 70 or less 70 $617,172,136 $389,475,050 $1,006,647,186 $14,380,674 Cumulative Replacement Costs ($)   Table 7:  Levelized Replacement Spending Options  A variety of data uncertainties result in +/‐ 5% confidence in the stated figures.   In terms of replacement  costs, the most significant uncertainty from year to year involves the volatility of contract labor.   Extensive work was recently completed to confirm 115kV and 230kV pole data, most importantly the  identification of pole material and respective expected service life, which has greatly improved  confidence levels.  The recommended $21.1 million per year in levelized replacement spending over the next 30 years is  higher than the $19.1 million actual replacement spending in 2015.  Significant effort is underway to  ramp up replacement construction in 2016 and sustain it over ensuing years.  Other project categories  include growth, mandated, and reimbursable capital projects, operations and maintenance (O&M)  programs, and unplanned/emergency work.  These figures are tabulated below for 2015.  Spending  associated with liability claims and the underground network are not included, due to data uncertainty.   Please note that many construction projects involve a combination of replacement, growth, and  mandated work, therefore these figures are rough approximations.  Historically, upwards of 90% of  transmission construction is through contractors.      Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 16 of 61   17 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    19,074,307$             Replacement 6,301,988$               Growth/Upgrade 2,180,921$               Unplanned/Emergency 936,843$                  O&M ‐ Veg Management 327,319$                  O&M ‐ Other 25,000$                    Reimburseable work completed 28,846,378$             Total 26,640,457$             Total Planned non‐reimburseable 26,665,457$             Total Planned Capital (including reimburseable) 1,264,162$               Total Planned O&M 2,180,921$               Total Unplanned/Emergency Capital unknown Total Unplanned O&M   Table 8:  2015 Transmission Spending  2015 Tx Project Spend Program/Project Description ER BI Type 5,344,333$                      Devils Gap‐Lind 115kV Transmission Rebuild Proj 2564 ST302 Replacement 5,316,486$                      Benewah‐Moscow 230kV ‐ Structure Replacement 2577 PT305 Replacement 3,426,340$                      LiDAR Mitigation Projects, Med Priority 2560 CT203, various Mandated Replacement 3,419,420$                      Xsmn Asset Management 2423 AMT81 Growth/Replacement 2,475,619$                      Benton‐Othello 115 Recond 2457 FT130 Growth/Replacement 2,053,414$                      Asset Mgmt Trans Minor Rebuilds WA 2057 AMT12 Replacement 692,288$                         Noxon 230 kV Stn Rebuild:Transmission Integration 2532 AT300 Growth/Mandated 627,195$                         Asset Mgmt Trans Minor Rebuilds ID 2057 AMT13 Replacement 529,411$                         Transmission Line Road Move 2056 56L08 Replacement 443,619$                         Asset Mgmt Transmission Switch Upgrade 2254 AMT10 Replacement 411,600$                         Chelan‐Stratford 115kV ‐ Rbld Columbia River Xing 2574 BT304 Growth/Mandated 249,540$                         Lewiston Mill Rd. 115 kV Substation Integration 1107 LT403 Growth/Mandated 198,319$                         9CE‐Sunset 115kV Transmission Line Rebuild 2557 ST503 Growth/Replacement 85,599$                            Opportunity Sub 115kV Breaker Add ‐ Tx Integration 2552 ST307 Growth/Mandated 84,903$                            Irvin 115kV Switching Stn: Transmission Integration 2446 ST102 Growth/Mandated 18,209$                            Greenacres 115 Sub New Cons:Transmission Integrate 2443 ST203 Growth/Mandated ‐$                                  Burke‐Thompson A&B 115kV Transmission Rebuld Proj 2550 CT101 Replacement ‐$                                  LiDAR Mitigation Projects, Low Priority 2579 CT304, various Growth/Mandated ‐$                                  Asset Mgmt Transmission Wood Sub Rebuild 2204 AMT08 Replacement   Table 9:  2015 Planned Capital Projects (Non‐Reimburseable)     Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 17 of 61   18 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    66% 22% 8%4% Replacement Capital Growth/Mandated Capital Unplanned/Emergency O&M   Figure 4:  2014 Planned Capital, O&M, and Emergency Spending  This shows that approximately 92% of spending was planned, vs. 8% unplanned in 2015.  The percent of  planned work should increase as planned replacements ramp up and unplanned/emergency spending is  held constant or reduced.  Growth and mandated projects (e.g. LiDAR projects) of $6.3 million resulted  in 22% of total Transmission spending in 2015.  Although the spending in this category is highly variable  from year to year, a constant value of $3 million is assumed for the future.  A small increase of 2% per  year is assumed for reimbursable projects such as road moves.   O&M dollars may be reduced over the  long‐term, due to expected lower inspection costs of steel poles as they are used to replace existing  wood poles; however, this was not accounted for as it is somewhat uncertain and represents a relatively  insignificant sum.  Other figures represent recommendations for planned replacement and maintenance  programs as specified in the Programs section of this report.  Optimal planned spending may vary  considerably after making adjustments for actual condition assessments as inspections are completed,  capturing economies of scale opportunities when rebuilding larger sections of line, and taking into  account cost of capital considerations from year to year.  Notwithstanding these variables, the numbers  below represent the minimum recommended investment for consistent, planned transmission work in  the years ahead.    Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 18 of 61   19 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans      Figure 5:  30‐year Transmission Planned Capital and Maintenance Recommendations    Ma j o r  Ca p i t a l   Re p l a c e m e n t   Pro j e c t s Gr o w t h / M a n d a t e d Ca p i t a l  Pr o j e c t s Re i m b u r s e a b l e   Ca p i t a l  Pr o j e c t s Air  Sw i t c h   Re p l a c e m e n t s Mi n o r  Re b u i l d s  &  Re p a i r s St r u c t u r a l  Gr o u n d   In s p e c t i o n St r u c t u r a l  Ae r i a l   Pa t r o l s Ve g e t a t i o n   Ma n a g e m e n t Fir e  Re t a r d a n t   Pro g r a m 23 0 k V  Fo u n d a t i o n   Gr o u t i n g   O&M %0% 0% 0% 0% 0% 100% 100% 100% 100% 100% Capital %100% 100% 100% 100% 100% 0% 0% 0% 0% 0%Total O&M Total Planned 2013 actual $8,785,633 $3,965,832 $1,136,787 $150,556 $970,036 $294,000 $94,595 $1,100,000 $200,000 $100,000 $9,906,225 $5,102,619 $1,788,595 $16,797,439 2014  recommended $14,110,816 $2,210,000 $1,159,523 $264,000 $1,300,000 $192,000 $100,000 $1,200,000 $242,000 $100,000 $15,674,816 $3,369,523 $1,834,000 $20,878,339 2014 actual $3,638,255 $7,499,457 $150,000 $135,493 $4,103,971 $317,790 $103,154 $1,300,000 $188,111 $181,405 $7,877,719 $7,649,457 $2,090,460 $17,617,636 2015  recommended $18,667,888 $3,000,000 $1,870,600 $392,507 $1,700,000 $216,000 $100,000 $1,200,000 $242,000 $100,000 $20,760,395 $4,870,600 $1,858,000 $27,488,995 2015 actual $15,420,668 $6,301,988 $25,000 $443,619 $3,210,020 $68,142 $135,318 $936,843 $19,322 $104,537 $19,074,307 $6,326,988 $1,264,162 $26,665,457 2016‐2020  recommended $18,496,395 $3,000,000 $25,500 $264,000 $2,000,000 $216,000 $103,154 $1,200,000 $242,000 $100,000 $20,760,395 $3,025,500 $1,861,154 $25,647,049 2021‐2045  recommended $18,496,395 $3,000,000 $26,010 $264,000 $2,000,000 $216,000 $103,154 $1,200,000 $242,000 $0 $20,760,395 $3,026,010 $1,761,154 $25,547,559 Capital  Replacement  Projects Growth,  Mandated &  Reimburseable  Capital Projects   Table 10:  30‐year Planned Capital and O&M Recommendations  In short, in order to minimize lifecycle costs and maintain system performance, the bulk of the  transmission system needs to be rebuilt over the next three decades, if not sooner.  This is no small  endeavor, entailing significant financial and operational risk.  Although construction and even design  work may be contracted out, internal workloads will in all cases rise substantially in the years ahead for  the Transmission Engineering group and supporting departments.   A successful transition and sustained  production of high quality design work and construction in the field – that will last well into the 22nd  century – requires careful management and strong support across the company.     Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 19 of 61   20 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Process Capability  As of 2010, total planned design, project management, and construction capital and O&M work for the  Transmission system originating from the Transmission Engineering group was less than $10 million per  year.  At that time, Transmission Engineering had a dedicated staff of five members – one manager,  three engineers, and one technician – equivalent to roughly $2.0 million per staff member.  In 2015,  total planned work amounts to $26,665,457 with a dedicated staff of six members – one manager and  five engineers – equivalent to $4.4 million per staff member.  This represents an output productivity  increase of 120% in only a few years time.  Hidden workloads such as mandated reporting and analysis  from regulatory bodies such as NERC are also on the rise.  In order to remedy operational risks and  achieve management objectives, the need for additional staff, equipment, and improved support  processes should be considered a very high priority, seriously investigated, and remedied as  appropriate.      Other opportunities for improved process capability include reducing overall project lead times,  particularly from the time of internal project initiation to the beginning of construction, which has  increased substantially.  Construction timelines and total costs may also be reduced, for example by  completing line projects in one or two years instead of three to five.    Continued engagement and integration with internal and contracted line crews to communicate and  improve construction standards is also recommended as a way to improve overall process capability.  Risk Prioritization  According to Wikipedia, risk is defined as  “ . . . 1. The probability of something happening multiplied by  the resulting cost or benefit if it does.  (This concept is more properly known as the 'Expectation Value'  and is used to compare levels of risk)”      ‐ from  http://en.wikipedia.org/wiki/Risk  In mathematical form, this is expressed as:    Risk/Benefit   ∑(Event Probability)    *  (Event Consequence)       The transmission system’s major circuits were ranked by this formulation.   The rankings will be used as  a starting point for further deliberation among internal stakeholders, with the goal of allocating  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 20 of 61   21 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    resources where they will have the most significant risk reduction.  The rankings may also be used to  justify inspection and follow‐up work earlier than normally scheduled (currently a 15‐year inspection  cycle on each line).  At minimum, the rankings will be used to prioritize the commissioning of detailed  studies, simulations and development of business cases for major line rebuild projects.  The first component of risk for our transmission lines is the probability of a failure event, which we will  refer to as the asset’s “Probability Index”.  This is a normalized relative  score from 1 (low unplanned  event probability) to 100 (high unplanned event probability).   The factors and respective weighting for  the Probability Index are as follows, derived from a combination of the line’s condition, track record, and  severity of operating environment.  Each factor is scored from 1 (low) to 5 (high), based on a set of  objective measures collaboratively developed by representatives in Asset Management, Transmission  Design, System Planning, and System Operations groups.  In the future, improved data and analysis may  allow for actual probability estimates rather than relative scoring methods.  % Weight Criteria  25 Unplanned outages/spending  20 Remaining service life  20 Time since last minor rebuild, #  items identified for replacement  20 # of miles  15  Severity of terrain & operating  environment (soil conditions,  weather intensity, vegetation,  relative probability of  vehicle/equip. impacts, etc)    Table 11:  Probability Index Criteria and Weightings  The second component of risk (event consequence), we will refer to as the asset’s “Consequence  Index”.  It is a measure of the severity of consequences should an unplanned failure event occur.  This is  also a normalized relative score from 1 (low severity = low event consequence) to 5 (high severity = high  event consequence).  The factors and respective weighting for the Consequence Index are as follows,  derived from the relative importance of the line in terms of power flow, its effect on the system should  it become unavailable, the relative time and cost to effect repairs, and potential secondary damage  based on safety, environmental issues and its proximity to other company and private property.  In the  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 21 of 61   22 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    future, improved data and analysis may allow consequences to be financially quantified, rather than  relative scoring methods.   % weight criteria  40 power delivery  20 potential damages  (company/private/environmental)  15 access  15 system stability, voltage control and thermal  problems 10 voltage & configuration    Table 12:  Consequence Index Criteria  With these indices in hand, we have the ability to prioritize lines based on comparable risk levels, which  we refer to as the line’s “Reliability Risk Index”, where  Reliability Risk Index = (Probability Index) * (Consequence Index)  This is also normalized from a score of 1 (low risk) to 100 (high risk).  In order to be worthwhile, it is  essential that the risk index is useful to making practical business decisions.  It must produce credible  results to a wide variety of experts and decision makers, and it must be reliably reproduced each year  without a great burden of effort.  Over time, improvement in our ability to collect and use data may  allow us to evaluate shorter segments of lines with greater ease, providing a refined view of system risk  at the line segment or even structure level.  This would facilitate a more detailed view of system risks  and optimized mitigation efforts.  The development and use of aids that help visualize results (e.g. color‐ coded system maps), may also be worthwhile.     The top 20 highest risk transmission lines are shown in the table below, and the complete list is included  as Appendix A.  This iteration only includes transmission lines and taps that are longer than one mile.  An  additional 37 short lines and taps not included in the risk index account for 14.3 additional miles,  representing less than 0.7% of total Transmission system mileage.  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 22 of 61   23 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Transmission Line Name Voltage (kV) Length (miles) Replacement Value Probability Index Consequence Index Risk Index Lolo ‐ Oxbow 230 63.41 $45,655,200 85.4 100.0 100.0 Noxon ‐ Pine Creek 230 43.51 $31,327,200 80.5 87.8 82.8 Benewah ‐ Pine Creek 230 42.77 $30,794,400 68.3 87.8 70.3 Walla Walla ‐ Wanapum 230 77.78 $56,001,600 68.4 83.7 67.1 Benewah ‐ Boulder 230 26.15 $18,828,000 67.1 72.9 57.3 Hot Springs ‐ Noxon #2 230 70.05 $50,436,000 66.0 68.8 53.2 Dry Creek ‐ Talbot 230 28.27 $20,354,400 51.4 78.3 47.1 Latah ‐ Moscow 115 51.41 $21,592,200 96.0 41.7 47.0 Devils Gap ‐ Stratford 115 86.19 $36,199,800 100.0 39.0 45.6 Post Street ‐ 3rd & Hatch 115 1.76 $3,696,000 70 100 43 Benewah ‐ Moscow 230 44.28 $31,881,600 61.1 59.3 42.5 Cabinet ‐ Rathdrum 230 52.3 $37,656,000 41.7 86.4 42.3 Bronx ‐ Cabinet 115 32.38 $13,599,600 59.4 55.2 38.4 Metro ‐ Post Street 115 0.5 $1,890,000 60 100 38 Ninth & Central ‐ Sunset 115 8.63 $3,624,600 39.0 75.6 34.7 Burke ‐ Pine Creek #3 115 23.79 $9,991,800 67.0 44.4 34.6 Shawnee ‐ Sunset 115 61.51 $25,834,200 79.0 36.3 33.4 Sunset ‐ Westside 115 10.03 $4,212,600 53.0 53.9 33.2 Hatwai ‐ Lolo 230 8.27 $5,954,400 28.9 93.2 31.6   Table 13:  Top 20 Most at Risk Circuits according to the Reliability Risk Index  Note that the two underground 115kV circuits, Post Street – 3rd & Hatch, and Metro – Post Street both  have a 100 consequence rating and probability ratings of 70 and 60, respectively.  The consequence of  unplanned outages on these lines is arguably much larger than those of any other line on the system as  they serve the high density core of downtown Spokane.   In other words, the risks listed above may be  understated for these two lines.   A strong recommendation for full replacement of both lines is advised  in the near future – realistically within 5 to 10 years.  It is important to recognize that the risk index does not yet provide an absolute priority order for  replacement and maintenance decisions – option costs to reduce risks must first be factored in.   Specifically, cost option analyses must be performed to determine which project options result in the  highest reduction of risk per dollar spent.  According to best practice asset management principles, this  analyses results in a system “Criticality Index” for each line in priority order, where each line would be  ranked according to:  Criticality Index = (Original Risk – Residual Risk) / (Option Cost)  Finally, other opportunities and benefits are factored in, also known as “bundling” in asset management  parlance, to arrive at a final priority order for replacement and maintenance projects.  These  opportunities and benefits may come from various areas such as system planning for capacity and  growth requirements, system operations, regulatory compliance, protection engineering and  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 23 of 61   24 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    communications, operations, and power supply.  After factoring in these priorities, a comprehensive  replacement and maintenance plan for 20 years may be developed, sequenced according to system  operations restrictions and with higher levels of detail for projects within the 10 year timeframe.  A good  start in this direction may be accomplished through the concept of area mitigation plans which involve  and integrate stakeholders within each major transmission area of the system (e.g. Big Bend, Spokane,  Lewis‐Clark, etc).  Ultimately, objective rankings must be useful and effective, helping the organization to arrive at the  right business decisions with less effort.  Asset management staff will continue to facilitate and support  this collaborative undertaking, striving for improvement and strong results.    Unplanned Spending  Unplanned spending represents capital replacement of those transmission assets that have  unexpectedly failed and require prompt attention, typically by Avista crews (e.g. storm response  events).  Despite the variability that is correlated with fluctuations in weather intensity, unplanned  spending is an especially important lagging indicator of system performance, trends, and the  effectiveness of asset management programs.  In addition to cost premiums incurred from overtime  labor, unplanned work typically presents greater safety risks to the public and on‐site Avista employees,  as well as other risks including property damage, environmental, general liability, planned work delays,  and additional rework costs following the event.  We have set annual goals at the average of unplanned  spending from 2009 through 2012, reflecting a desire to maintain system reliability.  This results in  “targets” of $1.1 million for 115kV and $210k for 230kV, for a total of $1.3 million per year.  Note that in  past years we have consistently spent a much greater amount of total unplanned dollars on the 115kV  system, at roughly four times the proportional value of capital assets when compared to the 230kV  system.  This is consistent with the fact that 230kV assets are felt to pose a higher potential  consequence should they fail, and therefore we maintain them accordingly – deliberately effecting a  lower frequency of unplanned events on the 230kV system, relative to 115kV.  While this may be the  case, it remains that the optimal target of unplanned spending has not been quantitatively determined  for either system.  This is a desired output from a future system model and analysis, involving the  quantification and simulation of all significant risks and costs associated with unplanned events,  maintenance and replacement work.  Note that zero emergency spending is actually sub‐optimal unless  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 24 of 61   25 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    there is zero tolerance for any risk – otherwise, it represents over‐investment in the design  configuration and actual condition of physical assets.  $0 $500,000 $1,000,000 $1,500,000 $2,000,000 $2,500,000 $3,000,000 $3,500,000 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Electric Transmission 115kV and 230kV Total Unplanned Capital Spending from XXX01050  Account Information 115kV unplanned Tx capital 230kV unplanned Tx capital   Figure 6:  115kV and 230kV Total Unplanned Capital Spending  2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 115kV - WA 115kV - WA $312,958 $609,438 $265,221 $874,996 $649,760 $585,250 $499,341 $1,123,122 $1,640,237 $1,087,223 115kV - ID 115kV - ID $406,111 $161,470 $221,343 $349,459 $626,503 $274,517 $608,163 $389,492 $437,978 $705,426 115kV - all 115kV - all $719,070 $770,908 $486,564 $1,224,455 $1,276,263 $859,767 $1,107,505 $1,512,614 $2,078,216 $1,792,649 230kV - WA 230kV - WA $215,228 $97,946 $215,416 $57,721 $73,482 $156,491 $58,976 $89,984 $13,286 $116,311 230kV - ID 230kV - ID $74,783 $32,856 $120,056 $89,364 $79,950 $12,979 $228,681 ‐$134,091 $945,631 $259,884 230kV - MT w/ Colstrip 230kV - MT w/ Colstrip $0 $286,338 $257,879 $249,429 $368,855 $574,428 $298,059 $436,991 $249,307 $402,324 230kV - MT w/o Colstrip 230kV - MT w/o Colstrip $0 $1,590 $59,590 $27,525 $13,275 $0 $72 $18,910 $0 $12,077 230kV - OR 230kV - OR $12,273 $0 $0 $2,475 $0 $360 $14,738 $9,435 $3,181 $0 230kV - all 230kV - all w/o Colstrip $302,285 $132,392 $395,062 $177,085 $166,706 $169,830 $302,467 $118,329 $962,097 $388,272 115kV and 230kV (all) 115kV and 230kV (all)$1,021,354 $903,300 $881,625 $1,401,539 $1,442,969 $1,029,597 $1,409,972 $1,630,943 $3,040,313 $2,180,921  Table 14:  Transmission Unplanned and Emergency Spending, 2006 ‐ 2015  Total unplanned spending in 2015 was $2.18 million, significantly higher than any year recorded since  2006 except for 2014, and well above the target of $1.3 million per year.  This was due to a major wind  storm in November 2015, totaling $700k.      Unfortunately, the use of 115kV blanket accounts does not allow for ready analysis of unplanned  spending on individual 115kV circuits.  This is necessary to get a better understanding of risk and asset  prioritization on a line‐by‐line basis.  New software is in the process of implementation by System  Operations.  This should be complete by 2016 with annual data available for analysis starting in 2017.    Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 25 of 61   26 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    The figures above do not include spending on the 11% Avista ownership of the roughly 500 miles of  500kV Colstrip transmission and substation assets.  Outages  Outages are a strong lagging indicator of system reliability and are highly correlated with unplanned and  emergency spending.  It is also the principle source of emerging trends and problem root cause analysis  that is critical to maintaining system reliability over the long term.  A full list of outage information for  2015 on a line‐by‐line basis is provided in Appendix B.  Below are highlights of this information.    Primary data was obtained from both the annual Reliability Reports created by Operations Management  and the Transmission Outage Reports (TOR) created by System Operations.  The Reliability Report  includes data on sustained outages (longer than five minutes) for Transmission related events that affect  customers – it does not include any outages that do not affect customers. The TOR on the other hand,  includes any transmission event (sustained or momentary), but it does not contain information about  customer outages.  Utilizing the TOR, System Operations compiles the Transmission Adequacy Database  System (TADS), and associated mandated NERC reports for 230kV lines, but not for 115kV lines.  It is  important to analyze both the Reliability and TOR reports because they each contain different but  important information regarding outages on the transmission system.  This is currently a laborious  process, as neither the Reliability nor TOR reports consistently list transmission lines that apply to each  event.  The Reliability Reports indicate substations and feeders associated with customer outages  related to a transmission line outage, but not which transmission line that applies.  Breaker  identification is provided on the TOR and must be used to cross reference other information, in some  cases multiple sources, to identify the applicable transmission line.  New software is being implemented  that will help identify outage events on each transmission line, greatly improving analysis capability.   This data is expected to be available for analysis by 2017.    Based on the TOR data, there were 477 transmission line outages recorded in 2015, 182 of which were  planned, 165 that were trip and recloses that lasted less than a minute, and 130 unplanned outages over  one minute.  Of these outages, only 35 caused an actual customer outage.  The Transmission lines with  the most sustained, unplanned outage occurrences are as follows (regardless if a line outage caused a  customer outage):    Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 26 of 61   27 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Ranking Transmission Line Name2  #Unplanned  Outages  1 Lind ‐ Shawnee 115 kV 19  2 Moscow 230 ‐ Orofino 115 kV 17  3 Bronx ‐ Cabinet 115 kV 16  4 Benewah ‐ Pine Creek 115 kV 15  5 Devils Gap ‐ Stratford 115 kV 13  6 Hot Springs ‐ Noxon #1 2230 kV 9  7 CdA 15th St ‐ Pine Creek 115 kV 8  8 Cabinet ‐ Rathdrum 230 kV 8  9 Walla Walla ‐ Wanapum 230 kV 8  10 Boulder ‐ Rathdrum 115 kV 8    Table 15:  Transmission lines with the most unplanned outages in 2014  Based on the Reliability Report, over 281,000 hours of unplanned customer outages were recorded in  2015.  The transmission lines with the most unplanned customer‐hours outage are as follows:  Ranking Transmission Line Name2 Customer Hours  1 Devil's Gap ‐ Lind 115 kV 74696:25  2 Addy ‐ Kettle Falls 115 kV 51848:52  3 Beacon ‐ Ross Park 115 kV 30852:35  4 Devils Gap ‐ Stratford 115 kV 15388:45  5 Ninth & Central ‐ Otis Orchards 115 kV 13257:14  6 Moscow 230 ‐ Orofino 115 kV 8838:57  7 JAYPE‐OROFINO 115 kV 6351:55  8 Clearwater ‐ Lolo #2 115 kV 6093:56  9 Lolo ‐ Nez Perce 115 kV 6002:19  10 Ninth & Central ‐ Otis Orchards 115 kV 5971:43    Table 16:  Transmission lines that caused the most customer hours lost in 2015    Over 27,000 customers experienced an outage that lasted longer than three hours, representing a slight  increase from last year.  The Transmission lines with the highest number of customers experiencing  outages greater than 3 hours are as follows:      Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 27 of 61   28 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Ranking Transmission Line Name2  # Customers  experiencing Outages  >3 hrs  1 Addy ‐ Kettle Falls 115 kV 13210  2 Devils Gap ‐ Stratford 115 kV 2944  3 Ninth & Central ‐ Otis Orchards 115 kV 2077  4 Grangeville ‐ Nez Perce #2 115 kV 1271  5 JAYPE‐OROFINO 115 kV 1122  6 Moscow 230 ‐ Orofino 115 kV 797  7 Clearwater ‐ Lolo #2 115 kV 652  8 Devil's Gap ‐ Lind 115 kV 563  9 Jaype ‐ Orofino 115 kV 288  10 Lind ‐ Washtucna 115 kV 244    Table 17:  Transmission Lines causing the most customer outages greater than 3 hours in 2015  Overall, the data shows that the 115 kV system is significantly less reliable than the 230 kV system in  terms of total outages and customers directly affected.  The causes for customer outages lasting longer than three hours increased for rotten crossarms,  insulators, switch/disconnect, pole fires, cars hitting poles, and snow/ice events.  These types of outages  should be monitored closely as surveys indicate that outages lasting longer than three hours are the  most important reliability factor driving customer satisfaction.  Appropriate steps should be taken to  prevent these outages in the future and to reduce repair time should an outage occur.  Weather related  outages caused the most customer‐hours lost per occurrence.    It should be noted that two lines appear on all three of the ‘worst transmission line’ lists described  above:  1. Moscow 230 ‐ Orofino 115 kV  2. Devils Gap‐Stratford 115 kV  Extending the above lists to include the worst 20 lines, four other lines would appear on all three  indices:  3. Ninth & Central – Otis Orchards 115 kV  4. Devil’s Gap ‐ Lind 115 kV  Based on this information, closer monitoring for these lines is warranted.  Moscow 230 – Orofino 115kV  is scheduled for a minor rebuild in 2016.  Devils Gap‐Stratford 115kV is scheduled for a LiDAR/minor  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 28 of 61   29 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    rebuild in 2016 and is being considered for full rebuild.  In 2015, breakers were installed at Opportunity  to help sectionalize Ninth & Central – Otis Orchards 115kV and by 2017 the Irvin Switching Station  should be in service which will add an emergency tie to Opportunity to improve performance.   Devils’s  Gap – Lind 115kV is scheduled for a major rebuild in 2017 – 2018.         In 2015 there were 162 feeder outages, but only 58 unique transmission events that caused those  outages.  The 2015 data was analyzed to indicate only the number of unique transmission outages for  each subreason.    Reason  Sub Reason  # Outage  Occurances  ANIMAL Squirrel 2  EQUIPMENT OH Capacitor 5  EQUIPMENT OH Crossarm‐rotten 1  EQUIPMENT OH Regulator 1  EQUIPMENT OH Switch/Disconnect 1  PLANNED Maint/Upgrade 6  POLE FIRE Pole Fire 15  PUBLIC Car Hit Pole 1  PUBLIC Fire 13  TREE Weather 1  UNDETERMINED Undetermined 1  WEATHER Wind 11  58   Table 18:  Transmission Outage Causes, 2009‐2015  Pole fire related outages continue to dominate both in terms of number of occurrences and customer‐ hour outages.  At over 50,000 hours, pole fires had the highest number of customer‐hour outages.  This  number is higher than last year (29,000 customer‐hours) and highlights the need to continue the fire  retardant program and to replace wood poles with steel poles.        As can be seen from Figure 5 below,  unplanned, non‐weather and weather events dominate both the  number of occurances and customer‐hours outages for the transmission lines.  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 29 of 61   30 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans             Figure 7:  Transmission outage causes affecting customers in 2015  Programs  1.  Major Rebuilds  Out of the $26,640,457 million in planned capital replacement projects in 2015, $15,420,668 was spent  on major rebuilds, $3,210,020 on minor rebuilds and $443,619 on switch replacements, for a total of  $19,074,307.  The recommended level is a minimum of $18.5 million for major rebuilds, $2.0 million for  minor rebuilds and $264k for switch replacements, for a total of $21 million replacement spending per  year for 30 years.  As stated previously, replacement projects do not include additional capital projects  that are mandated, growth related, reimbursable, or otherwise do not address aging infrastructure.   Furthermore,  the recommended spending is the minimum levelized spending over the entire 30 year  period, which in the shorter term may need to be increased to minimize lifecycle costs – given  inspection results, risk analysis, cost of capital, and economies of scale opportunities.   The most significant major rebuild and reconductor projects currently planned through 2020 are listed  below, with rough estimates of budget dollars allocated for each year.  Please note that these plans are  subject to change and projects for 2019 and 2020 in particular are only partially complete.  0 10 20 30 40 50 60 70 2015 # Oc c u r a n c e s # Occurences Extended Transmission  Outage by Cause planned maintenance/upgrade unplanned non‐weather weather 0 50000 100000 150000 200000 250000 300000 350000 2015 Cu s t o m e r ‐ho u r s  Ou t a g e s Customer‐Hours Extended Transmission  Outage by Cause planned unplanned, non‐weather weather Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 30 of 61   31 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Description BI Description2 2016 2017 2018 2019 2020 West Plains Trans Reinforcement ST305 Garden Springs ‐ Sunset 450,000$        600,000$       ‐$              ‐$               ‐$               Pine Creek ‐ Burke ‐ Thompson Falls CT101 Rebuild Transmission 25,000$          3,500,000$    ‐$              ‐$               ‐$               9CE‐Sunset 115kV Transmission ST503 Reconductor/Rebuild 2,250,000$     ‐$               ‐$              ‐$               ‐$               High Resistance Conductor Replacement xTxxx Reconductor/Rebuild ‐$                ‐$               ‐$              ‐$               ‐$               Cabinet‐Noxon 230kV Rebuild AT700 CAB‐NOX Rebuild w/Reconductor ‐$                ‐$               7,500,000$   7,500,000$   ‐$               Noxon‐Pine Creek 230kV Rebuild KT901 NOX‐PCR Rebuild w/Reconductor ‐$                ‐$               ‐$              ‐$               7,500,000$    Lolo‐Oxbow 230kV Rebuild LT900 LOL_OXB Rebuild w/Reconductor ‐$                ‐$               ‐$              ‐$               7,500,000$    Benewah‐Pine Creek 230 kV Rebuild CT908 BEN‐PIN Rebuild w/Reconductor ‐$                ‐$               ‐$              ‐$               ‐$               Sys‐Rebuild Trans‐Condition AMT81 BRX‐CAB & BRX‐SCR Rebuild 3,600,000$     1,500,000$    4,500,000$   2,500,000$   2,500,000$    Ben‐Oth SS 115 ‐ ReCond/Rebld FT130 Ben‐Oth SS 115 ‐ ReCond/Rebld 3,000,000$     1,500,000$    ‐$              ‐$               ‐$               CDA‐Pine Creek 115kV Rebuild CT300 Rebuild Transmission 25,000$          4,000,000$    6,000,000$   5,000,000$   ‐$               Devils Gap‐Lind 115kV Rebuild ST302 Rebuild Transmission 1,002,134$     2,900,000$    ‐$              ‐$               ‐$               Chelan‐Stratford 115kV Rebuild BT304 Rebuild Columbia River Crossing ‐$                ‐$               ‐$              ‐$               ‐$               Addy‐Devils Gap 115kV Reconductor ST306 Recon/Rebld near Ford Substation ‐$                25,000$         2,000,000$   ‐$               ‐$               Recon/Rebld GDN‐SLK 115kV Line ST304 Recon/Rebld South Fairchild Tap ‐$                ‐$               ‐$              ‐$               ‐$               Beacon‐Bell‐F&C‐Waikiki Reconfiguration ST318 Reconfiguration into Bell and Waikiki ‐$                25,000$         2,000,000$   ‐$               ‐$               BEN‐MOS Rebuild w/o Reconductor PT305 BEN‐MOS Rebuild w/o Reconductor 8,684,000$     6,802,393$    ‐$              ‐$               ‐$                Table 19:  Major Rebuild Projects, 2016 – 2020  Effort will continue to be applied to prioritize replacement spending according to risk and criticality  rankings, using detailed analysis where appropriate and engaging various stakeholders to arrive at  optimized business decisions.  In the last several years, detailed simulation studies have repeatedly  shown major rebuilds as the optimal rebuild option for those lines with older assets and relatively higher  risk rankings, rather than sectional or partial rebuilds, or minor rebuild options.  Due to the infrequency  of conductor failures, unless system planning determines a need or benefit for increased capacity, these  studies indicate rebuilding structures and re‐using the existing conductor as optimal.  Calculated  Customer Internal Rate of Return (CIRR) are typically at 8% or higher, with strong business risk reduction  and final assessment scores of 90 or more, placing them in the top 25% of competing capital project  business cases across the company.  Accordingly, similar simulation studies in the future are expected to  generate comparable results, i.e. analysis of old, high risk lines will continue to show major rebuilds as  the optimal rebuild decision from the standpoint of lowest lifecycle costs, including reduced business  risk and lowest consequence costs for the customer.  2.  Minor Rebuilds  The information collected by aerial patrols is used in conjunction with inspection reports to prioritize  and budget minor rebuild capital projects, where a major rebuild is not justified.  Our goal is to complete  repairs and replacements for high‐risk issues from 0 to 6 months after identification by aerial or ground  inspection, and for all other moderate risk issues by the end of the year following the inspection year.    Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 31 of 61   32 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Planned inspections and follow‐up work in the form of minor rebuilds is effective in maintaining service  levels while minimizing near‐term capital and O&M costs.  Where warranted and on a line‐by‐line basis,  detailed simulation modeling helps ascertain the optimal rebuild approach and support a business case  to compete with others in the company’s capital projects selection and budgeting process.  A system‐ wide simulation model or other method is needed to help validate and/or provide adjustment  recommendations to our inspection intervals, minor rebuild target budgets, and fact‐based policies on  minor vs. sectional vs. full rebuild thresholds.   Current policy is to conduct detailed ground inspections  every 15 years, following up with minor or major rebuilds as condition assessments justify.  Current  budget plans for minor rebuilds and air switch replacements are listed below, subject to changes.  Given  the large number of old lines due for inspection, the age profile of air switches and an expected life of 40  years for each air switch, it is recommended to increase the minor rebuild budget to $2.0 million per  year and air switch replacements at $264,000 per year.     Description BI Description2 2016 2017 2018 2019 2020 Tx Minor Rebuilds AMT12 Tx Minor Rebuild ‐ WA 775,000$ 775,000$ 800,000$ 825,000$ 850,000$  Tx Minor Rebuilds AMT13 Tx Minor Rebuild ‐ ID 772,262$ 780,249$ 813,420$ 848,117$ 885,022$  Sys‐Trans Air Sw Upgrade AMT10 Asset Man Trans Sw Upgrade 225,000$ 225,000$ 230,000$ 230,000$ 235,000$   Table 20:  Minor Rebuild and Switch Upgrade Budget, 2016 – 2020  See the Area Work Plans section at the end of this report for a detailed list of minor rebuild projects in  2015.  3.  Air Switch Replacements  Transmission Air Switches (TAS) are used to sectionalize transmission lines during outages or when  performing maintenance. The frequency of operation varies greatly depending on location.  Some TAS  may not be operated for years.   TAS may not operate properly when opened and flashover, possibly tripping the line out. This can be the  result of a component failure (whips and vac‐rupters) or the TAS may be out of adjustment.  Most TAS  mis‐operations could be avoided with regular inspection and maintenance, however we currently have  no planned inspection or maintenance program.  Inspections could range from systematic visual  inspection to infrared scanning and inspections for corona discharge.  Maintenance could consist of  exercising switches, lubrication, blade adjustment, replacement of live parts such as contacts and whips,  and repair of ground mats and platforms.  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 32 of 61   33 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Ground grids and platforms are installed at the base of each switch to provide equal potential between  an operator’s hands and feet in the event of a flashover of the air switch.  The typical ground grid is  buried copper wire attached to ground rods covered with fine gravel.  Over time the ground grids may  be damaged by machinery, cattle and erosion, or even theft.  In 2008, 80 TAS were fitted with grounding  platforms for worker safety.  During this process a new worm gear handle was installed and  disconnecting whips were adjusted.  Operating pivot joints of the switch mechanisms are not affected  by this work.  Thus, the 2008 work was safety related, not switch mechanism related.  Remaining  switches in the system requiring new platforms need to be confirmed and upgraded.  It is estimated that  close to 100 switches require new platforms.  With radial switching of the 115kV transmission system, many TAS are operated remotely.  In these  instances, company personnel are not present to observe the opening of the switch and some problems  therefore remain hidden.  A small problem could progress to the point where a major failure occurs.  A  small amount of material is maintained in the warehouse and Beacon yard for emergency repairs, but  many of the switches are old and parts are often difficult to locate.   Typically three to four TAS are replaced each year.  A detailed inventory of 115kV TAS outside  substations was completed in 2013, including determination of age where formerly 20% of the assets  were unknown.  TAS inventory includes 180 switches of various types and configurations, as shown  below according to remaining service life.  Based on this profile, levelized replacement should increase  to five replacements per year, requiring an increase to $264,000 from the current $225,000 annual  budget.  Annual budgets should be prioritized according to a rational condition assessment and  quantitative risk assessment, rather than ad‐hoc requests from field personnel and anecdotal  observation which is the current method.      Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 33 of 61   34 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans        Figure 8:  Air Switch Replacement Value vs. Remaining Service Life    Thorough investigation of industry best‐practices regarding inspection and planned maintenance of air  switches, with follow‐up recommendations is recommended.  At minimum, a reasonable condition  assessment program is envisioned, such as visual inspection at least every two years, possibly annual  inspection for those more critical switches, and annual performance evaluation based on System  Operations input.  Below is a prioritized list of switches due for repairs or replacement in the next few  years, with those switches exhibiting operational problems listed first.  $0 $500,000 $1,000,000 $1,500,000 $2,000,000 $2,500,000 $3,000,000 0‐10 10‐20 20‐30 30‐40 40‐50 >50 Re p l a c e m e n t  Va l u e Age (Years) Transmission 115 kV Air Switches  40 Years Expected Service Life $750,000 of Capital  Assets  Beyond  Expected  Service Life Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 34 of 61   35 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    SW #Problems Age (yrs) LINE/SUBSTATION A-70 Problem Switch; Scheduled 2016 84 Chelan-Stratford A-336 Old KPF, Needs Replaced; Scheduled 2016 49 Grangeville-Nez Perce #1: Cottonwood Tap A-355 Old KPF on a broken pole; Scheduled 2016 48 Jaype-Orofino A-346 Wood in Switching Mech. Is bowed; Scheduled 2016 47 Grangeville-Nez Perce #2 A-376 Old KPF, Needs Replaced; Scheduled 2016 43 Grangeville-Nez Perce #2 A-298 Needs whips; Center 0 and North 0 gone, South Bent 38 115kv Boulder-Rathdrum A-158 Doesn't work properly, drop load on both sides then use switch, mat ground straps need repair 31 Beacon-Francis & Cedar A-345 Pole Needs Structure # Tag 30 Grangeville-Nez Perce #2 A-442 Repaired in 2015 26 Dworshak-Orofino A-377 Scott paper tap; Engerized to Switch; Scheduled 2016 21 Grangeville-Nez Perce #2 : Scott Paper Tap A-176 Mat ground straps need repair 18 Bell-Northeast A-679 Difficult to Close 15 Othello-Warden #2 A-680 Replaced in 2015 15 Othello-Warden #2 A-358 Old KPF, Needs Replaced 10 Jaype-Orofino A-407 Broken Crossarms 4 Grangeville-Nez Perce #1 A-421 Ground Cables and Strands cut, NEEDS REPAIR 4 Ramsey-Rathdrum #1 A-184 Replaced in 2015 61 Shawnee-Sunset A-19 59 Pine Street-Rathdrum: Oldtown Tap A-26 59 Burke-Pine Creek # 3 A-220 57 Lolo-Nez Perce A-221 57 Lolo-Nez Perce A-173 Replaced in 2015 47 Moscow 230-Orofino A-58 Replaced in 2015 46 Chelan-Stratford A-295 Replaced in 2015 46 Benewah-Pine Creek : St Maries Tap A-49 44 Devils Gap-Stratford A-126 40 8th & Fancher-Latah 115 kV A-127 40 8th & Fancher-Latah 115 kV   Table 21:  Air Switch Priority List for Repairs and Replacements  Finally, transmission outage cause tracking needs to be improved in order to ascertain failure trends for  the air switch population and to justify long‐term replacement policy, e.g. improved data for line outage  durations and affected customers that result from failed air switch operations.  In reading through notes  on the TOR, Asset Management was able to determine that there were 122 outages from 1975 through  2007, resulting in an average of 3.7 outages per year caused by switches.  The durations and quantified  consequences of these outages however are unknown and difficult to model.  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 35 of 61   36 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    4.  Structural Ground Inspections (Wood Pole Management)  Avista wood transmission structures are predominately butt‐treated Western Red Cedar poles.  Most of  the service territory is in a semi‐arid climate.  The most common failure mode for wood poles is internal  and external decay at or near the ground line.  Transmission Wood Pole Management (WPM) measures  this decay and determines which poles must be reinforced or replaced.  Details describing inspection  techniques are in the company’s “Specification for Inspection and Treatment of Wood Poles, S‐622”.    The testing program is valuable in identification of poles needing replacement or reinforcement, as well  as identifying other structure components requiring repair or replacement.  Compared to the pre‐1987  method of solely visual inspections for pole integrity, the testing program replaces about 15% as many  poles.    Wood transmission poles are on a 15‐year inspection cycle.  We are currently targeting inspection of  2,400 wood transmission poles annually out of 36,422 wood poles installed.  At this pace, by 2019 we  will reach the 15‐year cycle for all transmission lines.  See the Area Work Plans section of this report for  a list of future planned inspections.  In recent years, prioritization and scheduling of ground inspections has been based on the time since the  last ground inspection.  Results of these inspections provide the basis for case‐by‐case analysis and the  scope of subsequent minor and major rebuild projects on each line.  While it is important that we  maintain a maximum 15‐year ground inspection cycle, it is recommended that future inspection  scheduling includes consideration of the risk index, which may justify earlier inspection.  As a general  rule, critical assets that exhibit age‐related failures should be inspected to verify condition and justify  service extension or removal near the end of their expected service lives.  We currently have many  115kV lines (non‐Western Electricity Coordinating Council pathways) with assets 10 or more years past  expected service life, that have not been inspected for nearly 20 years.  This poses a significant unknown  risk.  If actual condition assessment warrants service extension, shorter inspection intervals are prudent when  the time to failure characteristics worsen with age – as is the case with much of our transmission wood  infrastructure.   Approximately 17% of the system is beyond its expected life, with a large portion of  those assets over 15 years since the last ground inspection.  The scattered age profile on many lines that  results over many decades from periodic minor rebuilds and one‐off replacements, makes this situation  difficult to remedy – one must choose between the pros and cons of spotty replacements when failure  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 36 of 61   37 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    occurs on one end of the spectrum, to larger line section replacements and full rebuilds on the other.  Regardless, for those lines that have significant sections or quantities of older assets that demonstrate  higher relative risks, out‐of‐cycle inspection and a shorter inspection interval may be warranted (e.g. 10  years instead of 15).  5.  Structural Aerial Patrols  The Avista transmission system covers a large geographical area that has all types of terrain.   Transmission Aerial Patrols (TAP) have been utilized to provide a quick above‐ground inspection to  identify significant problems that require immediate attention, such as lightning damage, cracked or  sagging crossarms, fire damage, bird nests and danger trees.    In addition, aerial patrols can identify improper uses of the transmission Right‐of‐Way (R/W), such as  dwellings, grain bins, and other types of clearance problems that must be addressed.  Typically, the  patrol will be performed in the spring.  Identified repairs, depending on severity, are scheduled to be  performed within 6 months.  TAP inspects 100% of 230kV lines and 70% of 115kV lines annually.  The remaining 30% of 115kV lines  are located in urban areas that are frequently viewed by line personnel for potential problems.  The  Transmission Design group schedules patrols for each service territory.  The TAP areas are: Spokane  (includes Othello, Davenport and Colville), Coeur d’Alene (includes Kellogg and St. Maries), Pullman, and  Lewiston/Clarkston (includes Grangeville and Orofino).   Aerial patrols are performed by qualified personnel from Transmission Design, often accompanied by  local office personnel.  Inspection forms have been developed that contain a weighting system to  identify the severity of defects.  This information can then be utilized to make recommendations for  necessary repairs.    6.  Vegetation Aerial Patrols and Follow‐up Work  The Transmission Vegetation Management (TVM) program maintains the transmission system clear of  trees and other vegetation, in order to provide safe clearance from trees and reduce outages caused by  trees, weather, snow, ice and wind.    The entire 230kV system is annually inspected with a combination of aerial and ground patrols by the  System Forester, who solely manages the overall program.  Select 115kV lines are also patrolled  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 37 of 61   38 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    according to criticality.  In addition, vegetation issues noted during structural aerial patrols on the 115kV  system, as well as fielding of transmission line projects by Transmission Engineering are relayed to the  System Forester.  Based on this information, follow‐up work plans are adjusted and executed with  contract crews over the course of the year.  Over the next ten years, annual budgets of $1.2 million are recommended to allow for optimal  completion of major re‐clearing work and a transition to Integrated Vegetation Management.  It is  expected that annual budgets will be evaluated and fine tuned to fit workloads as appropriate.  See the Transmission Vegetation Management Program reference (Avista Utilities, 2012) for more  details on the program.    7.  Fire Retardant Coatings  After several fires and a 2008 study to initiate systematic remediation, fire retardant coating has been  applied to the base of wood transmission poles system‐wide.  At this point the entire 230kV system has  been deemed adequately protected and the 115kV system is approximately 37% complete.  Given the  fire event of last year, the Lolo‐Oxbow 230kV line is planned for early recoating in 2016 to reduce risk  (coatings are expected to remain effective for 12 years, Lolo‐Oxbow was coated in 2007).  Targeted  areas include those subject to grassland fires and in close proximity to railroads.  Protective coating is  not applied to heavily forested areas as it is deemed inadequate in these areas to merit the cost of  application.  It is estimated that approximately 4,210 poles remain to be coated in the 115kV system.  Following the  current plan to coat 179 poles in 2015 (179 115 kV poles and 535 230 kV poles repainting the Lolo –  Oxbow line was cut from the 2015 scope of work due to budget), it is recommended to coat 1000 poles  per year for the following five years to complete the work by 2020.  At a total labor and materials cost of  $242/pole, this equates to $242,000/year.  Beyond this, regular maintenance and upkeep will only be  required, at an unknown amount depending on the longevity of the coatings.  Until better information is  obtained, $50k/year for ongoing coating maintenance is estimated.  Performance metrics could be  considered to monitor performance of this program, possibly in terms of % of the system protected,  maintenance spending and actual fire damage costs.  As noted in the Outages section, pole fire incidents  have increased, reinforcing the necessity of monitoring and adjustment of this program.  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 38 of 61   39 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    See Whicker (2013) for more details and history of this program, which is now administered by the  Transmission Design group.  8.  230kV Foundation Grouting  The Noxon‐Pine Creek and Cabinet – Rathdrum 230kV circuits have unique steel structures where the  interface between the steel sleeve in the foundation and above‐ground structure requires re‐grouting  after approximately 30 years, to avoid destructive corrosion.  This work has been completed on the  Noxon‐Pine Creek 230kV line.   Approximately $350k out of $500k of foundation grouting work on  Cabinet – Rathdrum 230kV was completed through 2015.   Another $100k/year is planned through  project completion in 2017.  9.  Polymer Insulators  Transmission Line Polymer Insulators (TPI) provide insulation at the connection points for transmission  lines to the supporting structure.  Other types of insulators include toughened glass and older porcelain  types.  Although no significant problems have been noted on 115kV lines, there were numerous faults  on 230kV lines from 1998 to 2008 attributable to poly insulators causing line outages, and five  mechanical failures that caused the line to fall.  In 2008 a plan was initiated to replace TPIs and install corona rings on dead‐end TPI insulators on various  230kV lines (without corona rings, TPIs are expected to fail in the 10 – 15 year timeframe, with corona  rings the expected service life is extended to an unknown age).  Work was completed primarily in 2009 on N. Lewiston ‐ Shawnee 230kV and Dry Creek – N. Lewiston  230kV, and in 2011 all suspension and dead‐end TPIs on the Hatwai ‐ N. Lewiston 230kV were replaced  with toughened glass insulators.    This work appears to have been effective.  From 2009 to 2012, only 2 sustained outage occurrences  involving insulators are recorded.  However, the degree to which TPIs exist on the remainder of the  system and the prediction of current and future risk is unknown.    For this reason, it is recommended that at least on 230kV lines, future ground inspections include  information gathering on the insulator type, so that an analysis of risk and optimal mitigation actions  may be made in a short time period should that become necessary.  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 39 of 61   40 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Current transmission engineering standards use toughened glass insulators for 230kV, and either  toughened glass or poly insulators for 115kV.  Due to the lighter weight of polymer insulators, they are  generally preferred by Avista crews.  However, given the problems experienced on 230kV lines and  anecdotal evidence of high scrap rates for TPIs on 115kV projects, their use on 115kV lines poses some  unknown risks and a systematic monitoring program may be advisable.    10.  Conductor & Compression Sleeves  Credible condition and failure characteristics of conductor and compression sleeves (dead ends), and  the location and age of thousands of compression dead ends in the system are currently unknown.   Provided proper installation, protection, and service conditions, most conductor will last over 100 years,  if not indefinitely.  The compression dead ends, however, are expected to last between 40 and 50 years,  posing a more immediate reliability risk.    Between 2008 and 2010, an effective risk mitigation program was carried out for in‐line compression  dead ends on 230kV AAC lines, following several years of one to two failures per year.  Since then, no  known in‐line compression dead end failures have occurred.    See Whicker (2009) for more details on  the 230kV in‐line sleeve mitigation project.   In 2015, Noxon‐Pine Creek 230 kV was inspected and all failed compression dead ends were replaced.   Compression dead ends that could fail in the future were identified.  This data was gathered and sent  back to the compression dead end manufacturer, AFL.  The manufacturer ran a failure analysis on all the  compression dead ends that failed and determined that the ones that failed didn’t have the joint  compound (oxide inhibitor) in the compression dead end.  Avista’s transmission department looked into  this and determined that the specifications didn’t call for the inhibitor.  More than likely the inhibitor  was not applied by the crew/contractor and that is why the compression dead ends failed.  The  transmission design department has now added the inhibitor to the specifications and they will make  sure the crew/contractor puts the inhibitor inside the compression dead end.    Program Ranking Criteria  Programs implemented in the Transmission Department are chosen based on ranking criteria which  consist of the customer internal rate of return, risk reduction ratio, revised risk score, and health index.   The health index currently is not identified for each transmission program; however, each program is  based upon the customer internal rate of return (CIRR) and revised risk score.  The lower the revised risk  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 40 of 61   41 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    score, the higher the rank for that program.  The revised risk score is based upon the financial impact  risks (consequential costs/revenues); legal, regulatory, and external business affairs risks; customer  service and reliability risks; and the likelihood of each risk occurring per year.  Table 22 details current  Transmission Department programs and their ranking criteria.  Program Customer Internal Rate of Return Risk Reduction Factor Revised Risk Score Health Index Transmission ‐ NERC High Priority Mitigation 5% ≤ CIRR < 9%0.011 1 N/A Transmission ‐ NERC Medium Priority Mitigation Cirr = 9%0.003 1 N/A Transmission ‐ NERC Low Priority Mitigation Cirr = 9%0.003 1 N/A Transmission ‐ New Construction Cirr = 8%0.003 1 N/A Transmission ‐ Reconductors and Rebuilds Cirr = 10%0.011 1 N/A Transmission ‐ Asset Management Cirr = 10%0.042 12 N/A     Table 22:  Program Ranking Criteria    The NERC High, Medium, and Low Mitigation programs reconfigure insulator attachments, and/or  rebuilds existing transmission line structures, or removes earth beneath transmission lines in order to  mitigate ratings/sag discrepancies found between "design" and "field" conditions as determined by  LiDAR survey data.  This program was undertaken in response to the October 7, 2012, North American  Electric Reliability Corporations (NERC) "NERC Alert" ‐ Recommendation to Industry, "Consideration of  Actual Field Conditions in Determination of Facility Ratings".  Mitigation brings lines in compliance with  the National Electric Safety Code (NESC) minimum clearances values.  These code minimums have been  adopted into the State of Washington's Administrative Code (WAC).  The NERC High Priority Mitigation Capital Program (ER2560) covers mitigation work on Avista's "High  Priority" 230kV transmission lines, including: Benewah‐Pine Creek (BI CT203), Cabinet‐Noxon (BI AT203),  Cabinet‐Rathdrum (BI CT202), Hatwai‐North Lewiston (BI LT205), Lolo‐Oxbow (BI LT202), and Noxon‐ Pine Creek (BI AT202).  The NERC Medium Priority Mitigation Capital Program (ER25xx) covers mitigation work on Avista's  "Medium Priority" 230kV and 115kV transmission lines, including  North Lewiston‐Shawnee 230kV,  Beacon‐Bell #4 230kV, Beacon‐Bell #5 230kV, Noxon‐Hot Springs #2 230kV, Beacon‐Boulder #2 115kV,  Beacon‐Francis & Cedar 115kV, 9th & Central‐Otis 115kV, Northwest‐Westside 115kV, Dry Creek‐Talbot  230kV, Walla Walla‐Wanapum 230kV, Benewah‐Moscow 230kV, Devils Gap‐Stratford 115kV.    The NERC Low Priority Mitigation Capital Program (ER25xx) covers mitigation work on Avista's "Low  Priority" 230kV and 115kV transmission lines.    Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 41 of 61   42 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    The Transmission New Construction Program supports addition of new switching stations and  substations to the system in order to serve new and growing load as well as for increased system  reliability and operational flexibility.  Projects include ER2578: HAT‐LOL #2 230kV and 25xx: Westside‐ Garden Springs 230kV.  The Transmission Reconductors and Rebuilds Program reconductors and/or rebuilds existing  transmission lines as they reach the end of their useful lives, require increased capacity, or present a risk  management issue. Projects include: ER 2310 ‐ West Plains Transmission Reinforcement,  ER 2550 ‐ Pine  Creek‐Burke‐Thompson, ER 2557 9CE‐Sunset Rebuild, ER 2423 ‐ System Condition Rebuild, ER 2457  Benton‐Othello Rebuild, ER2556 CDA‐Pine Creek Rebuild, ER 2564 Devils Gap‐Lind Major Rebuild, ER  2574 ‐ Chelan‐Stratford River Crossing Rebuild, ER 2576a Addy‐Devils Gap Reconductor, ER 2575 Garden  Springs‐Silver Lake Rebuild, ER 2582 BEA‐BEL‐F&C‐WAI Reconfiguration, ER 2577 BEN‐M23 Rebuild, ER  25xa ‐ Out‐Year Transmission Rebuild.  The Transmission Asset Management Program covers the follow‐ up work to the Wood Pole Inspection in ER 2057 and Air Switch Replacements in ER 2254.  Benchmarking  Asset replacement spending relative to other utilities is one area of particular interest.  A 2008 study  performed by First Quartile Consulting gathered data from 17 utilities of various sizes and geographic  service territories in the U.S. and Canada, providing the 3‐year average transmission line replacement  capital spending per asset as shown in the figure below.      Figure 9:  3‐year Transmission Lines Replacement Capital Spending per Asset   (First Quartile Consulting, 2008)    Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 42 of 61   43 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    This shows that out of seven companies providing data, the median was 1.93% and the mean was 2.41%  over a three year period.  Avista’s comparable replacement spending over the last two years and the  recommended annual replacement spending over a 30‐year period are shown in the table below.  7,877,719$         2014 planned replacement spending 3,040,313$         2014 unplanned/emergency replacement spending 10,918,032$       2014 total replacement capital spending 1,140,319,249$ Transmission asset replacement value 0.96% 2014 replacement spending capital per asset 19,074,307$       2015 planned replacement spending 2,180,921$         2015 unplanned/emergency replacement spending 21,255,228$       2015 total replacement capital spening 1,140,319,249$ Transmission asset replacement value 1.86% 2015 replacement spending capital per asset 21,135,371$       Recommended planned annual replacement spending (30 year plan) 1,321,019$         Targeted unplanned/emergency replacement spending 22,456,390$       Targeted total replacement capital spending (30 year plan) 1,140,319,249$ Transmission asset replacement value 1.97% Recommended replacement spending capital per asset   Table 23:  Avista Transmission Lines Replacement Capital Spending per Asset    This shows that Avista’s capital replacement spending over the last two years is lower than the study’s  average, close to the lowest of the seven reported utilities.  Comparably, the recommended capital  replacement spending as part of a levelized 30‐year plan of $21.1 million (planned work) plus an  assumed $1.3 million unplanned emergency work results in 1.97%, very near the study’s median and  less than the average.  Idaho Power is a very good benchmark utility for Avista in terms of size, operating environment and  electric transmission component and system similarities.  In discussions with their staff, thorough  transmission structure ground inspections are conducted every 10 years, with quick visual inspections  (drive‐bys) every 2 years.  It is also clear that in general, Idaho Power spends considerably more time  and effort on O&M maintenance activities relative to Avista, at least in areas of transmission and  substation systems.  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 43 of 61   44 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Idaho Power is also projecting a significant rise in capital replacement of aging infrastructure in the next  several decades, as shown below.  Over just the next 10 years, this indicates a total capital spend for  Idaho Power of $211 million for replacement of wood poles alone, or $21 million per year levelized.  This  is similar in magnitude to the recommended replacement of aging wood infrastructure at Avista over  the next several decades.    Figure 10:  Idaho Power Long‐term Replacement Costs  As stated previously, investigation of air switch maintenance practices of various utilities indicates that  most utilities perform a much greater degree of maintenance than Avista.  In terms of broader maintenance benchmarking, a study through a CEATI report (excerpts below) show  that Avista is among the majority of peers conducting aerial patrols once per year, but that of all 15  utilities responding, we have the longest ground inspection interval at 15 years, as compared to the  most common interval of 10 years.  This does not necessarily mean that our inspection interval needs to be shortened.  However, it does at  least indicate where we stand relative to other utilities participating in the survey, and at minimum  would tend to discourage extending our inspection interval any further.  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 44 of 61      Figure 11:  Maintenance Benchmarking: Aerial Patrols (left) and Pole Inspections (right)  Data Integrity  The following table lists the various sources of information used for Asset Management purposes.  Data  gathering from non‐electronic sources, as well as mining and cleaning of available information makes up  a disproportionately large amount of current work for Asset Management staff, on the order of 80% of  total work.  Long term, in order to provide the most value to Avista this needs to be reversed with 80%  applied to analyzing data and 20% to gathering and cleaning data.     Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 45 of 61   46 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Data Integrity ‐ Electric Transmission System Status Data Source Notes/Comments AFM Wood species info missing for 115kV; potentially large # of stubs  entered as pole installs, major job backlog updates pending from 1992 Line History Binder Great historical info but hasn't been updated for 15 years Safety information Unable to isolate to Transmission work Plan & Profile (P&P drawings)Major job backlog updates pending from 1992 to present; long term  migration to digital (PLS‐CADD) format WPM database Pole information is not updated to reflect followup work or other  projects, just at time of inspection; handnotes need to be  consolidated and alphebetized, line naming conventions need to be  synced up; wood species in hand notes and electronic files needs to  be uploaded to AFM Maximo Does not always capture component failure mode data as designed Transmission Engineering Guidelines Partially complete, need more participation to complete Engineering files vault Engineers need to submit as‐built updates more promptly, "archived"  files need to be refiled in their proper line section Discoverer Unwieldly to summarize costing across different Tx projects, difficult  to isolate costs/activities to Tx AWB simulations Building on progress/standards/methods PLS‐CADD and design/construction  standards Progress continues, published new standards in 2014 Air Switch Master Inventory  Spreadsheet Updated inventory and detailed info complete OMT data Mostly reliable info but some categories are mixed with substations,  for example PMs that really are transmission related are placed in  subs   Table 24:  Transmission Asset Data Integrity  We are 100% complete processing updates to a backlog of 459 transmission jobs dated from 1992 to the  present in our GIS/AFM database and on plan and profile (P&P) drawings.  WPM inspection records in  handnote form have been entered electronically.  Pole material type, location and installation dates  have been synchronized with updated AFM information.  However, this clean dataset now exists in  spreadsheet form and needs to be uploaded to AFM.  Line history binders are in the process of being  updated and converted to electronic files.   Engineers are following the construction as‐built recording  process, however prompt updates continue to be problematic.  A realistic goal of 6‐months from the  completion of construction to records updating complete and project close‐out has been established.   Maximo implementation is in progress.  It appears that many years will be needed to obtain quality data  that may be effectively used for asset management purposes. The new transmission construction  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 46 of 61   47 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    standards are a major accomplishment and are being used as a baseline for improvement on a regular  basis.  Material Usage  According to Supply Chain staff, a definitive list of parts, quantities and funds spent on transmission  work is currently unavailable.  The following list of materials was tabulated from a query of the Oracle  database for those projects listed as Transmission from October 2010 to October 2012.  This should not  be taken as complete costing information, but may be reasonably considered accurate for the relative  use of material categories.    Table 25:  Relative Material Purchases, 10/2010 – 10/2012  Root Cause Analysis (RCA)  Following the Othello storm in September 2013, a team was formed to study the causes of the event  and develop effective solutions to prevent recurrence, as appropriate.  Representatives from  Transmission Design, Asset Management, Distribution Engineering, Construction Services, and Spokane  Electric participated.  In addition to technical forensics, a rigorous methodology was followed known as  the “Apollo Root Cause Analysis methodTM ”, requiring evidence and team consensus to develop  effective solutions.  Not only the root causes, but also the significance of the event and the more severe  consequences that were narrowly avoided were unexpectedly discovered through the team’s  Category Total Amount % steel poles $1,770,582 44% other $466,378 12% fire retardant coating $445,514 11% crossarms $349,709 9% air switches $293,131 7% conductor $259,622 6% insulators $228,702 6% crossbraces $96,212 2% vibration dampers $78,916 2% wood poles $52,927 1% total $4,050,929 100% Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 47 of 61   48 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    deliberations.  A summary report was generated and a number of significant action items initiated to  prevent or mitigate similar events in the future.    Unexpected events such as the Othello storm, while undesirable, in many cases offer rare opportunities  to learn and improve.  No single formula or approach is generically applicable to all problems.  However,  the Apollo RCA method or close variant is applicable to many, and it is hoped that it may be used to  greater effect in the future.  Lessons learned from this effort will inform the next RCA effort if/when it  arises.  System Planning Projects  The tables below list substation and transmission projects at various stages from study through  construction.  This list is a snapshot of current plans and is subject to frequent change.  For more details,  see the System Planning Assessment (Avista, 2015).  The first two tables below list projects classified as  corrective action plans in order to mitigate performance issues.  The last two tables contain projects  that are not categorized as corrective action plans.   Overall, customer and load growth is low at about 1%, and is expected to remain stagnant for many  years.  Customer loads may even decrease over the next few years, due to continued conservation and  efficiency trends such as the conversion to LED lighting.  One exception to this is in the West Plains area,  which is forecasted to grow at a higher rate in both the residential and business sectors for several  years.  Major system planning needs include adding transformer capacity, and improved redundancy  around the Spokane area.  This will most likely be best accomplished by the addition of new, looped  230kV transmission lines around Spokane.  Clear, objective ranking and decision criteria and its consistent use in the company’s capital project  selection and budgeting process is recommended, in order to reduce the time and effort required to  develop, review, approve, prioritize, and execute construction projects.      Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 48 of 61   49 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans        Table 26:  Corrective System Planning Projects (Big Bend, CDA & Lewiston/Clarkston)     Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 49 of 61   50 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans          Table 27:  Corrective System Planning Projects (Palouse, Spokane and System)  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 50 of 61   51 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans      Table 28:  Non‐Corrective System Planning Projects (Big Bend, CDA & Lewiston/Clarkston)    Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 51 of 61   52 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans      Table 29:  Non‐Corrective System Planning Projects (Palouse, Spokane and System)  Area Work Plans  The following transmission projects are scheduled for work based on a variety of factors including  changing system and operational requirements, remaining service life, asset condition, and  performance.  This list is provided for planning and reference purposes only.  It represents current plans  and is subject to frequent change.  See the Transmission Engineering Manager for the latest revision.   Those items with no marks for any year represent tentative projects under consideration.  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 52 of 61   53 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    See the end of the list for the current minor rebuild and ground inspection schedule, which typically  drives follow‐up repairs and minor rebuilds the following year (when a major rebuild is not justified  based on condition assessment).    TRR = Transmission Rebuild/Reconductor Program Business Case NT = New Transmission Program Business Case PS = Project Specific Business Case TAM = Transmission Asset Management Program Business Case SDSR = Substation ‐ Distribution Station Rebuild Program Business Case SNDS = Substation ‐ New Distribution Stations Program Business Case SVTR = Spokane Valley Transmission Reinforcement Program Business Case HPRM = High Priority Line Ratings Mitigation Program Business Case MPRM = Medium Priority Line Ratings Mitigation Program Business Case LPRM = Low Priority Line Ratings Mitigation Program Business Case NG = New Growth   Table 30:  Project Type Key           Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 53 of 61   54 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Business Case Area ER Description 2016 2017 2018 2019    TRR All Sys ‐ Rebuild Trans ‐ Condition X X All Trans Air Switch Platform Grd Mat X   LPRM All LP Line Ratings Mitigation Project X   LPRM All LP Line Ratings Mitigation Project X     PS Big Bend Harrington 115‐4kV X   SNDS Big Bend Bruce Siding 115 Sub ‐ New X X    TRR Big Bend Ben‐Oth SS 115 ‐ ReCond/ReBld X X     TR Big Bend Devils Gap‐Lind 115kV Rebuild X X X X   SDSR Big Bend Ford 115‐13kV Sub X X X   SDSR Big Bend Little Falls 115kV Sub X X X X     TR Big Bend Chelan‐Stratford 115kV X   SDSR CDA Bronx 115‐21 Sub ‐ Construct X X     TR CDA CDA‐Pine Creek 115kV Rebuild X X     TR CDA Cabinet‐Noxon 230kV X     TR CDA Benewah‐Pine Creek 230kV X     PS CDA Cabinet Gorge 230kV Switchyard X   SNDS Lewis‐Clark Wheatland 115 Sub ‐ Construct X X     NT Lewis‐Clark Hatwai‐Lolo #2 230kV X X X     TR Lewis‐Clark Lolo‐Oxbow 230kV X   SNDS Palouse Bovill 115kV Substation ‐ New X X     TR Palouse Benewah‐Moscow 230kV X X   SDSR Spokane Sunset 115kV Sub ‐ Rebuild X X     TR Spokane West Plains Trans Reinforcement X X   SNDS Spokane Downtown East 115 Sub‐ New X   SDSR Spokane 9CE 115 Sub ‐ Rebuild/Expand X X   SNDS Spokane Greenacres 115 Sub ‐ Construct X X   SVTR Spokane Irvin SS 115 ‐ Construct X X X X     PS Spokane Westside 230kV Sub ‐ Rebuild X X     PS Spokane Garden Springs 230‐115‐13 Sub X X X X   SVTR Spokane Opportunity Sub 115‐13kV X   SDSR Spokane Northwest 115‐13kV Sub X X     TR Spokane Garden Springs ‐ Silver Lake 115kV X X     TR Spokane BEA‐BEL‐F&C‐WAI 115kV X     PS Spokane 9CE Sub ‐ New 230kV Transformation X     NT Spokane Westside/Garden Springs 230/115 X   Table 31:  Area Work Plans – Major Projects     Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 54 of 61   55 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans      2016 Minor Rebuilds (following previous ground inspections) Area Transmission Line kV Spokane Beacon ‐ Boulder #2 115kV CDA Benewah ‐ Boulder 230kV CDA Benewah ‐ Pine Creek ‐ 115kV 115kV CDA Benewah ‐ Pine Creek ‐ 115kV: St Maries Tap 115kV Lewis‐Clark Dry Creek ‐ N. Lewiston ‐ 230kV 230kV Lewis‐Clark Dry Creek ‐ Pound Lane 115kV CDA Hot Springs ‐ Noxon #2 230kV Lewis‐Clark Moscow 230 ‐ Orofino 115kV Lewis‐Clark Nez Perce ‐ Orofino 115kV Spokane Ninth & Central ‐ Sunset 115kV Big Bend Othello Sw. Sta ‐ Warden #1 115kV CDA Benewah ‐ Pine Creek ‐ 115kV: St Maries Tap 115kV   Table 32:  Minor Rebuilds    Area Transmission Line kV #Wood Poles OTHELLO LIND ‐ WARDEN 115KV 491 CLARKSTON JAYPE ‐ OROFINO 115KV 395 CLARKSTON GRANGEVILLE ‐ NEZ PERCE (GRANGEVILLE TAP)115KV 9 CLARKSTON GRANGEVILLE ‐ NEZ PERCE #2 115KV 487 DAVENPORT CHELAN ‐ STRATFORD 115KV 1197 SPOKANE BEACON ‐ BOULDER #5 230KV 6 2585 Year 2016 Total   Table 33:  Ground Inspection Plan      Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 55 of 61   56 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    References  Avista (2015).  Transmission Vegetation Management Program.    Avista (2015).  Avista System Planning Assessment.    Avista (2014).  Specification for Inspection and Treatment of Wood Poles, S‐622.    Avista (2013).  2013 Electric Integrated Resource Plan.    Dan Whicker (2013).  Fire Guard Coating for Wood Transmission Poles.  April 16, 2013  Dan Whicker (2009).  230kV Transmission Compression Sleeve Couplings.    Dean Spratt (2015). Transmission Outage Report 2015.  First Quartile Consulting (2008).  Hydro One Update of Transmission Benchmark Study.    September 19, 2008  Ken Sweigart (2015).  Transmission Capital Budget 5‐Year Plan.    Rendall Farley and Valerie Petty (2013).  2012 Transmission System Review.  April 15, 2013.  Rendall Farley and Tia Benjamin (2014).  Electric Transmission System 2014 Annual Update.    March 31, 2014  Reuben Arts (2015).  Reliability Data 2015.      Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 56 of 61   57 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Appendix A –Transmission Probability, Consequence & Risk Index  Transmission Line Name Voltage  (kV)  Length  (miles)  Replacement  Value  Probability  Index  Consequence  Index  Risk  Index  Lolo ‐ Oxbow 230 63.41 $45,655,200 85.4 100.0 100.0  Noxon ‐ Pine Creek 230 43.51 $31,327,200 80.5 87.8 82.8  Benewah ‐ Pine Creek 230 42.77 $30,794,400 68.3 87.8 70.3  Walla Walla ‐ Wanapum 230 77.78 $56,001,600 68.4 83.7 67.1  Benewah ‐ Boulder 230 26.15 $18,828,000 67.1 72.9 57.3  Hot Springs ‐ Noxon #2 230 70.05 $50,436,000 66.0 68.8 53.2  Dry Creek ‐ Talbot 230 28.27 $20,354,400 51.4 78.3 47.1  Latah ‐ Moscow 115 51.41 $21,592,200 96.0 41.7 47.0  Devils Gap ‐ Stratford 115 86.19 $36,199,800 100.0 39.0 45.6  Post Street ‐ 3rd & Hatch 115 1.76 $3,696,000 70 100 43  Benewah ‐ Moscow 230 44.28 $31,881,600 61.1 59.3 42.5  Cabinet ‐ Rathdrum 230 52.3 $37,656,000 41.7 86.4 42.3  Bronx ‐ Cabinet 115 32.38 $13,599,600 59.4 55.2 38.4  Metro ‐ Post Street 115 0.5 $1,890,000 60 100 38  Ninth & Central ‐ Sunset 115 8.63 $3,624,600 39.0 75.6 34.7  Burke ‐ Pine Creek #3 115 23.79 $9,991,800 67.0 44.4 34.6  Shawnee ‐ Sunset  115 61.51 $25,834,200 79.0 36.3 33.4  Sunset ‐ Westside 115 10.03 $4,212,600 53.0 53.9 33.2  Hatwai ‐ Lolo 230 8.27 $5,954,400 28.9 93.2 31.6  Burke ‐ Pine Creek #4 115 23.13 $9,714,600 69.0 37.6 30.4  Beacon ‐ Boulder #2 115 13.73 $5,766,600 38.7 66.1 29.9  Addy ‐ Devil's Gap 115 43.31 $18,190,200 58.0 43.0 29.3  Othello Sw. Sta ‐ Warden #2 115 16.56 $6,955,200 53.7 45.8 28.8  Pine Street ‐ Rathdrum 115 33.24 $13,960,800 47.0 51.2 28.3  Benton ‐ Othello Switch Station 115 26.07 $10,949,400 64.0 37.6 28.3  CdA 15th St ‐ Pine Creek 115 29.75 $12,495,000 83.0 28.1 27.3  Cabinet ‐ Noxon 230 18.51 $13,327,200 31.3 71.5 26.3  Chelan ‐ Stratford 115 49.44 $20,764,800 66.6 32.2 25.1  Moscow 230 ‐ Orofino 115 41.59 $17,467,800 84.0 25.4 25.0  Boulder ‐ Rathdrum 115 19.07 $8,009,400 58.6 36.3 24.9  Benewah ‐ Pine Creek 115 45.02 $18,908,400 67.0 29.5 23.2  Jaype ‐ Orofino 115 34.64 $14,548,800 66.6 29.5 23.0  Clearwater ‐ N. Lewiston 115 3.21 $1,348,200 30.7 63.4 22.8  Ninth & Central ‐ Otis Orchards 115 16.31 $6,850,200 28.9 66.1 22.4  N. Lewiston ‐ Shawnee 230 34.28 $24,681,600 33.2 56.6 22.0  Burke ‐ Thompson Falls A 115 3.96 $1,663,200 34.4 53.9 21.7  College & Walnut ‐ Post Street 115 0.54 $2,041,200 2.8 100 21  Beacon ‐ Bell #4 230 6.3 $4,536,000 22.8 78.3 20.9  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 57 of 61   58 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Transmission Line Name Voltage  (kV)  Length  (miles)  Replacement  Value  Probability  Index  Consequence  Index  Risk  Index  Devil's Gap ‐ Lind 115 73.74 $30,970,800 95.1 18.6 20.8  Dry Creek ‐ Lolo 230 11.23 $8,085,600 29.5 59.3 20.5  Eighth & Fancher ‐ Latah 115 26.27 $11,033,400 55.6 30.8 20.1  Coulee ‐ Westside 230 1.99 $1,432,800 27.1 62.0 19.7  Benewah ‐ Thornton 230 32.2 $23,184,000 27.1 60.7 19.3  Shawnee ‐ Thornton 230 27.83 $20,037,600 27.1 60.7 19.3  Hatwai ‐ Moscow 230 18.05 $12,996,000 27.7 59.3 19.2  Grangeville ‐ Nez Perce #2 115 37.17 $15,611,400 53.0 29.5 18.4  Bell ‐ Northeast 115 1.53 $642,600 42.2 48.5 18.1  Addy ‐ Kettle Falls 115 27.11 $11,386,200 27.7 55.2 17.9  Burke ‐ Thompson Falls B 115 3.97 $1,667,400 28.3 53.9 17.9  Bell ‐ Northeast 115 2.83 $1,188,600 31.9 34.9 17.3  Francis & Cedar ‐ Northwest 115 2.12 $890,400 30.7 47.1 16.9  Grangeville ‐ Nez Perce #1 115 26.9 $11,298,000 48.0 29.5 16.7  Lolo ‐ Nez Perce 115 41.2 $17,304,000 55.7 25.4 16.6  Lolo ‐ Pound Lane 115 10.25 $4,305,000 40.0 34.9 16.5  Beacon ‐ Bell #5 230 6.04 $4,348,800 18.0 78.3 16.5  Dworshak ‐ Orofino 115 3.62 $1,520,400 21.6 64.7 16.4  Airway Heights ‐ Devils Gap 115 20.6 $8,652,000 22.8 60.7 16.2  Beacon ‐ Ross Park 115 2.06 $865,200 20.4 67.5 16.1  Lind ‐ Warden 115 21.71 $9,118,200 44.5 30.8 16.1  Hatwai ‐ N. Lewiston 230 6.99 $5,032,800 18.0 75.6 15.9  Metro ‐ Sunset 115 2.87 $1,205,400 24.6 52.5 15.1  Devils Gap ‐ Ninemile 115 18.78 $7,887,600 28.9 44.4 15.0  Beacon ‐ Boulder #1 115 13.07 $5,489,400 38.7 32.2 14.6  Moscow 230‐ Terre View 115 11.94 $5,014,800 40.4 30.8 14.6  Bronx ‐ Sand Creek 115 6.62 $2,780,400 30.7 40.3 14.5  Beacon ‐ Ninth & Central #2 115 3.5 $1,470,000 22.8 53.9 14.4  Beacon ‐ Bell #1 115 6.86 $2,881,200 29.5 41.7 14.4  Lind ‐ Shawnee 115 75.81 $31,840,200 83.6 14.6 14.3  Moscow 230 ‐ Orofino 115 21.33 $8,958,600 50.0 24.1 14.1  College & Walnut ‐ Westside 115 8.79 $3,691,800 24.0 49.8 14.0  Northwest ‐ Westside 115 1.95 $819,000 24.0 49.8 14.0  Ross Park ‐ Third & Hatch 115 2.19 $919,800 19.2 60.7 13.6  Beacon ‐ Northeast 115 5.25 $2,205,000 30.7 41.7 13.5  Ninemile ‐ Westside 115 6.8 $2,856,000 22.8 49.8 13.3  Nez Perce ‐ Orofino 115 17.28 $7,257,600 27.7 40.3 13.1  Post Falls ‐ Ramsey 115 9.01 $3,784,200 28.9 36.3 12.3  Addy ‐ Gifford 115 20.68 $8,685,600 51.9 20.0 12.2  Ramsey ‐ Rathdrum #1 115 8.42 $3,536,400 24.0 41.7 11.7  Beacon ‐ Boulder 230 11.95 $8,604,000 17.4 56.6 11.5  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 58 of 61   59 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Transmission Line Name Voltage  (kV)  Length  (miles)  Replacement  Value  Probability  Index  Consequence  Index  Risk  Index  Beacon ‐ Ninth & Central #1 115 3.73 $1,566,600 18.0 53.9 11.3  Stratford ‐ Summer Falls 115 6.3 $2,646,000 18.0 53.9 11.3  Beacon ‐ Francis & Cedar 115 11.56 $4,855,200 34.3 28.1 11.3  Appleway ‐ Rathdrum 115 11.77 $4,943,400 20.4 47.1 11.2  Shawnee ‐ Terre View 115 10.05 $4,221,000 30.1 30.8 10.9  Dry Creek ‐ N. Lewiston 230 8.06 $5,803,200 13.1 70.2 10.7  CdA 15th St ‐ Rathdrum 115 12.67 $5,321,400 19.2 47.1 10.6  Milan Tap 115 8.22 $3,452,400 30.1 29.5 10.4  Shawnee ‐ South Pullman 115 12.7 $5,334,000 35.0 25.4 10.4  Beacon ‐ Rathdrum 230 25.36 $18,259,200 16.2 53.9 10.2  Airway Heights ‐ Silver Lake 115 10.77 $4,523,400 24.0 36.3 10.2  Boulder ‐ Lancaster 230 13.29 $9,568,800 11.3 76.9 10.2  Libby ‐ Noxon 230 0.79 $568,800 12.5 68.8 10.1  Moscow 230 ‐ South Pullman 115 12.07 $5,069,400 23.0 36.3 9.7  Colbert Tap 115 3.19 $1,339,800 34.3 24.1 9.7  Clearwater ‐ Lolo #2 115 8.56 $3,595,200 24.0 33.5 9.4  Otis Orchards ‐ Post Falls 115 7.62 $3,200,400 24.0 30.8 8.7  Ninth & Central ‐ Third & Hatch 115 4.34 $1,822,800 24.0 29.5 8.3  Lind ‐ Washtucna 115 28.78 $12,087,600 30.1 22.7 8.0  Benewah ‐ Pine Creek 115 7.06 $2,965,200 27.0 24.1 7.6  Burke ‐ Pine Creek #3 115 4.58 $1,923,600 23.0 28.1 7.5  Shawnee ‐ Sunset  115 7.12 $2,990,400 37.0 15.9 6.8  Devils Gap ‐ Long Lake #2 115 1.03 $432,600 13.1 41.7 6.4  Albeni Falls ‐ Pine Street 115 2.27 $953,400 13.1 40.3 6.2  Francis & Cedar ‐ Ross Park 115 5.16 $2,167,200 14.3 36.3 6.1  Clearwater ‐ Lolo #1 115 8.63 $3,624,600 24.0 20.0 5.6  Dry Creek ‐ Pound Lane 115 3.89 $1,633,800 12.5 36.3 5.3  Airway Heights ‐ Sunset 115 9.52 $3,998,400 18.0 25.4 5.3  Sunset ‐ Westside 115 11.97 $5,027,400 22.0 21.3 5.2  Latah ‐ Moscow 115 10.37 $4,355,400 17.0 25.4 5.0  Dry Creek ‐ N. Lewiston 115 8.17 $3,431,400 13.1 30.8 4.7  Devils Gap ‐ Little Falls #2 115 3.9 $1,638,000 24.0 15.9 4.5  Othello Sw. Sta ‐ Warden #1 115 8.28 $3,477,600 36.1 10.5 4.4  CdA 15th St ‐ Ramsey 115 3.17 $1,331,400 9.4 36.3 4.0  Moscow City ‐ N. Lewiston 115 22.19 $9,319,800 16.2 21.3 4.0  Devils Gap ‐ Little Falls #1 115 3.42 $1,436,400 19.2 14.6 3.3  Critchfield ‐ Dry Creek 115 1.58 $663,600 13.1 20.0 3.1  Benewah ‐ Latah 115 6.68 $2,805,600 5.9 40.3 3.0  Lolo ‐ Pound Lane 115 2.94 $1,234,800 12.0 20.0 2.8  Bell ‐ Westside 230 1.99 $1,432,800 2.8 72.9 2.4  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 59 of 61   60 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Transmission Line Name Voltage  (kV)  Length  (miles)  Replacement  Value  Probability  Index  Consequence  Index  Risk  Index  Lancaster ‐ Rathdrum 230 2.93 $2,109,600 2.8 63.4 2.1  Wilbur Tap 115 5.35 $2,247,000 14.3 11.8 2.0  Benton ‐ Othello Switch Station 115 3.79 $1,591,800 8.0 20.0 1.9  Dower ‐ Post Falls 115 2.16 $907,200 9.4 17.3 1.9  Boulder ‐ Otis Orchards #1 115 3.45 $1,449,000 2.8 39.0 1.3  Boulder ‐ Otis Orchards #2 115 2.73 $1,146,600 2.8 34.9 1.1  Grangeville ‐ Nez Perce #1 115 6.34 $2,662,800 8.0 11.8 1.1      Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 60 of 61   61 2016 Electric Transmission System Asset Management Plan  Sharepoint ‐ Asset Management Plans    Appendix B – Transmission System Outage Data    Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 2, Page 61 of 61 Substation System Review Asset Management 2016 David Thompson Rodney Pickett Rubal Gill Februar 12, 2016 Substation System Review Asset Management Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 1 of 31 i Substation System Review, 2016 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 2 of 31 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 3 of 31 iii Substation System Review, 2016 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 4 of 31 iv Substation System Review, 2016 Table of Contents Table of Contents ......................................................................................................................... iv  Figures .......................................................................................................................................... v  Tables ........................................................................................................................................... v  Purpose ......................................................................................................................................... 1  Equipment Portfolio ....................................................................................................................... 2  Capital Replacement and Maintenance ........................................................................................ 4  Substation Asset Management Capital Maintenance ................................................................ 4  Substation Capital Spares ......................................................................................................... 4  Distribution Substation Rebuilds ............................................................................................... 5  Garden Springs Substation Integration ..................................................................................... 5  New Distribution Substations .................................................................................................... 5  Noxon Switchyard Rebuild ........................................................................................................ 5  South Region Voltage Control ................................................................................................... 6  Westside Substation Rebuild-Phase One ................................................................................. 6  Capital Spending ........................................................................................................................... 6  Maintenance and Operations (M&O) Spending ............................................................................ 8  Key Performance Indicators .......................................................................................................... 9  Outages ...................................................................................................................................... 17  Programs .................................................................................................................................... 17  Substation PCB Removal ........................................................................................................ 17  Power Transformer Replacement ........................................................................................... 18  Voltage Regulator Replacement ............................................................................................. 18  Substation Air Switch Replacement ........................................................................................ 19  Completed Substation Design and Construction Projects .......................................................... 19  Projects in Design or Construction .............................................................................................. 20  System Planning Projects ........................................................................................................... 24  Reference and Data Sources ...................................................................................................... 25  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 5 of 31 v Substation System Review, 2016 Figures Figure 1: Substation Age Distribution .......................................................................................... 2  Figure 2: Substations by classification ......................................................................................... 3  Figure 3: Substation M&O Expenditures ...................................................................................... 8  Figure 4: Substation M&O Expenditures by Month ...................................................................... 8  Figure 5: Substation M&O Comparison ....................................................................................... 9  Figure 6: KPI-Reactive Work Orders ......................................................................................... 10  Figure 7: KPI-Work Order Average Age .................................................................................... 11  Figure 8: Hours of Unplanned Outages ..................................................................................... 11  Figure 9: Customers Affected by Unplanned Outages .............................................................. 12  Figure 10: Customer Outage Hours ........................................................................................... 12  Figure 11: Customer Outage Events ......................................................................................... 13  Figure 12: Equipment Removals due to PCB content ............................................................... 13  Figure 13: Power Transformer Replacements ........................................................................... 14  Figure 14: Voltage Regulator Replacements ............................................................................. 14  Figure 15: Air Switch Replacements .......................................................................................... 15  Figure 16: Wood Substation Replacements .............................................................................. 15  Figure 17: Substation Risk Action Curve ................................................................................... 16  Figure 18: Substation OMT Limit ............................................................................................... 16  Figure 19: Voltage Regulator Age Distribution ........................................................................... 18  Tables Table 1: Substation asset quantities ............................................................................................ 3  Table 2: Capital Project Metrics ................................................................................................... 4  Table 3: Substation Capital Expenditures – 2015 ........................................................................ 7  Table 4: Substation Rebuilds completed in 2014 and 2015 ....................................................... 19  Table 5: Completed Projects ...................................................................................................... 20  Table 6: Work in Progress ......................................................................................................... 20  Table 7: Active and Pending Construction ................................................................................. 21  Table 8: Delayed Projects .......................................................................................................... 21  Table 9: Future Projects ............................................................................................................. 24  Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 6 of 31 1 Substation System Review, 2016 Purpose This report provides summary information relating to the annual review of Avista’s electric substations operating in its Washington and Idaho service territory. The intent is to present a comprehensive overview of the substation capital assets, performance, risks, ongoing asset management programs, current and planned projects, and summary recommendations. Asset Management Plans are intended to serve a general audience from the perspective of long-term, balanced optimization of lifecycle costs, system performance, and risk management. A consistent sequence of asset management plans will provide the continuity required for continuous improvement of capital asset management, as well as historical information useful for rate case submissions. With Avista’s implementation of IBM’s Maximo as its Asset Information System in 2014, a distinct reference point for asset data has been established. The Maximo implementation provides a comprehensive informational and historical repository for all asset data, applications, locations, inspection history, maintenance activity, and life cycle status. As such, the reportable data included in this report centers around activities in 2014 and 2015 in order to leverage the reference data within Maximo and to provide consistent and repeatable data from a single source for this and future reports. Avista Utilities currently operates 162 substations consisting of:  21 transmission substations  30 transmission substations with distribution  109 distribution substations  2 foreign-owned substations. In addition, there are 14 locations associated with generation. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 7 of 31 2 Substation System Review, 2016 Equipment Portfolio From a perspective of key equipment as reference, the average age of the 162 substations is just over 31 years. Figure 1 shows the age distribution of the substation population. Figure 1: Substation Age Distribution Substations are typically classified by voltage and function. The number of sites in each of these categories is included in Figure 2. In addition to the standard population of 230kV and 115kV substations, Avista continues to operate six substations at lower system voltages. These include the Kooskia substation at 34kV, the St. John substation at 24kV, and four substations at 13kV including Coeur d’Alene Shaft Mine, Sunshine Mine, and two at the Washington State University campus in Pullman. 0 2 4 6 8 10 12 19 4 1 19 4 9 19 5 5 19 5 7 19 5 9 19 6 4 19 6 6 19 6 8 19 7 0 19 7 3 19 7 5 19 7 7 19 7 9 19 8 1 19 8 3 19 8 6 19 8 8 19 9 0 19 9 2 19 9 6 19 9 8 20 0 0 20 0 3 20 0 5 20 0 7 20 0 9 20 1 2 20 1 6 Su b s t a t i o n s Substation Age Distribution Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 8 of 31 3 Substation System Review, 2016 Figure 2: Substations by classification Included in the totals above are 13 switching stations, 11 in the 115kV group and two at 230kV, that do not incorporate voltage transformers or regulation. Standard interconnect and protection services are provided at these locations, supporting their inclusion in the general substation reporting. Each substation is comprised of major assets that coordinate to serve the principal regulation, switching, and protection activities of each site. Each asset class has unique maintenance, lifecycle, and operational considerations. Within the greater population of substations, the quantity of each asset is shown in Table 1. Capital Asset Quantity Air Switch 1,175 Disconnect Switch 1,171 Bushings 1,890 Circuit Switcher 120 High Voltage Circuit Breakers 318 Low Voltage Circuit Breakers 353 Reclosers 309 Switchgear 95 Autotransformers 17 Power Transformers 211 Voltage Regulators 1,341 Table 1: Substation asset quantities 139 17 1 1 4 Number of Substations by Voltage 115kV 230kV 34kV 24kV 13kV Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 9 of 31 4 Substation System Review, 2016 Within the current implementation of the Maximo asset database, fields that provide the manufactured date, in-service date, and last-installed date continue to be updated and populated with the data available from the database integration. As such, succinct reports providing age profiles for these substation asset families are not included at this time. Capital Replacement and Maintenance Projects with current approved Business Case proposals are included in this Capital Replacement and Maintenance section, including a brief description of the project’s scope and purpose. In summary, specific project evaluation metrics are included in Table 2. Internal Rate of Return Benefit/Cost Ratio Risk Reduction Factor Asset Management Capital 5% to 9%N/A 0.027302 Capital Spares 5% to 9%N/A 0.015362 Distribution Station Rebuilds 9% to 12%N/A 0.010633 Garden Springs 5% to 9%N/A 0.004268 New Distribution Stations 5% to 9%N/A 0.009185 Noxon Switchyard 5% to 9%N/A 0.004268 South Region Voltage Control 7%N/A 0.000798 Westside Rebuild 7%N/A 0.017570 Table 2: Capital Project Metrics Substation Asset Management Capital Maintenance The Substation Asset Management Capital Maintenance program installs, replaces, or upgrades substation apparatus based on Asset Management planning or emergency replacement determinations. All obsolete, end-of-life, or failed apparatus, based on the Asset Management analysis, are included under this program. Apparatus includes panel houses, high voltage breakers, relays, metering, surge arresters, insulating rock, fence work, low voltage breakers and reclosers, circuit switchers, SCADA systems, batteries and chargers, power transformers, high voltage fuses, air switches, capacitor banks, autotransformer diagnostic equipment, step voltage regulators, and instrument transformers. Substation Capital Spares The Substation Capital Spares program maintains Avista’s inventory of power transformers and high voltage circuit breakers in order to manage the long lead time of the procurement cycle for these system-critical items. These components are capitalized at receipt and placed in service in response to both planned and emergency installations. The program expenditures may vary significantly year to year due to the specific equipment purchased and deployed in any given year. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 10 of 31 5 Substation System Review, 2016 Distribution Substation Rebuilds The Distribution Substation Rebuild program supports either the complete replacement or rebuild of existing substation infrastructure as the site nears the end of its useful life, a need to support increased capacity requirements, or to implement modifications necessary to accommodate equipment upgrades. Included in the program are Wood Substation rebuilds as well as upgrades to substations to comply with current design and construction standards. Some substation rebuilds are necessitated by external requirements, including obligation to serve, customer or load growth, or technology improvement projects such as Smart Grid. Substation rebuilds currently planned to be completed under this program in the next five years include Big Creek, Kamiah, and South Lewiston (Wood Substations), 9th & Central, Ford, Sprague, Davenport, and Northwest (Lifecycle), Deer Park, Gifford, Lee & Reynolds, Huetter, Dalton, and Southeast (Equipment Additions), and Hallett & White (Growth). Garden Springs Substation Integration The Garden Spring Substation Integration project will construct a new 230kV/115kV substation at the existing Garden Springs property that will terminate the existing Airway Heights-Sunset, Sunset-Westside, and South Fairchild Tap 115kV transmission lines. Options being considered to energize the 230kV bus include the possibility of a new interconnection with the BPA Bell- Coulee #5 230kV transmission line and a new 230kV feed from the Westside Substation following the completion of the Westside Substation Rebuild Project. Both of the newly designated Garden Springs-Sunset 115kV transmission lines will require upgrades to 150MVA capacity conductors. New Distribution Substations The New Distribution Substation program provides for new distribution substations in the system in order to serve new and growing load, increased system reliability, and operational flexibility. New substations under this program will require planning and operational studies, justification, and approved Project Diagrams prior to funding. Current plans for new substation projects include Tamarack in northeast Moscow, Greenacres in the Spokane Valley, and Hillyard and Downtown West in Spokane. Design and construction phases will be coordinated to achieve one new substation per year depending on need and justification. Noxon Switchyard Rebuild The existing Noxon Rapids 230kV Switchyard requires reconstruction due to the age and condition of the equipment within the station. The existing bus, constructed as a strain bus with a number of recent failures, is configured as a single bus with a tie breaker separating the East and West bus segments. This station is the interconnection point of the Noxon Rapids Hydroelectric generation as well as a principal interconnect point between Avista and BPA. As such, this is a crucial asset for the reliable operation of the Western Montana Hydro Complex. Equipment outages within the station, either planned or unplanned, can cause significant curtailments of the local generation output. Due to the key role of the station, a complete rebuild will require coordination with Avista’s Energy Resources Department and affected utilities, including BPA. The Noxon Switchyard Rebuild Project is a greenfield design incorporating a Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 11 of 31 6 Substation System Review, 2016 double bus-double breaker 230kV switching station as a complete replacement of the existing Noxon Switchyard. South Region Voltage Control Avista's 230kV transmission system in the southern area of its service territory, generally located around the cities of Lewiston and Clarkston, experiences excessive high voltage during periods of low power loading. Voltage levels exceed equipment ratings over approximately 35% of the time. Continued operation of equipment outside its specifications and ratings exposes Avista to potentially significant legal and regulatory risks. This is in addition to increasing the probability of large-scale outages due to equipment failure. The installation of 230kV Reactors at North Lewiston substation will eliminate existing overvoltage conditions in Avista’s southern region, which includes the 230kV buses at Dry Creek, Lolo, North Lewiston, Moscow, and Shawnee substations. Westside Substation Rebuild-Phase One Phase One of the Westside Substation Rebuild will extend the existing Westside Substation and the 115kV and 230kV buses and will support design and installation options in consideration of a new 250MVA autotransformer and other substation equipment. This installation will eliminate overload potentials for certain bus outages and tie breaker failure contingencies in the Spokane area. Following the completion of Phase One, the second phase will replace a second autotransformer with a new 250MVA unit. The final phase would extend the 230kV yard to a double breaker-double bus configuration. In addition, alternatives for the 115kV configuration would be considered to achieve either a breaker-and-and-half or a full double breaker-double bus implementation. Capital Spending For 2015, the major capital expenditures associated with substation construction or equipment activities are included in Table 3. As most capital projects extend over multiple calendar years, the summary expenditures listed may represent only a portion of the overall project’s expenses. In total, these projects represent $24.4 million in capital spending during 2015. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 12 of 31 7 Substation System Review, 2016 ER Project Capital Expenditure Status 2532 Noxon 230kV Substation Rebuild $10,162,871 Partial in 2016 2000 Substation - Capital Spares $3,267,594 Ongoing 2589 Mobile Substation - Purchase New Mobile Substations $2,539,571 2015 2443 Greenacres 115kV/13kV Substation New Construction $1,661,927 2016 2215 Substation Asset Management Capital Maintenance $915,677 Ongoing 2001 System - High Voltage Circuit Breaker Replacements $580,324 Ongoing 2278 Replace Obsolete Reclosers $530,128 Ongoing 2484 Moscow 230kV Substation Rebuild Switchyard $527,614 Complete 2275 Rock and Fence Restoration $450,226 Ongoing 2449 System - Substation Air Switches Replacements $447,733 Ongoing 1006 System - Distribution Power Transformers $394,856 Ongoing 1107 Lewiston Mill Road - 115kV substation construction $369,980 2015 2493 Replace/Upgrade Voltage Regulators $343,358 Ongoing 2446 Irvin Substation- New Construction $296,734 Ongoing 2590 Deer Park 115kV Substation - Minor Rebuild $247,956 2016 1108 Hallett & White Substation Expansion $142,621 Ongoing 2294 System - Batteries $140,538 Ongoing 2546 Blue Creek 115kV Rebuild $104,669 Complete 2592 Sprague 115kV Substation Minor Rebuild $96,304 2016 2204 Wood Substation Rebuilds $89,274 Ongoing 2571 Clearwater 115kV Substation Upgrades $85,695 Complete 2573 Little Falls 115kV Substation Rebuild $66,485 Ongoing 2341 Ninth & Central Substation - Increase Capacity and Rebuild $54,960 In progress 2569 Gifford 115kV - Rebuild Substation $28,251 Ongoing 2538 College & Walnut Substation Yard Expansion $27,473 2016 2425 System - High Voltage Fuse Upgrades $25,135 Ongoing 2112 Beacon 230kV Substation Bus Conversion $14,286 Ongoing 2505 System-Replace Current and Potential Devices $13,262 Ongoing 2531 Westside 230kV Substation Rebuild $12,598 In progress 2274 New Substations $11,088 Ongoing 2561 Lewiston Mill Road 115kV Substation $8,912 2016 2343 System - Replace/Install Substation Structures $8,702 Ongoing 2336 System - Replace Distribution Power Transformers $7,939 Ongoing 2572 Noxon Construction Substation - Minor Rebuild $2,471 Complete 2591 Davenport 115kV Substation - Minor Rebuild $2,275 Ongoing Table 3: Substation Capital Expenditures – 2015 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 13 of 31 8 Substation System Review, 2016 Maintenance and Operations (M&O) Spending During 2015, a total of nearly $4.7 million supported Maintenance and Operations activities relating to existing substations. As shown in Figure 3, approximately 85.1% of the maintenance and operation expenses were associated with planned services, while the remaining 14.9% was in response to unplanned or reactive activities. Figure 4 shows the total substation maintenance and operations spending by calendar month throughout 2015. Figure 3: Substation M&O Expenditures Figure 4: Substation M&O Expenditures by Month $3,987,826 $696,282 Substation M&O Expenditures-2015 Planned Unplanned Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 14 of 31 9 Substation System Review, 2016 Substation maintenance activities are tracked by both distribution and transmission tasks. As noted earlier, many of the substation locations provide both distribution and transmission services. For 2015, the allocation between transmission and distribution expenses, both maintenance and operations, along with unplanned expenditures, are shown in Figure 5. Figure 5: Substation M&O Comparison Key Performance Indicators Key Performance Indicators (KPIs) have been identified for tracking and review of key activities. These KPIs continue to be refined relative to the metrics monitored. The metrics are published on a monthly basis, providing a perspective about the implementation and use of Maximo, system reliability, and progress towards particular key project goals as linked to substation performance. A combination of lagging and leading indicators are tracked in order to provide both retrospective and prospective views. It is generally expected that the proper focus on the correct leading indicators will guide satisfactory results after a defined lag period. When this does not occur, deeper investigation and root-cause analysis may help to identify other factors affecting the expected causal relationship. One of the primary goals of Asset Management is to optimally manage risk and performance relative to capital investment and maintenance expenditures. The nexus of planned maintenance and capital replacement activity compared to emergency repair costs, outages, lost profits and other possible outcomes over time should be clearly identified. Additional reviews of predicted activity versus actual outcomes for a variety of scenarios should also serve to help determine the continuation of or adjustment to ongoing programs and projects. The availability of sufficient reliable data to support these analytic opportunities continues to be a challenge, but is expected to be mollified as the Maximo implementation and structured use becomes integrated into the Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 15 of 31 10 Substation System Review, 2016 formal work processes. For example, safety incidents, emergency repair and replacement work, and other similar activities continue to be transacted in Operations under blanket accounts, precluding the ability to extract detailed transactional data associated with specific project and related work activities at a substation. The Asset Management group continues to suggest opportunities and support improvements to achieve the goal of a complete corporate implementation of Maximo. The KPIs in Figure 6 and Figure 7 show projected and actual metrics relating to Work Orders within Maximo. Reactive Work Orders are associated with required Corrective Maintenance tasks that were in response to operational malfunction issues or items requiring attention following a planned inspection. Throughout 2015, the projected target has been achieved. The Average Age metric tracks the rolling number of days existing Work Orders have been active. This metric continues to not meet the expected performance level, though this topic continues to be addressed with the Operations teams. Figure 6: KPI-Reactive Work Orders 0% 10% 20% 30% 40% 50% 60% 70% Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Reactive Work Orders (Completed and Active) Projected Actual Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 16 of 31 11 Substation System Review, 2016 Figure 7: KPI-Work Order Average Age Metrics associated with customer outages due to substation activity are shown in Figure 8 through Figure 11. In 2015, the projected outage metrics, whether time or quantity, have typically been satisfied, demonstrating the expected reliability of service for the end customer. Figure 8: Hours of Unplanned Outages  ‐  50  100  150  200  250  300  350  400  450 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average Age (days) (Completed and Active) Projected Actual  ‐  10,000  20,000  30,000  40,000  50,000  60,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Substation Customer Hours due to Extended Unplanned Outages Projected Actual Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 17 of 31 12 Substation System Review, 2016 Figure 9: Customers Affected by Unplanned Outages Figure 10: Customer Outage Hours  ‐  5,000  10,000  15,000  20,000  25,000  30,000  35,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Number of Customers with Uplanned Outages (>3 hours) Projected Actual 0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Customer Outage Hours-Substation AM Projected Actual Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 18 of 31 13 Substation System Review, 2016 Figure 11: Customer Outage Events The metrics shown in Figure 12 through Figure 15 relate to specific substation equipment- related programs. Figure 12 identifies the equipment replacement activities associated with the PCB Removal program, including qualifying equipment removed from substations. Equipment identified as a PCB-containing device continues to be prioritized for removal or replacement in conjunction with other related activities. The remaining three graphs represent power transformer, voltage regulator, and air switch assets. Figure 12: Equipment Removals due to PCB content 0 100 200 300 400 500 600 700 800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Customer Outage Events-Substation AM Projected Actual 0 20 40 60 80 100 120 140 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Equipment Removals due to PCBs Projected Actual Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 19 of 31 14 Substation System Review, 2016 Figure 13: Power Transformer Replacements Figure 14: Voltage Regulator Replacements 0 1 2 3 4 5 6 7 8 9 10 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Power Transformer Replacements Projected Actual 0 20 40 60 80 100 120 140 160 180 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Voltage Regulator Replacements Projected Actual Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 20 of 31 15 Substation System Review, 2016 Figure 15: Air Switch Replacements The Wood Substation Replacement program did not achieve a completed substation replacement during 2015 as noted in the graph shown in Figure 16. Figure 16: Wood Substation Replacements These final two KPIs evaluate system awareness criteria regarding level of service. The Risk Action Curve metric in Figure 17 tracks outage event parameters, including frequency and severity, to signal additional action if the accumulated outage activity requires further review and analysis. The OMT High Limit in Figure 18 tracks to an acceptable limits of service statistical metric for outage events. 0 5 10 15 20 25 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Air Switch Replacements Projected Actual 0 1 2 3 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Wood Substation Replacements Projected Actual Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 21 of 31 16 Substation System Review, 2016 Figure 17: Substation Risk Action Curve Figure 18: Substation OMT Limit 0 1 2 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Substation Exceeds Risk Action Curve Projected Actual 0 1 2 3 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Substation Exceeds OMT High Limit Projected Actual Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 22 of 31 17 Substation System Review, 2016 Outages During 2015, 40 outage events occurred attributable to either planned or unplanned substation activity. For these outage events, the average duration was 2 hours 51 minutes and affected approximately 990 customers. Durations ranged from 5 minutes to 8 hours 48 minutes and impacted customers ranged from 1 to just over 4000. The data is derived from the annual reliability reports provided by Operations Management. Programs Substation PCB Removal In 2010, an assessment was completed of equipment containing Polychlorinated Biphenyls (PCBs) within the Avista substation. PCBs are typically a minor constituent of oil within substation equipment including  Power transformers  Oil circuit breakers  Voltage regulators  Potential transformers  Current transformers  Station service transformers  Capacitors  Electromechanical relays. Under the current process, the substation power transformers have been tested for PCBs and units with PCB concentrations of greater than 50 ppm are slated for removal. Voltage regulators, 12 12 11 2 2 1 Outage Reason Equipment Planned Company Animal Public Weather Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 23 of 31 18 Substation System Review, 2016 as brought in for repair, are tested and replaced if PCB concentrations of 50 ppm or greater are identified. Other substation equipment that is found to contain oil with the 50 ppm concentration of PCBs is evaluated on a case by case basis. The equipment may be decommissioned or reconditioned with clean oil and returned to service. Additional regulation at both Federal and State levels continue to be monitored for refinement of this program. Power Transformer Replacement Avista’s aging population of power transformers continues to be evaluated and included as key factors in substation upgrade projects or rebuilds. Transformer upgrades can provide significant energy savings based on the operational efficiency of the units, as well as additional configuration flexibility. During 2014 and 2015, power transformer replacement projects have been completed at:  Moscow 230 Spare (2013)  Blue Creek #1 (2014)  North Lewiston #1 (2014) Voltage Regulator Replacement Voltage regulators have been identified as significant contributors to substation reliability, and ongoing evaluation and modeling is in progress. The age profile is shown below Figure 19. In the conjunction with substation upgrades, older vintage voltage regulators are being replaced. The success of this ongoing program is shown by the shift in the age profile. Presently, the average age of installed base of voltage regulators is 15.5 years, though approximately 20% of the units have been installed for more than 30 years. Figure 19: Voltage Regulator Age Distribution 0 20 40 60 80 100 120 140 19 6 7 19 6 8 19 6 9 19 7 0 19 7 1 19 7 2 19 7 3 19 7 4 19 7 5 19 7 6 19 7 7 19 7 8 19 7 9 19 8 0 19 8 1 19 8 2 19 8 3 19 8 4 19 8 5 19 8 6 19 8 7 19 8 8 19 8 9 19 9 0 19 9 1 19 9 2 19 9 3 19 9 4 19 9 5 19 9 6 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 Voltage Regulator Age Distribution Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 24 of 31 19 Substation System Review, 2016 Substation Air Switch Replacement The Substation Air Switch Replacement program deals with both planned and unplanned replacements. In the case where air switches do not operate properly, flashover and possible tripping of bus protection devices may occur. This can be the result of a component failure at the whips or vacrupter switch or other adjustment issues with the air switch itself. While most air switch missed operations could be prevented with regular inspection and maintenance, the limited scope of current maintenance procedures doesn’t extend to the level of blade adjustments or the replacement of live parts, such as contacts and whips, or the repair of ground mats. Many air switches are operated remotely. In these instances, Avista personnel may not be present to observe the opening of the switch, limiting the identification of potential issues. Minor functional issues could indicate the increasing probability of a major or catastrophic failure. Small quantities of emergency repair materials are maintained for the legacy population, but many of the air switches are out of production and replacement parts are difficult to procure. Completed Substation Design and Construction Projects The Substation Engineering group performs the scope, design, and project management functions for all facets of substation construction, including designated equipment replacement, rebuilds, and new site construction. The following tables describe the current status of projects within the engineering group’s queue. Substation Rebuilds completed in 2014 and 2015 Blue Creek – 115kV/13kV new construction Clearwater 115kV/34kV substation upgrade Lewiston Mill Road new construction Moscow 230kV/115kV/24kV new construction North Lewiston 115kV/13kV removal of equipment Noxon Construction 230kV/13kV substation rebuild Noxon Rapids 230kV west bus rebuild Odessa 115kV/13kV substation upgrade Irvin 115kV/13kV substation Bruce Road 115kV/13kV substation Table 4: Substation Rebuilds completed in 2014 and 2015 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 25 of 31 20 Substation System Review, 2016 Completed Projects BI Reference Sunset - Replace MOAS A-184 (Four Lakes Tap) AMS85 Grangeville - Replace A-337 Relay and Battery Cabinet AMS09 Ross Park - 115kV Relay Upgrade SS802 Third & Hatch - 115kV Relay Upgrade SS802 Beacon - Upgrade A-605 Line Relays SS802 Ninth & Central – Minor Upgrades SS802 Noxon - Add Line Position for Noxon Reactor Station AS202 Opportunity--Install 115kV Breakers SS204 Table 5: Completed Projects Projects in Design or Construction The Substation Engineering group performs the scope, design, and project management functions for all facets of substation construction, including designated equipment replacement, rebuilds, and new site construction. The following three tables describe the current status of projects within the engineering group’s queue. Construction and Field Work in Progress BI Reference Bronx - HVP Upgrade 42P09 Oden - HVP Upgrade 42P09 Bunker Hill - HVP Upgrade 42P09 Nine Mile Substation - Install GSU 1 GG811 Noxon 230kV Reactor Station--New Construction AS202 Greenacres--New 115kV/13kV Substation SS644 Pine Creek - Replace Auto Transformer #1 AMS28 Table 6: Work in Progress Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 26 of 31 21 Substation System Review, 2016 Engineering active and pending construction BI Reference Benton-Othello Transfer A-131 MOAS AMS85 Beacon - Grid Modernization - Feeder 12F1 SS406 Beacon - Replace 13kV Breaker - 12F6 AMS83 Harrington - Rebuild to 115kV/13kV Substation BS303 Mobile Battery - Add SCADA XS951 Noxon - Hot Springs #1 and #2 Line Relay Upgrades AMS07 Beacon--Replace Fence AMS82 Beacon--115kV Line Relay Upgrade A-610, A-613 SS802 Noxon - Refurbish Existing East Bus AS202 College & Walnut – Yard Expansion AMS82 Sprague - Minor Rebuild FS402 Deer Park--Metering/SCADA/Panel house SS405 Othello - Replace Feeder 501 and 502 Breakers AMS83 Othello - Replace Air Switch A-41 AMS83 Lolo - Communications DC Plant Refresh St. John - Replace 24kV Switches AMS85 Shawnee - Communications DC Plant Refresh St. Maries - Upgrade AC/DC Station Service AMS10 Table 7: Active and Pending Construction Waiting prioritization or delayed BI Reference Replace SMP - Dry Creek XS951 Replace SMPs - Post Street XS951 Ramsey--Line Relay Upgrade A-669 CS802 Cabinet - Remove Relays and Change CT Ratios AG103 Table 8: Delayed Projects Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 27 of 31 22 Substation System Review, 2016 Future Projects BI Reference North Lewiston 230kV--Install Reactors LS306 Kamiah - Rebuild LS208 Gifford - Add 115/13kV Station to Substations WS201 Westside - Increase Capacity; New Autotransformer SS201 Priest River – Temporary Breaker Install AMS83 Ford - Replace Transformer AMS28 Ford - Install New 12F2 Feeder Position BS202 Waikiki - Grid Modernization - Feeder 12F2 SS542 Priest River - Minor Rebuild - Distribution AMS83 Irvin--New 115kV Switching Station SS904 Hallett & White - Add Capacity SS523 Rathdrum - Grid Modernization - Feeder 231 CS502 Rathdrum - Grid Modernization - Feeder 233 CS502 Juliaetta - Replace MOAS units A-120 and A-173 AMS85 Jaype - Remove and Salvage Colville - Replace Battery AMS10 Chester - Replace Battery AMS10 Rockford - Replace Battery AMS10 Fort Wright - Replace Battery AMS10 Beacon--Install Serveron DGA on both autotransformers XS903 Ritzville - Replace A-94 MOAS Control Box AMS85 Northwest - Add Fiber Redundancy/Upgrade XS951 Millwood - Add Radios in Yard - 2 Poles Othello Switching Station - HVP Upgrade 42P09 Clearwater - Upgrade Metering XS801 Clearwater - Replace Battery AMS09 Oden - Replace 115kV Switches AMS85 Bronx - Replace small conductor AMS32 Garfield - Replace HV Fuses AMS80 Clearwater--Microwave Refresh Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 28 of 31 23 Substation System Review, 2016 Future Projects BI Reference Beacon - Add Thermal Relays - A-603/A-607 XS002 St. Maries--Install SCADA XS951 Ninth & Central - Rebuild Distribution Sub SS514 S. Lewiston 115--Rebuild station, replace transformers LS207 Ninth & Central - Move lateral line into substation SS514 Moscow City—Upgrade SCADA/Integrate System XS951 Indian Trail - Add Fiber; Upgrade Communications XS951 Northwest - Rebuild SS206 College & Walnut - Replace Breakers A-431 and A-432 AMS32 Davenport - Minor Rebuild BS400 Colville - HVP Upgrade 42P09 Kooskia 115kV--Replace Transformer AMS28 Milan - Replace A-599 MOAS AMS85 N. Moscow - Install A-369 MOAS AMS85 Warden - Replace Breakers AMS32 Warden - Install SSVT for Station Service XS905 Otis Orchards – Install SSVT for Station Service XS905 Beacon--Upgrade SCADA/Integration System XS951 Clearwater--Upgrade Relaying AMS07 St. Maries - Install 115kV Arresters AMS81 O'Gara - Install 115kV Arresters AMS81 Lee & Reynolds--Add Transformer #2 AMS28 Upriver--Replace/Upgrade Metering XS801 Dry Gulch--Replace/Upgrade Metering XS801 Cabinet - Install substation fuses/Lighting circuits AMS80 Clearwater - Replace/Upgrade SCADA XS951 Little Falls – Rebuild BS304 Tenth & Stewart--Station Upgrades/Rebuild LS202 Valley - Rebuild Substation WS402 Sunset - Rebuild Substation SS890 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 29 of 31 24 Substation System Review, 2016 Future Projects BI Reference Metro - Rebuild Substation SS208 Big Creek - Rebuild Substation KS201 Coeur Shaft - Minor Rebuild TBD Pound Lane - Rebuild Substation TBD Chester - Rebuild Substation SS207 Othello - Rebuild Substation TBD Silver Lake - Rebuild Substation TBD Dalton - Rebuild Substation TBD Huetter - Rebuild 115kV Yard CS503 Bronx - Rebuild Substation AS203 Noxon Rapids - New Substation AS202 Saddle Mt. - New Substation TBD Tamarack - New Substation PS203 McFarlane - New Substation SS516 Bovill - New Substation TBD Ross Park--Install Security Wall 06P98 Post Street Transformer Cooling Discharge TBD ORO - Grid Modernization - Feeder 1280 TBD Table 9: Future Projects System Planning Projects There is considerable opportunity for more collaboration between Asset Management and System Planning on capital asset risk assessments, analyses and development of long-term asset management plans, where overlaps and synergistic opportunities present themselves. Risk is equivalent to the product of the probability and the consequence of a given event. Currently, there are no substation System Planning projects that are covered by Asset Management. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 30 of 31 25 Substation System Review, 2016 Reference and Data Sources Various information and data sources were used to compile the information for this report. As referenced in the Purpose introduction, the emphasis was placed on Avista’s Maximo implementation for all inventory and date-specific asset details. This process will provide a tracking database for repeatable historical references, trending, and accurate data snapshots as the system continues to be deployed and data capture processes refined. Other sources include Availability Workbench simulations, the legacy Major Equipment Tracking System (METS), Outage Management Tool (OMT) data, substation engineering files, substation engineering SharePoint site, and the substation Projects and Capital Budget spreadsheets. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 3, Page 31 of 31 2016 Amber Fowler, Rodney Pickett , Dave James, Ross Taylor, and Mareval Ortiz-Camacho Avista Corp Electric Distribution System 2016 Asset Management Plan Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 1 of 88 Prepared by: _________________________________________________________ Amber Fowler, Asset Management Engineer Reviewed by: _________________________________________________________ Rodney Pickett, Asset Management Engineering Manager _________________________________________________________ Dave James, Distribution Engineering Manager _________________________________________________________ Glenn Madden, Asset Maintenance Manager Approved by: _________________________________________________________ Scott Waples, Director of Planning and Asset Management Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 2 of 88 Table of Contents Purpose ......................................................................................................................................................... 7 Executive Summary ....................................................................................................................................... 7 Data Sources ............................................................................................................................................... 10 Standard Calculations ................................................................................................................................. 11 Review of OMT Data and Trends ................................................................................................................ 11 OMT Events per Year .............................................................................................................................. 11 SAIFI Trends by OMT Sub-Reasons ......................................................................................................... 17 OMT Sub-Reason Events High Limit ........................................................................................................ 19 System ......................................................................................................................................................... 25 Major Changes ........................................................................................................................................ 25 Specific Distribution Programs and Assets ................................................................................................. 25 Distribution Wood Pole Management (WPM)........................................................................................ 25 Selected KPIs and Metrics ................................................................................................................... 26 WPM Metric Performance .................................................................................................................. 30 WPM Model Performance .................................................................................................................. 32 WPM Summary ................................................................................................................................... 32 Wildlife Guards ....................................................................................................................................... 37 Selected KPIs and Metrics ................................................................................................................... 37 WILDLIFE GUARDS KPI Performance ................................................................................................... 38 WILDLIFE GUARDS Metric Performance ............................................................................................. 39 WILDLIFE GUARDS Model Performance ............................................................................................. 39 WILDLIFE GUARDS Summary .............................................................................................................. 39 URD Primary Cable .................................................................................................................................. 42 Selected KPIs and Metrics ................................................................................................................... 42 URD PRIMARY CABLE KPI Performance .............................................................................................. 43 URD PRIMARY CABLE Metric Performance ......................................................................................... 44 URD PRIMARY CABLE Model Performance ......................................................................................... 44 URD PRIMARY CABLE Summary .......................................................................................................... 44 Distribution Transformers ....................................................................................................................... 45 Selected Metrics ................................................................................................................................. 45 Metric Performance ............................................................................................................................ 46 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 3 of 88 Summary ............................................................................................................................................. 46 Area and Street Lights ............................................................................................................................. 46 Selected Metrics ................................................................................................................................. 46 Summary ............................................................................................................................................. 46 Distribution Vegetation Management (VM) ........................................................................................... 47 Selected KPIs and Metrics ................................................................................................................... 47 VM KPI Performance ........................................................................................................................... 48 VM Metric Performance ..................................................................................................................... 50 VM Model Performance...................................................................................................................... 51 VM Summary....................................................................................................................................... 51 Distribution Grid Modernization Program .............................................................................................. 52 Selected Metrics ................................................................................................................................. 52 Metric Performance ............................................................................................................................ 56 Summary ............................................................................................................................................. 57 Worst Feeders ......................................................................................................................................... 57 Feeder Tie Circuits................................................................................................................................... 59 ARD12F2-ORN12F1 Tie Circuit ............................................................................................................ 59 DAV12F2-RDN12F1 Tie Circuit ............................................................................................................ 60 Summary ............................................................................................................................................. 60 Spokane Electric Network ....................................................................................................................... 61 Equipment Types and Aging ............................................................................................................... 61 KPI and Metrics ................................................................................................................................... 61 Capital Budgets and Spending - Overview .......................................................................................... 61 New Services – Expenses .................................................................................................................... 61 Replacement of old PILC primary cable– Expenses ............................................................................ 61 Replacement of old PILC and RINC secondary cable– Expenses ......................................................... 64 Purchase of new and replacement of aging transformers and network protectors– Expenses ........ 64 Repair/refurbishment/replacement of vaults/manholes/handholes– Expenses ............................... 65 Non-routine Projects Being Carried Out on Specific CARs– Expenses ................................................ 67 Network Communications Stage 1– Expenses .................................................................................... 67 Monroe and Lincoln St Repaving– Expenses ...................................................................................... 67 Distribution Line Protection .................................................................................................................... 68 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 4 of 88 Assets Not Specifically Covered Under a Program ................................................................................. 68 Conclusion ........................................................................................................................................... 68 Distribution Vegetation Management .................................................................................................... 70 Distribution Wood Pole Management .................................................................................................... 75 Grid Modernization ................................................................................................................................. 77 Transformer Change-Out Program ......................................................................................................... 79 Business Cases ........................................................................................................................................ 80 Figure 1, OMT Annual Number of Events and AM Related Event Trends and Trend Lines ........................ 16 Figure 2, OMT Events with and without Planned Maintenance or Upgrades ............................................ 17 Figure 3, Individual Sub-Reasons exceeding Quarterly High Limits ............................................................ 20 Figure 4, Top 10 Sub-Reasons with the Value of SAIFI Rising over Time .................................................... 21 Figure 5, 2015 OMT SAIFI Contribution by Sub-Reason ............................................................................. 22 Figure 6, 2015 OMT Sustained Outage Comparisons ................................................................................. 23 Figure 7, Customers Affected Per Event Exceeding Risk Action Levels ...................................................... 24 Figure 8, WPM OMT Event Trends .............................................................................................................. 33 Figure 9, WPM Contribution to Annual SAIFI value by Sub-Reason and Year ............................................ 34 Figure 10, Wood Pole Used by Summarized Activity .................................................................................. 35 Figure 11, Distribution Wood Pole Age Profile ........................................................................................... 36 Figure 12, Wildlife Guards Installed by Year and Expenditure Request ..................................................... 40 Figure 13, Wildlife Guards Usage by MAC for 2011-2015 .......................................................................... 41 Figure 14, URD Primary Cable OMT Events by Year ................................................................................... 44 Figure 15, OMT Events Data Trends for Tree-Weather, Tree Growth, and Tree Fell Sub-Reasons............ 49 Figure 16, OMT Outage and Partial Outage Data Trends for Tree-Weather, Tree Growth, and Tree Fell Sub-Reasons ................................................................................................................................................ 50 Figure 17, OMT Sustained Outages related to Grid Modernization ................................................... 55 Figure 18, Wood Pole Management and Grid Modernization Before and After ........................................ 56 Figure 19, ARD12F2 to ORN12F1 Tie .......................................................................................................... 59 Figure 20, DAV12F2 - RDN12F1 Tie ............................................................................................................. 60 Figure 21, A faulted PILC cable ................................................................................................................... 62 Figure 22, A second faulted PILC cable ....................................................................................................... 63 Figure 23, A network transformer after a failure in the primary compartment ........................................ 65 Figure 24, Interior of a badly deteriorated old manhole in a heavily traveled street ................................ 66 Figure 25, Duct bank damage entering an old deteriorated manhole ....................................................... 66 Figure 26, Complete replacement of a badly deteriorated manhole ......................................................... 67 Table 1, OMT Events by Sub-Reason and Year ........................................................................................... 11 Table 2, OMT Outages and Partial Outages by Sub-Reason and Year ........................................................ 13 Table 3, Top Ten Trends Upward in OMT Data by Sub-Reason based on 2009-2015 data ........................ 14 Table 4, Top Ten Trends Downward in OMT Data by Sub-Reason based on 2009-2015 data ................... 15 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 5 of 88 Table 5, SAIFI Trends by OMT Sub-Reason Average per Outage ................................................................ 18 Table 6, OMT Sub-Reasons Exceeding Annual High Limit ........................................................................... 19 Table 7, WPM KPI Goals by Year ................................................................................................................. 26 Table 8, WPM Metric Goals by Year ........................................................................................................... 29 Table 9, Wildlife KPI Goals for 2010 - 2015 ................................................................................................. 38 Table 10, Wildlife Metric Goals for 2010 - 2015 ......................................................................................... 38 Table 11, Worst Feeders for Squirrel related Events for 2015 ................................................................... 39 Table 12, URD Cable - Pri KPI Goals ............................................................................................................ 43 Table 13, URD Cable - Pri Metric Goals ....................................................................................................... 43 Table 14, TCOP Metrics ............................................................................................................................... 45 Table 15, Vegetation Management Metric Goals ....................................................................................... 48 Table 16, VM KPI Performance ................................................................................................................... 48 Table 17, Tree-Weather OMT Events Metric for Vegetation Management ............................................... 51 Table 18, VM Cost per Mile and All Vegetation Management Work Metric .............................................. 51 Table 19, Grid Modernization Program Objectives .................................................................................... 52 Table 20, Energy Savings based on Integrated Resource Plan ................................................................... 53 Table 21, OMT Sub-Reasons impacted by Grid Modernization .................................................................. 54 Table 22, Metric Performance for Grid Modernization Program ............................................................... 57 Table 23 Worst Feeder SAIFI 3 Year Average .............................................................................................. 58 Table 24 Worst Feeder Projects and Costs ................................................................................................. 58 Table 25, Assets Not Specifically Covered Under a Program ...................................................................... 68 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 6 of 88 Purpose This report documents the asset plans for Electrical Distribution System for Avista. The plans discussed here represent what we believe to be the best approach to managing Avista’s Distribution assets and provides the Key Performance Indicators (KPIs) and metrics Asset Management (AM) to support the plans and demonstrate the effectiveness of those plans implemented. The report also helps identify areas for improvement or opportunities to improve the value we receive from our assets. Some of the metrics provide a basis for comparing how an asset performed with a program and how it would have performed without a program. The difference in performance provides an estimate of the cost saving of the program. The estimated savings is only a snapshot in time and may not represent the exact savings; it provides a relative comparison and supporting justification for AM decisions made in the past. Other KPIs and metrics provide indications of how well an asset is performing and helps determine when further work is required. KPIs and metrics tracking also help evaluate the accuracy of different AM models and determine when or if a model should be revised. Executive Summary The primary message of this asset management plan is that the programs in place have been positively impacting the number of outages and decreasing the cost to mitigate these failures. Continuous improvement upon these programs is necessary to maintain reliability and efficiency. Assets are aging faster than our current programs and plans can alleviate. However, programs are continually being analyzed and updated to continue to improve our overall management of the distribution assets. If available, each of the below summaries include a ranking criteria table. This table includes the Customer IRR from the business case, the Benefit to Cost Ratio from our IRR calculation analysis and the Risk Reduction Ratio from the supporting business case. Current Programs: 1. Grid Modernization – includes replacing poles, transformers (Pad Mount, Overhead & Submersible), cross arms, arresters, air switches, grounds, cutouts, riser wire, insulators, conduit and conductors in order to address concerns related to age, capacity, high electrical resistance, strength, and mechanical ability. The program also includes the addition of wildlife guards, smart grid devices and switched capacitor banks, balancing feeders, removing unauthorized attachments, replacing open wire secondary, and reconfigurations. Although this is a new program it does appear to be reducing outages for the feeders worked on. The program has slowly shifted from “Feeder Upgrade” to this new larger scoped Grid Modernization program. With only a few years of data since completion of the earliest feeders, this program needs time to mature, so the full value of the program can be realized. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 7 of 88 2. Transformer Change-Out Program – has run smoothly for the past few years with the targets and KPIs being met regularly. This program was largely implemented to reduce the environmental concern of Polychlorinated biphenyls (PCBs) in some Pre-81 transformers. The environmental risks have been heavily decreased, with a focus in areas that have a greater potential to impact our waterways. Since these are also old and inefficient transformers, our efficiency has increased. However, this program is about to switch over to the second phase. With this switchover the program will “piggy back” on Wood Pole Management for a complete cycle to finish removing the non-PCB Pre-81 transformers from our system. The effectiveness and efficiency of this second phase is yet to be determined. 3. URD Cable Replacement – is the programmatic replacement of the pre 1982 unjacketed Underground Residential District (URD) cable. Originally the removal of all of the pre 1982 cable was to be completed in 5 years; however, funding didn’t match the original target and some cable remains in use today. To date the program has paid great dividends towards reducing URD Cable-Pri events when compared to where it would have been without taking action. Although many feet of this type of cable remain in use, the outages have been greatly reduced and we are seeing few outages due to this early generation of cable. 4. Vegetation Management – maintains the distribution system clear of trees and other vegetation. This reduces outages caused by trees and to a lesser extent outages caused by squirrels. This program has had a big impact on reducing our number of unplanned outages. Reducing these outages improves our reliability, reduces our risk during storms and decreases safety hazards for our employees working on the distribution system. Tree related outages continue to decline and the cost per mile to do this program have continually decreased due to efficiency gains, improved processes and new methods such as per unit costing; which in turn drives up the value of this program. 5. Wood Pole Management – inspects and maintains the existing distribution wood poles on a 20 year cycle. In addition to inspecting the poles, we inspect distribution transformers, cutouts, insulators, wildlife guards, lightning arresters, crossarms, pole guying, and pole grounds. The inspection of these other components on a pole drives additional action to replace bad or failed equipment along with replacing known problematic components. Overall, WPM has been effective at maintaining the current level of reliability to our customers, however, we will need to complete work on more feeder miles to control the impact on future reliability. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 8 of 88 6. Area and Street Light – replaces non-decorative high pressure sodium and mercury vapor lights with equivalent LED lights. The initial year of the program changed out 100W and 200W HPS and MV non-decorative street lights in Washington only. The scope was changed and going forward all wattage types of non-decorative lights for both area and street lights will be replaced in both Washington and Idaho. The first year of the program finished on budget with more lights completed than anticipated. The scope change and potential budget cuts may push this 5 year program out, however, the impressive first year gives hope that with an intact budget the program may complete closer to the 5 year cycle than not. 7. Worst Feeder – This program aims to improve the reliability of its most underperforming distribution circuits. Projects vary by individual circumstance but in many cases additional circuit reclosers are installed to reduce outage exposure and to automatically restore power to upstream customers or circuits in outage prone areas are converted from overhead to underground or circuits are effectively ‘hardened’ by shortening conductor span lengths or by increasing phase spacing. This programs goal is to selectively improve the feeders with the worst SAIFI and so far this program seems to be producing as planned. Not all feeders drop off the list after work is done but most have a large reduction in outages after work is done. 8. Segment Reconductor and Feeder Tie – addresses specific congestion issues in the distribution system. The purpose of the program is to reconductor portions of circuits or to install additional ‘tie’ points to enable load shifts and transfers. In most situations, this involves that poles be replaced and that existing conductors remain in service during the majority of the work. Transformers, customer service wires, and other equipment including crossarms, insulators, guy wires, brackets, communication circuits, fuse holders, and other hardware must be installed new or transferred to new poles. This program helps maintain operational flexibility and circuit reserve capacity for our distribution system. 9. Network – Major network equipment falls into four categories: network transformers, network protectors, cable (primary and secondary), and physical facilities – duct banks, vaults, manholes, and handholes. There are no established performance metrics for this program. The network is designed with redundancies to prevent outages and our current outage management tool does not “see” network events, making it difficult to keep track of the typical metrics used in other programs. 10. Protection – Avista's Electric Distribution system is configured into a trunk and lateral system. Lateral circuits are protected via fuse-links and operate under fault conditions to isolate the Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 9 of 88 lateral in order to minimize the number of affected customers in an outage. Engineering recommends installation of cut-outs on un-fused lateral circuits and the replacement of obsolete fuse equipment (e.g. Chance, Durabute/V-shaped, Open Fuse Link/Grasshopper, Q-Q, Load Break/Elephant Ear, and Porcelain Box Cutouts). As part of the program, sizing of fuses will be reviewed to assure protection of facilities, as well as coordination with upstream/downstream protective devices. This program began as an obsolete replacement program but has grown to incorporate un-fused and wrong fused laterals. Cutout outages have decreased through this program but with the added scope a new metric will need to be made. This is a targeted program to ensure adequate protection of lateral circuits and to replace known defective equipment. *Original scope To date the programs developed have made a huge impact in the number of outages on the distribution system. The cyclic programs need to continue to be analyzed and updated to maintain the improved reliability, reduced risk and decreased O&M costs. Since the assets continue to age faster than the current programs can mitigate, new programs or scope changes will be required going forward to continue to provide our customers with safe and reliable service. Data Sources Much of the information used in this report’s metrics comes from three sources: Annual Sustained and Momentary outage data; Outage Management Tool (OMT) events; and Oracle (financial and supply chain database). The annual Sustained and Momentary outage data is generated by the Distribution Dispatch Engineer each month in a spreadsheet. The Sustained and Momentary outage data for years 2001 – 2007 was modified by AM to align the reasons and sub-reasons to coincide with the current descriptions. While the Sustained and Momentary outage data comes from OMT data and is a subset of OMT data, this data has been scrubbed by the Distribution Dispatch Engineer to improve its accuracy. The OMT tracks outages and customer reports of problems on the Distribution system, Substations, and Transmission events that cause outages on the Distribution system. This data includes sustained outages, momentary outages, and events without outages. Events that only cause a partial outage or no outage at all do not show up in the Sustained and Momentary outage data, because the data does not fit the definition of a sustained outage or a momentary outage. However, the OMT data is sometimes subject to reporting an event more than once. The Distribution Dispatch Engineer reviews the data and strives to prevent duplication by rolling events up and editing the data. However, some duplication still occurs. OMT data is used to calculate number of outages, number of OMT events (outages, partial outages, and non-outage events), outage duration, number of customers impacted, response times, System Average Interruption Frequency Index (SAIFI) impacts, and System Average Interruption Duration Index (SAIDI) impacts. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 10 of 88 Discoverer provides financial, customer information, and material usage information from our warehouse and financial systems. Spending and material can be tracked to the ER and BI level for capital work and the Master Activity Code (MAC) and Task for Operations and Maintenance (O&M) work. Standard Calculations See reference the “2010 General Metrics Data Collection and Analysis for System Reviews” for the details and examples of how different measures and metrics are calculated. Review of OMT Data and Trends Examining the data in OMT reveals a lot of information which helps Avista understand the condition of our assets and shows some trends we can address. Below, we will examine various trends within OMT Events per Year, SAIFI trends by OMT Sub-Reasons, and other measures. OMT Events per Year Table 1 shows the past seven years of data out of OMT by Sub-Reason and allows trend analysis. OMT Events represents cost and action for Avista, so it was selected as a basis for much of our trending. However, OMT Outage data (shown in Table 2) can have a different trend than OMT Events. Since the SAIFI analysis already includes outage data, AM selected to trend OMT Events and SAIFI contribution. Based on Table 1, we identified the top 10 increasing and decreasing trends in OMT Sub-Reasons. The Top 10 increasing trends in the number of OMT events by year is shown in Table 3 and the Top 10 decreasing trends in the number of OMT events by year is shown in Table 4. Table 1, OMT Events by Sub-Reason and Year OMT SUB-REASON 2009 2010 2011 2012 2013 2014 2015 Arrester 19 32 30 36 24 32 20 Bird 218 179 332 231 270 248 227 Capacitor 4 2 0 4 4 3 0 Car Hit Pad 139 105 98 105 117 104 88 Car Hit Pole 217 298 339 355 369 378 307 Conductor - Pri 42 64 81 110 142 135 83 Conductor - Sec 286 273 310 286 331 323 299 Connector - Pri 111 101 100 79 85 85 51 Connector - Sec 429 410 408 390 336 321 283 Crossarm-rotten 23 25 28 19 18 26 23 Customer Equipment 1626 1458 1384 1434 1368 1328 1200 Cutout/Fuse 197 217 176 209 171 196 109 Dig In 164 149 123 109 103 104 96 Elbow 7 5 8 2 10 6 5 Fire 157 203 234 230 282 200 206 Forced 51 63 67 33 63 68 29 Foreign Utility 724 894 720 734 720 602 765 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 11 of 88 OMT SUB-REASON 2009 2010 2011 2012 2013 2014 2015 Insulator 32 49 36 32 47 34 37 Insulator Pin 28 24 30 25 23 16 19 Junctions 2 2 1 4 6 7 2 Lightning 598 163 179 635 453 297 200 Maint/Upgrade 539 1571 3334 2589 1840 1880 1566 Other 394 414 426 483 472 467 344 Pole Fire 116 102 117 113 152 134 153 Pole-rotten 44 37 35 52 34 55 43 Primary Splice 0 1 1 0 0 0 0 Protected 18 10 4 5 5 3 4 Recloser 4 11 3 2 3 11 2 Regulator 14 20 17 13 17 18 13 SEE REMARKS 821 892 543 487 463 508 518 Service 123 188 197 230 191 124 172 Snow/Ice 988 565 167 352 122 243 1882 Squirrel 700 390 395 358 215 279 272 Switch/Disconnect 9 3 0 3 6 16 8 Termination 7 7 9 12 21 19 8 Transformer - OH 158 128 156 167 132 133 84 Transformer UG 57 53 51 50 71 60 62 Tree 55 53 51 56 46 60 47 Tree Fell 390 506 392 377 298 393 340 Tree Growth 375 330 335 335 349 400 280 Underground 0 3 1 3 2 2 0 Undetermined 1145 948 861 783 765 723 728 URD Cable - Pri 136 93 95 72 93 88 64 URD Cable - Sec 212 190 248 219 208 188 153 Weather 357 895 325 314 216 166 208 Wildlife Guard 3 0 1 2 0 0 0 Wind 294 1309 256 1042 1126 3238 6465 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 12 of 88 Table 2, OMT Outages and Partial Outages by Sub-Reason and Year OMT SUB-REASON 2009 2010 2011 2012 2013 2014 2015 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 13 of 88 OMT SUB-REASON 2009 2010 2011 2012 2013 2014 2015 URD Cable - Sec 201 175 227 202 190 173 145 Weather 273 620 178 170 137 101 122 Wildlife Guard 3 0 0 2 0 0 0 Wind 229 982 195 802 840 2345 5721 Table 3, Top Ten Trends Upward in OMT Data by Sub-Reason based on 2009-2015 data Top Ten Upward Trends OMT Sub-Reason Slope Change per Year Wind 709 Maint/Upgrade 79 Snow/Ice 62 Fire 12 Conductor - Pri 9 Foreign Utility 9 Car Hit Pole 9 Conductor - Sec 8 Pole Fire 7 Bird 3 Table 3 shows that the largest upward trend changed this year to Wind. This change was due to the large wind storm that impacted our service territory in November. Snow/Ice is also very high on the list and is mostly due to the snow storm in December. Without these major events then Maintenance and Upgrade would continue to be the largest trend upward. We have implemented many programs that increase our outages due to maintenance but decrease the number of outages due to failures. Bird has always been on this list but has slowly dropped to the number 10 spot with a much smaller trend upward suggesting the increase in wildlife guard installation has had a positive impact. Car Hit Pole remains pretty steady trending upward and will continue to be monitored. Both Primary and Secondary Conductor are both increasing at a steady pace and may need to be reevaluated. Primary Conductor is only addressed with our Grid Modernization and Segment Reconductor and Feeder Tie program. Fire has consistently been on the top 10 list but is a customer issue and not an Avista issue so this is not something Avista can mitigate. Foreign Utility is also a non Avista issue and does not need to be addressed within this document. Table 4 shows the Top 10 OMT Sub-Reasons with a downward trend. The largest downward trend is in Undetermined. This Sub-Reason, as well as SEE REMARKS, have been trending downwards for a few years and is believed to be due to an increased focus on the importance of accurate and standardized outage data. Squirrel events continue to decline, as well. This is probably largely due to adding Wildlife Guards (WLG) on new installs and adding them to existing transformers as part of Wood Pole Management and Grid Modernization. The URD cable Replacement program for the first generation of unjacketed cable has paid great dividends when compared to where it could have been without taking action at reducing URD Cable – Pri events. Reduction in lighting strikes may simply be due to nature, Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 14 of 88 however, the Wood Pole Management (WPM), Grid Modernization and Transformer Change-out Program (TCOP) may also be helping to mitigate this issue by adding lightning arrestors to new install transformers. The decrease in Cutout/Fuse Sub-Reasons can likely be attributed to Wood Pole Management, TCOP and Grid Modernization programs along with some contribution from other programs. The remaining Sub Reasons in the table have trend downward but the changes are not material at this point in time or are outside of Asset Management’s control. Table 4, Top Ten Trends Downward in OMT Data by Sub-Reason based on 2009-2015 data Top Ten Downward Trends OMT Sub-Reason Slope Change per Year Undetermined -61 Squirrel -60 Weather -55 Customer Equipment -37 SEE REMARKS -36 Lightning -23 Connector - Sec -11 Cutout/Fuse -9 URD Cable - Pri -8 Connector - Pri -8 The overall trends in OMT Events are shown in Figure 1 along with the trends in AM related OMT Events (see Appendix A of the “2010 Asset Management Electrical Distribution Program Review and Metrics” and the table titled “List of AM Related OMT Sub-Reasons” to see which OMT Sub-Reasons are considered AM Related). Based on Figure 1, Avista sees the trend in the number of events decreasing over the past 5 years. AM related OMT events are actually decreasing at a rate around 4%. Since the regional growth rates are less than 2%, the decrease is most probably due to the increase in maintenance in the system and replacement of aged infrastructure. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 15 of 88 Figure 1, OMT Annual Number of Events and AM Related Event Trends and Trend Lines y = 623.11x -1E+06 y = -109.11x + 222428 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 2009 2010 2011 2012 2013 2014 2015 2016 Nu m b e r o f E v e n t s b y Y e a r Year Total Number of OMT Events by Year AM Related Total Linear (Total Number of OMT Events by Year)Linear (AM Related Total) Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 16 of 88 Figure 2, OMT Events with and without Planned Maintenance or Upgrades SAIFI Trends by OMT Sub-Reasons Examining how SAIFI changes each year is shown in Table 5. SAIFI values in Table 5 represent the annual value each event contributes to the overall SAIFI number. For example, in 2011, the average Arrester event in OMT added 0.003380523 to the overall SAIFI number for the year. While the number of electrical customers does typically grow each year, the main driver for changes in the average SAIFI number per event comes from the average numbers of customers affected by the event. Continuing our example with Arresters, in 2010 Avista had 356,777 electrical customers and the average Arrester outage event affected 102 customers, so the average SAIFI impact per event was 0.009230266. In 2011, our electrical customer count increased to 358,443 and the average number of customers affected by an Arrester related outage dropped to 40, and the average SAIFI impact due to Arrester events dropped to 0.003380523. The result for SAIFI was an increase in the average impact to SAIFI in 2010 compared to 2011. While most Sub-Reasons in OMT have fluctuating value around an average value over the past five years, some Sub-Reasons have demonstrated a definite trend upward as shown in Figure 4. Figure 4 shows the top 10 Sub-Reasons based on the percentage change in 2015. Some of the Sub-Reasons in Figure 4 do not have a significant impact on the SAIFI number, however, the trend for all of these Sub- 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 2009 2010 2011 2012 2013 2014 2015 2016 Ev e n t s Total Outage Management Tool Events vs Year OMT Events w/o Maint/Upgrades OMT Events w/ Maint/Upgrade Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 17 of 88 Reasons are the top increasing SAIFI trends over 5 years which could eventually move them into the top SAIFI contributors over time. Figure 5 and Figure 6 illustrate the makeup of the overall SAIFI value and overall OMT Sustained Outages. Figure 5 and Figure 6 show a different result because the number of customers impacted by each Sub-Reason is different. For example, we have very few Pole Fire caused outages, but they affect a large number of customers. So, Pole Fire shows a significant impact to SAIFI in Figure 5 but is insignificant on Figure 6. Table 5, SAIFI Trends by OMT Sub-Reason Average per Outage Average SAIFI by Sub-Reason Event OMT Sub-Reason 2010 2011 2012 2013 2014 2015 0.009230266 0.003380523 0.015245676 0.003562297 0.009598559 0.001364179 0.026835343 0.050143556 0.015659978 0.064285794 0.021842454 0.026664936 0.002842798 0 0.006147101 8.27074E-06 0 0 0.001972404 0.00315424 0.004171572 0.004940524 0.003134 0.0051936 0.055741604 0.034563763 0.078829605 0.061689509 0.07509589 0.042359382 0.013459389 0.025213018 0.024181701 0.036457655 0.029884932 0.020986851 0.001923463 0.001952154 0.003857768 0.002491023 0.003821952 0.004026636 0.029390854 0.022841718 0.023941651 0.01912657 0.023079128 0.00541549 0.001764569 0.001927718 0.002095065 0.001612901 0.001526051 0.002468959 0.010791352 0.017452881 0.004106797 0.001059746 0.015222287 0.000560328 8.43629E-05 4.18879E-05 0 4.96037E-05 0 3.39306E-05 0.029472485 0.014918168 0.027484801 0.01707108 0.018776702 0.009920028 0.002911047 0.007751271 0.001543001 0.001766282 0.006145152 0.001637209 9.54113E-05 0.000737521 2.50685E-05 0.001158911 0.000444984 0.000469738 0.000916016 0.001765849 0.004579849 0.012299424 0.001239404 0.007950852 0.026724006 0.011341762 0.01007956 0.035479695 0.010119982 0.019996134 0.06415389 1.9551E-05 1.10385E-05 3.04099E-05 0 0.006688417 0.00947135 0.00767475 0.001619894 0.018937297 0.020106196 0.011789959 0.00609977 0.012718209 0.002646432 0.004556295 0.008017909 0.001082908 5.63488E-06 0 0.002791077 0.000475014 0.000657922 0 0.05153771 0.029986357 0.107700751 0.152792603 0.10038083 0.050646543 0.115272977 0.131045664 0.093958391 0.118799625 0.097069382 0.104791239 0.177318475 0.156583826 0.114257941 0.085502603 0.082302999 0.115450196 0.108242728 0.087722138 0.058825288 0.078650039 0.096520659 0.160560667 0.002027401 0.002475849 0.001111378 0.002186058 0.007843191 0.000477747 1.40872E-05 0.000227493 0 0 0 0 0.005438117 0.000105902 0.000523814 0.000524546 0.000303026 0.00239954 0.002520587 0.000212125 8.36386E-06 0.001310323 0.01501481 0.001838003 0.019517299 0.003012273 0.020486437 0.010292094 0.015208638 0.011244625 0.0263254 0.022946333 0.024001629 0.035782952 0.030523744 0.024167276 0.001512913 0.001254413 0.001425234 0.001116933 0.00158065 0.001204447 0.091003627 0.039682871 0.109703932 0.035007006 0.078612086 0.304018091 0.021425719 0.039013725 0.050207568 0.026293232 0.039139515 0.030862207 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 18 of 88 OMT Sub-Reason 2010 2011 2012 2013 2014 2015 Switch/Disconnect 0.004582077 0 4.14971E-05 0.020930465 0.036865454 0.008279847 Termination 0.000152009 0.000173439 0.000637191 0.003063515 0.002290441 0.001269524 Transformer - OH 0.002407314 0.017106495 0.004874802 0.004093373 0.026346897 0.008655826 Transformer UG 0.001704189 0.001165537 0.001438726 0.006231495 0.009683188 0.001587665 Tree 0.013288743 0.000938339 0.011356792 0.002750215 0.015326026 0.002845582 Tree Fell 0.092136448 0.062998204 0.067319172 0.054556299 0.057820669 0.084106127 Tree Growth 0.007012046 0.003838547 0.005569335 0.005691876 0.009617668 0.003505633 Underground 2.81744E-06 2.80426E-06 3.87453E-05 5.48895E-06 5.45993E-06 0 Undetermined 0.110134471 0.234672203 0.177748096 0.157264023 0.14781125 0.119112398 URD Cable - Pri 0.005903606 0.008770789 0.002422167 0.006080464 0.005855776 0.0069458 URD Cable - Sec 0.000953008 0.001467391 0.001544569 0.001409578 0.000980058 0.001315704 Weather 0.195547002 0.051231256 0.053674679 0.033680951 0.041372627 0.025389892 Wildlife Guard 0 0 8.35232E-06 0 0 0 Wind 0.291134088 0.089836161 0.195492335 0.209669949 0.517115518 1.128419475 OMT Sub-Reason Events High Limit The second metric used to determine if we must examine a problem is the deviation from the established mean discussed above for each OMT Sub-Reason. If the number of OMT events for a specific Sub-Reason exceeds the OMT Sub-Reason Events High Limit (High Limit) AM may need to conduct an investigation and try to explain why the annual values are exceeding the limit (see Appendix D of the “2010 Asset Management Electrical Distribution Program Review and Metrics”). The High Limit is based on the average of annual values for each Sub-Reason plus two standard deviations. This method is also used to calculate the quarterly High Limit as well. The data for the average is the OMT Data for 2005 through 2009. For 2015, the following OMT Sub-Reasons exceeded their High Limit are shown in Table 6. We anticipated that Avista would exceed these limits due to natural deviations for events outside our control and due to some cyclical nature we observe in our data. Our goal here is to help identify trends in time to potentially address them if possible. Table 6, OMT Sub-Reasons Exceeding Annual High Limit OMT Sub-Reasons Exceeding their associated OMT High Limit Number of Years High Limit Exceeded Car Hit Pole 6 Conductor – Pri 5 Wind 3 Based on Table 6, presently there are no issues requiring changes to our current plans. We will continue to monitor Conductor – Pri, as this may call for some kind of action in the future. Car Hit Pole is being analyzed by another group. If a program is implemented from this analysis then we should see that issue drop off the High Limit Exceeded chart. Wind has popped up on this chart due to a couple of fourth quarter large storms the past couple of years. We will continue to monitor all of these issues. Figure 3 shows the quarterly trends that feed into the annual trends for the OMT High Limit. For all OMT Sub-Reasons since 2006, only five Sub-Reasons have had more than five quarters where they Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 19 of 88 exceeded the High Limit, Car Hit Pole with 17 quarters above the limit, Conductor – Pri with 8 quarters above the limit, Fire with 6 quarters above the limit and Service with 9 quarters above the limit. This information is consistent with Table 6 above. We will continue to monitor Service for potential future action, but it currently does not warrant a maintenance or replacement strategy. Figure 3, Individual Sub-Reasons exceeding Quarterly High Limits y = 0.0659x + 1.3231 0 1 2 3 4 5 6 7 8 9 10 20 0 6 - 1 20 0 6 - 3 20 0 7 - 1 20 0 7 - 3 20 0 8 - 1 20 0 8 - 3 20 0 9 - 1 20 0 9 - 3 20 1 0 - 1 20 1 0 - 3 20 1 1 - 1 20 1 1 - 3 20 1 2 - 1 20 1 2 - 3 20 1 3 - 1 20 1 3 - 3 20 1 4 - 1 20 1 4 - 3 20 1 5 - 1 20 1 5 - 3 Nu m b e r o f S u b -Re a s o n s e x c e e d i n g A v e r a g e l e v e l s b y 2 S t a n d a r d D e v i a t i o n s Year -Quarter Individual Sub-Reasons Exceeding Average Levels by 2 Standard Deviations per Quarter Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 20 of 88 Figure 4, Top 10 Sub-Reasons with the Value of SAIFI Rising over Time 0% 5% 10% 15% 20% 25% 30% Top 10 OMT Sub-Reasons in growing Unreliability by SAIFI Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 21 of 88 Figure 5, 2015 OMT SAIFI Contribution by Sub-Reason Wind 48% Snow/Ice 13% Pole Fire 7% Undetermined 5% Other 5% Maint/Upgrade 4% Tree Fell 4% Lightning 2% Car Hit Pole 2% Squirrel 1% Bird 1% Weather 1% SEE REMARKS 1%Conductor -Pri 1%Forced 1% Everything Else 5% 2015 SAIFI Contribution by OMT Sub-Reason Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 22 of 88 Figure 6, 2015 OMT Sustained Outage Comparisons Wind 39% Snow/Ice 11% Maint/Upgrade 9% Customer Equipment 7% Foreign Utility 5% Undetermined 4% SEE REMARKS 3% Other 2% Tree Fell 2% Car Hit Pole 2% Conductor -Sec 2% Connector -Sec 2% Tree Growth 2% Squirrel 2% Bird 1% Weather 1% Fire 1% Lightning 1% Service 1%Pole Fire 1%URD Cable -Sec 1% Sustained Events by OMT Subreason Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 23 of 88 Figure 7, Customers Affected Per Event Exceeding Risk Action Levels 0 50 100 150 200 250 300 350 400 450 500 2011 2012 2013 2014 2015 Cu s t o m e r s I m p a c t e d p e r e v e n t Annual RAL curves Pole Fire Wind Wind Risk Action Level Pole Fire Risk Action Level Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 24 of 88 System The distribution system has an equipment average life of 55 years with the replacement value of a little over $2 billion dollars. For Avista to maintain the system at its current level, just under $37 million a year would need to be spent on replacing aging infrastructure. The overall capital spending for the distribution was just over $85.5 million (this includes the large storm and growth). The total capital spending on just replacement work (with the large storm) was just over $83.5 million. Our replacement work, without the storm, still exceed our levelized spending required to keep the system at its current state. Avista also spent around $14 million in O&M on the distribution system. Network The downtown network has an equipment average life of 50 years with the replacement value of a little over $93.7 million. For Avista to maintain the system at its current level, just under $1.9 million a year would need to be spent on replacing aging infrastructure. The overall capital spending for the network was $2.7 million (this includes growth). The total capital spending on just replacement work was $1.3 million. Our replacement work last year did not meet our levelized spending required to keep the system at its current state. Major Changes The distribution system is a fairly constant system. Most programs are in place to maintain or improve infrastructure for current customers or build new to support new customers. Currently there is a program set to be completed next year that will change out the last area that Avista serves at the legacy 4kV voltage. This voltage is obsolete for serving utility distributions systems and we have very limited spare equipment to continue service at this voltage. This is a needed upgrade to our standard distribution class voltage and equipment that was delayed in 2014 due to resources, and was pushed into 2015 and 2016. This is also the first year that Avista has installed LED street lights. This marks the beginning of a complete system conversion from the more inefficient high pressure sodium and legacy mercury vapor lighting to LED lights for both Area and Street Lighting. Specific Distribution Programs and Assets In the following sections, AM reviews the different programs and work done to determine an AM action plan for particular assets. Some plans indicated the current case or no action was the best approach and others indicated there was an appropriate action for managing an asset. If a plan was implemented, then the available information will be reviewed to determine how the plan has impacted the system. Distribution Wood Pole Management (WPM) The current WPM program inspects and maintains the existing distribution wood poles on a 20 year cycle. Avista has 7,702 overhead circuit miles. The average age of a wood pole is 28 years with a standard deviation of 21 years. Nearly 20% of all poles are over 50 years old and we have an estimated 240,000 Distribution poles in the system. This means that about 48,000 poles are currently over 50 years old. Our inspection cycle allows us to reach approximately 12,000 poles each year. Along with Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 25 of 88 inspecting the poles, we inspect distribution transformers, cutouts, insulators, wildlife guards, lightning arresters, crossarms, pole guying, and pole grounds. The inspection of these other components on a pole drives additional action to replace bad or failed equipment along with replacing known problematic components. These additional inspection items have expanded the current program beyond the original scope, but have proven to be a cost effective way of addressing more than just wood pole issues. The 2016 budget is set to be cut for this program and many others. The goals of this program would be to remain on the same 20 year cycle. The inspections would remain identical to the current scope, however, the follow-up work done through the WPM program would be a subset of the items above. WPM would no longer replace arresters, cutouts, wildlife guards or do any guying repairs, this work would be left up to the offices to complete at within their work plan. Selected KPIs and Metrics AM selected the number of OMT Events by Year related to WPM work and feeder miles of follow-up work completed verses miles of feeders inspected as KPIs to monitor WPM. These KPI relate to reliability performance, cost performance, and customer impacts. Our goal is to maintain or reduce the number of OMT events related to WPM. The current plan optimized the inspection cycle based on cost, so the impacts to reliability were addressed only as they relate to costs. The goal for these KPI is to stay below the number of events averaged over 2005 – 2009 for WPM Related OMT Events. See Table 7 for the goal and for the actual value for 2015. The OMT Events KPI is a lagging KPI and an indication of how well past work has impacted outages. The feeder miles of follow-up work completed verses miles of feeders inspected KPI is a leading indicator and reflects how outages in the future will be impacted by the work. The number of miles inspected is shown in Table 7 for the goal and actual values. The feeder miles of follow-up work completed verses miles of feeders inspected KPI comes from the annual Distribution WPM inspection plan and is the sum of all miles of the feeders completed in that year. The completed number of miles for follow-up work on feeders comes from Asset Maintenance based on their tracking of the work as it is completed. The purpose of this metric is to evaluate how much backlog work is created each year in order to adjust future year’s budgets. Asset Management has been working to increase the budget each year, with the goal of having no back log, by budgeting enough to inspect and follow up on a 20 year cycle. Table 7, WPM KPI Goals by Year KPI Description WPM Goal Related number of OMT Events Actual WPM Related number of OMT Events Projected Miles Follow-up Work** Actual Miles Follow-up Work Completed 2009 1460 1320 500 372 2010 1460 1004 450 435 2011 1460 1004 459 333 2012 1460 1013 416 435 2013 1460 816 445 329 2014 1460 905 412 385 2015 1460 760 390 364 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 26 of 88 *Note: Beginning with 2012, the Actual Miles Follow-up Work Completed will include WPM and Distribution Grid Modernization miles. **To maintain a 20 year cycle the program only needs to complete 390 miles per year. The program is a little behind the targeted average of about 380 miles per year. Metrics provide a more detailed review of WPM. WPM metrics involve more information and calculations than the KPIs and include: WPM contribution to the annual SAIFI number; number of distribution wood poles inspected; material usage for WPM by Electric Distribution Minor Blanket and Storms; number of Pole-Rotten OMT Events; Crossarms-Rotten OMT Events; and actual material use verses model predicted material use for WPM follow-up work (see Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 27 of 88 Table 8). The WPM contribution to the annual SAIFI number metric comes from data pulled out of OMT by Cognos and calculates the average impact to SAIFI per event by Sub-Reason. The average impact to SAIFI per WPM event is the sum of the average impact to SAIFI for Arresters, Cutouts/Fuses, Crossarms, Insulators, Insulator Pins, Pole Fires, Poles – Rotten, Squirrels, Transformers- OH, and Wildlife Guards. The average impact to SAIFI for WPM events is then multiplied by the number of event causing an outage or partial outage (this is the sum of OMT events causing an outage or partial outage for Arresters, Cutouts/Fuses, Crossarms, Insulators, Insulator Pins, Pole Fires, Poles – Rotten, Squirrels, Transformers-OH, and Wildlife Guards). The goal for this metric is the five year average for 2005-2009. The purpose of this metric is to ensure WPM maintains the current reliability. Although the last two year’s SAIFI goals were exceeded it was due in part to a couple large outages. Last year a couple of squirrel instances happened during Hot Line Holds causing a feeder lockout to occur. This year Pole Fire caused the biggest issue. There was a single event that required an entire feeder be taken off line to allow a cutout to be opened safely. This one occurrence impacted nearly 3000 customers. Removing these exceptions from the SAIFI drops the overall WPM SAIFI to an acceptable level. The number of Distribution System poles inspected metric measures the annual plan for inspecting wood poles against how much work was actually completed. The AM plan calls for a 20 year inspection cycle which was originally estimated to be ~12,000 poles per year. The AM plan also represents inspecting 17.5 feeders a year. This metric ensures the WPM program meets the AM plan for Distribution Wood Poles. The final metric, material use verses model predicted material use, tracks the actual number of key stock numbers (see Figure 12for assets monitored) against what the AM model predicted. Discoverer is used to pull stock number usage out for the applicable stock numbers and then they are compared to the AM model predictions. The purpose of this metric is to measure the performance of the model to predict the future outcomes. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 28 of 88 Table 8, WPM Metric Goals by Year *The SAIFI number without the exceptions is within the bounds of the projected SAIFI Figure 8 shows the trends in OMT events for the Sub-Reasons associated with WPM and generally the trend in OMT events is downward. The major contributors (Cutouts/Fuses, Squirrel, and Transformer – OH) all showed a level trend or a general trend downward over the past 5 years. Pole Fire had a slight increase this year but we had a dry hot summer which could account for some of the increase. Overall, WPM is controlling the number of OMT events. The leading indicator, Miles Follow-up Work Completed, shows we were falling behind in addressing issues identified during the inspection. If this backlog continues to grow, it will begin to impact the number of OMT events into the future. Funding limitations are preventing us from clearing out the backlog. We continue to strive to get funding for the back log. The KPI “Actual Miles Follow-up Work Completed” provides an indication of what could happen to the other metrics (see Table 7). Simply inspecting the poles does not improve the systems performance. The follow-up work to the inspection needs to be completed. This metric shows follow-up work carrying over into 2016. The driver for WPM is a 20 year inspection cycle and if allowed to fall behind, the WPM follow-up work could become a major financial issue and reliability risk for future years Grid Modernization, discussed later in this document, also impacts some of the same metrics as WPM (see Table 22 for the actual comparisons). In 2012, we revised the metrics and now include the miles of Projected Metric Description Projected WPM Contribution To The Annual SAIFI Number Projected Number of Dist Poles Inspected Model Predicted Material Use for WPM Follow-up Work Projected Number of Pole Rotten OMT Events Projected Number of Crossarm OMT Events 2009 0.214024996 12,600 4,792 137 32 2010 0.208489356 12,600 4,932 137 32 2011 0.211022023 12,600 5,010 137 32 2012 0.211022023 12,600 6,770 137 32 2013 0.211022023 12,600 8,592 137 32 2014 0.211022023 12,600 10,566 137 32 2015 0.211022023 12,600 12,606 137 32 Actual Metric Description Actual WPM Contribution To The Annual SAIFI Number Actual Number of Dist Poles Inspected Actual Material Use for WPM Follow-up Work Actual Number of Pole Rotten OMT Events Actual Number of Crossarm OMT Events 2009 0.1863468 13,161 7,538 44 25 2010 0.19916836 15,553 7,904 37 23 2011 0.202462739 13,324 28,011 35 28 2012 0.16613099 17,318 28,120 52 19 2013 0.15640942 14,364 15,214 34 18 2014 0.241571914* 11,879 14,901 55 26 2015 0.225273848* 8,157 12,072 43 23 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 29 of 88 completed Grid Modernization work in the Table 7 since the work is coordinated with WPM and intended to help address the backlog in WPM. WPM Metric Performance The annual contribution to SAIFI showed a slight incline in 2015 but the overall trend continues to show improvement and, if the exceptions are removed from this year’s SAIFI then it remains below the five year average value as shown in Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 30 of 88 Table 8 and Figure 9. Overall, WPM has been effective at maintaining the current level of reliability to our customers. The number of Distribution poles inspected measures how well the program is performing against a 20 year inspection cycle. The goal is to inspect every feeder once every 20 years. The work to perform the wood pole inspections is tracked based on the number of poles inspected. Using miles works, but different feeders have different pole densities per mile and the way the contractor bills for the inspection work makes using the number of poles inspected easier. WPM did not hit the planned number of inspections shown in Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 31 of 88 Table 8. This is largely due to a budget cut towards the end of the year. The completed inspections are following the AM plan for WPM very nicely. Figure 10 shows how Avista’s use of Distribution Wood Poles changed with time. This graph supports a growing number of pole and WPM related issues. Based on poles lasting 74 years before they will be replaced on a planned basis, Avista would need to replace 3,200 poles per year at equilibrium. We finally reached and exceeded 3,200 poles per year in 2011 and although the replacement is not a steady number we have remained above the 3,200 threshold since then. Figure 11 shows how an increasing number of poles are reaching 74 years. WPM Model Performance The AM model for WPM provided a decent baseline for estimating the costs of the WPM follow-up work, however, AM is currently reanalyzing this program and so there will be a new baseline in the near future. WPM Summary The main message from the KPI and metrics for WPM is that we are moving in the right direction, but we are falling behind and will need to complete work on more feeder miles to control the impact on future reliability. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 32 of 88 Figure 8, WPM OMT Event Trends 0 50 100 150 200 250 300 350 400 OM T E v e n t s b y S u b R e a s o n OMT Sub Reason WPM OMT Events by Sub Reason and Year 2011 2012 2013 2014 2015 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 33 of 88 Figure 9, WPM Contribution to Annual SAIFI value by Sub-Reason and Year 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 Annual SAIFI Contribution by Sub Reason 2011 2012 2013 2014 2015 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 34 of 88 Figure 10, Wood Pole Used by Summarized Activity 0 1000 2000 3000 4000 5000 6000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Nu m b e r o f P o l e s U s e d Year Distribution Wood Pole Replacement History and Trend Number of poles Used Annually Poles Replaced WPM - Dist Grid Mod Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 35 of 88 Figure 11, Distribution Wood Pole Age Profile *Pole age data has not been updated in the past 4 years 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 Pe r c e n t a g e o f P o l e P o p u l a t i o n Year Installed Wood Pole Age Profile Over 75 years old Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 36 of 88 Figure 12, Actual vs. Projected Usage for WPM Wildlife Guards Wildlife caused outages have a significant impact on electric service reliability to customers. The improved outage tracking implemented in 2001 has consistently shown, within a percent or two either way, that animal’s cause 19% of outages experienced by electric customers. While generally short in duration, labor impacts to respond are significant. In 2010, Squirrels accounted for only 6% of all sustained outages (see Table 9) which is a significant drop from 2009 value of 12%. This trend downward has continued and the percent of squirrel caused outages is now below 3%. We will continue to monitor this issue. Selected KPIs and Metrics The goal of the Wildlife Guards program is to reduce the number of Animal caused outages on the distribution system. More specifically, the program targets reducing the number of squirrel caused outages. The plan estimates that installing guards on the worst 60 feeders will reduce the number of Squirrel caused outages by 50%. 2006 was selected as the starting point, because the work performed 0 500 1000 1500 2000 2500 3000 3500 Poles Replaced Crossarms Replaced Steel Stubs Lightning Arresters Cutouts Wildlife Guards Actual vs. Model Projected Usage for WPM Actual Modeled Projected Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 37 of 88 that year was not influenced by the current AM plan. The final goal was a 50% reduction from the 2006 value of 902; however, this year’s value of 272 exceeds the final goal and has for the past five years. The second KPI used is the percentage of sustained outages caused by Squirrels. This KPI provides a relative impact that squirrel related outages are having on the system and represents the future value of installing Wildlife Guards on Distribution Transformers. The only metric for Wildlife Guards is the annual avoided outage benefit from Squirrel related outages. We estimate approximately $82 in benefit for every outage avoided starting in 2011. Using this benefit per event, the projected avoided outage benefit by year is the difference between the projected number of events and the actual number of events for that year multiplied by the calculated cost per event for that year. The goals by year are shown in Table 10. Table 9, Wildlife KPI Goals for 2010 - 2015 KPI Description Projected Number of Squirrel OMT Events Actual Number of Squirrel OMT Events Percentage of sustained outages caused by Squirrels 2009 810 700 12.2% 2010 720 390 5.62% 2011 630 395 5.05% 2012 540 358 4.54% 2013 450 215 3.27% 2014 450 279 3.45% 2015 450 272 2.97% Table 10, Wildlife Metric Goals for 2010 - 2015 Metric Description Projected Avoided Outage Benefit due to Squirrel Caused Outages Actual Avoided Outage Benefit due to Squirrel Caused Outages 2009 $36,000 $47,190 2010 $71,000 $157,466 2011 $22,000 $34,696 2012 $30,000 $37,935 2013 $37,000 $49,916 2014 $37,000 $46,045 2015 $37,000 $46,269 *Note: Avoided costs were revised from $390 per event to $82 for 2011 on. This change was based on a review of costs. WILDLIFE GUARDS KPI Performance Installing Wildlife Guards has exceeded expectations so far and has decreased the number of OMT events for Squirrels. The original model estimated costs were higher than actual costs because the model assumed more guards would be needed. So, the saved money has been used to work on more Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 38 of 88 feeders than originally anticipated. This program officially ended a few years ago due to the quick pace of the work, however, the metrics are still being watched because other programs still have an indirect impact on the numbers. These other programs continue to add WLG into our system on a less programmatic basis. Based on Figure 13 and Figure 14 you can see that few WLG were installed this year with WPM continuing to install the bulk of the WLG. However, the value and original scope of the program were realized years ago and so this is not a concern. This is the last year that this programs metrics will be reported on but we do envision a continued value for years to come. WILDLIFE GUARDS Metric Performance The main purpose of the Avoided costs metric shown in Table 10 is to demonstrate the savings associated with the work from the original model. In 2010, Avista saw savings nearly triple the projected amount. Other work such as Electric Distribution Minor Blanket and WPM continue to install Wildlife Guards on Distribution Transformers. However, the large increase in savings is most likely due to the increase in the number of WLG installed in 2010. WILDLIFE GUARDS Model Performance The Wildlife Guard model under estimated the impact of the work performed (see Table 9), so our performance has exceeded our expectations. This exceeds the goal of being within +/- 30% of the actual value. However, since the program has accomplished its purpose, no further work is planned. WILDLIFE GUARDS Summary The Wildlife Guard program showed real cost savings over time. The program ended a few years ago and more than exceeded expectations. We continued to report on the established metrics to help realize a more complete value of the program. Although, we will no longer report on these metrics, work in WPM and other efforts to install wildlife guards on Distribution Transformers may continue to create even more value. Table 11, Worst Feeders for Squirrel related Events for 2015 Feeder Sustained Outages Percentage of all Squirrel related Outages Running Percentage PIN443 14 3.80% 3.80% SLW1358 9 2.45% 6.25% PDL1203 9 2.45% 8.70% CFD1211 7 1.90% 10.60% OTH501 6 1.63% 12.23% SIP12F4 5 1.36% 13.59% TEN1256 5 1.36% 14.95% BLU321 5 1.36% 16.31% CDA124 5 1.36% 17.67% BUN426 5 1.36% 19.03% SLW1368 5 1.36% 20.39% SLW1348 5 1.36% 21.75% STM633 5 1.36% 23.11% CHW12F3 5 1.36% 24.47% Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 39 of 88 Figure 13, Wildlife Guards Installed by Year and Expenditure Request 0 500 1000 1500 2000 2500 3000 Electric Distribution Minor Blanket Failed Electric Dist Plant-Storm Sys-Dist Reliability- Improve Worst Fdrs Wood Pole Mgmt Dist Grid Modernization TCOP Related Distribution Rebuilds Wildlife Guards Issued by ER and Year 2011 2012 2013 2014 2015 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 40 of 88 Figure 14, Wildlife Guards Usage by MAC for 2011-2015 0 2000 4000 6000 8000 10000 12000 14000 16000 Wildlife Guard Issued by MAC and Year 2011 2012 2013 2014 2015 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 41 of 88 URD Primary Cable URD Primary Cable replacement addresses aging underground primary distribution cable. URD installation began in 1971. Over 6,000,000 feet of URD was installed before 1982. Outage problems exist on cable installed before 1982, cable installed after 1982 has not shown the high failure rate of the pre-1982 cable. Programmed replacement of the problem cable has been on-going at varying levels of funding since 1984. Emphasis is on the original vintage of URD. That cable was not jacketed with a protective layer of insulating material, neutral conductor was bare tinned copper concentric type construction on the outside of the cable. Insulating material was vulnerable to water intrusion. Historically, over 200 faults of primary cable happen annually. There have been as many as 264 primary cable faults in 2003. During 2007 there were 168 primary faults. From 1992 faults increased from 2 per 10 miles of cable to 8 per 10 miles in 2005. The number of faults per mile has stabilized between 2005 – 2007 after steadily climbing between 1992 and 2005. Funding for URD Primary Cable replacement was significantly increased in 2007 and began the current program. The program had an original estimate of 5 years to complete. Although the funding has not matched the original plan, almost all of the work was accomplished over six years. The year 2012 represents the last year of major funding for the program since the number of outages has significantly dropped and the worst feeder for URD Cable – Pri failures only had four outages. We anticipated some low level of funding for the remaining cable sections as they fail and are currently running this program on this smaller level. Selected KPIs and Metrics We selected two KPIs to track for URD Primary Cable replacement, URD Primary OMT Events and number of feet replaced each year. The goals for each of these KPIs came from the trends observed over the past few years and set a goal to complete the replacement of URD Primary cable in 2012. The program continued into 2015 but with a limited budget. Table 12 shows the goals for each KPI by year. The OMT events reflect the impact to our system of past work. The number of feet of URD Primary Cable replaced acts as a precursor to future OMT performance. After the first generation of URD Primary Cable has been replaced, the second generation will need to be monitored and plan may need to be established for addressing this vintage of cable. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 42 of 88 Table 12, URD Cable - Pri KPI Goals KPI Description Projected URD Cable - Primary OMT Events Actual URD Cable - Primary OMT Events Projected Number of Feet Replaced Actual Number of Feet Replaced 2009 143 136 178000 213,000 2010 119 93 178000 217,883 2011 94 95 178000 225,823 2012 70 72 178000 117,247 2013 45 93 0 35,874 2014 45 88 0 35,515 2015 45 64 0 24,155 The selected metric for URD Primary Cable is the avoided costs due to cable faults. The benefits are based on a projected number of failures without the program that are projected to be around 670 events for 2015. Currently, each event on average costs ~$2,800 due to the duration of the outage and the number of people involved in correcting the fault. While this indicator is based on a projection, it provides a reasonable estimate of the return on investment for the money spent to replace this vintage of cable. Table 13 projects the anticipated avoided outage benefit by year for the estimated number of avoided outages. Table 13, URD Cable - Pri Metric Goals Metric Description Projected Avoided Outage Benefit due to URD Cable - Pri Caused Outages Actual Avoided Outage Benefit due to URD Cable - Pri Outages 2009 $1,038,613 $1,056,113 2010 $1,228,275 $1,295,225 2011 $1,368,561 $1,352,648 2012 $1,516,159 $1,481,504 2013 $1,744,539 $1,494,738 2014 $1,898,311 $1,580,378 2015 $1,997,052 $1,720,020 URD PRIMARY CABLE KPI Performance For 2015, the performance for URD Primary Cable did not meet expectations but performed well. Table 12 shows that URD Cable – Pri events have not met expectations for the past couple years, however, the outages continue to have a downward trend. Figure 15 shows the downward trend in the number of events. The second generation of URD Primary Cable is also being analyzed. If it begins failing at an increasing rate, it would signal the next round of cable replacements. We have some faults in newer Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 43 of 88 cables and anticipate that this will be true for several years to come. If these faults begin to significantly increase over time, we will have to begin replacement of this cable since the earliest of the second generation cable is now approaching 30 years old. Figure 15, URD Primary Cable OMT Events by Year URD PRIMARY CABLE Metric Performance The projected savings and estimated savings due to avoided outage costs for Avista has typically come in very close as seen in Table 13. The avoided outage cost for this last few years has not performed as well as years past but overall the current program is performing as expected. URD PRIMARY CABLE Model Performance This AM model is an early vintage model and given the cash flow, did not match the model; but it has generally predicted performance reasonably well. Because of the good performance and limited remaining time for the program, the model will be retained as is and the program allowed to expire once all of the first generation URD Primary Cable has been replaced. URD PRIMARY CABLE Summary Several people have worked diligently on this program and it is now nearing completion. We anticipate another round of URD Cable replacements in the future, but we don’t have any evidence indicating that the company has reached the end of life on the second generation of URD Cable. The program has 0 10 20 30 40 50 60 70 80 90 100 URD Cable - Pri OM T E v e n t s b y Y e a r URD Primary Related OMT Events by Year 2011 2012 2013 2014 2015 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 44 of 88 succeeded in reducing O&M costs by avoiding long and costly outages. Since all of the work to replace the cable comes from capital spending, the program is a great example of how capital spending can reduce O&M. However, operations continue to find more cable than estimated remaining, so future funding is recommended to only cover planned work on known cable. Distribution Transformers In 2011, Avista implemented the Transformer Change Out Program (TCOP) to replace all Distribution Transformers containing PCB’s followed by replacing all pre-1981 transformers. The driver for the program is to reduce the environmental risks associated with PCB’s in transformers and improve the overall electric distribution system by eliminating higher loss transformers. The program has two strategies associated with it. The first strategy is to eliminate all transformers containing or potentially containing PCB’s. The initial focus was on areas near water sources. These transformers have specific work plans for removing them from the system. The second strategy uses the Wood Pole Management program to remove all pre-1981 transformers as part of their follow-up work on a feeder. The first strategy work should be completed in 2016 and the Wood Pole Management work should have all the pre-1981 transformers replaced by 2036. Selected Metrics Table 14 shows the metrics selected for TCOP. The number of transformers changed out represents the reduction of future risk from PCB’s. It also provides a leading indicator of how many future transformer failures we may experience. The energy savings represents the value of changing out the less efficient transformers and quantifies the approximate amount of energy saved each year by replacing less efficient transformers with more efficient ones. Table 14, TCOP Metrics Year Planned Number of Transformers Changed Out Actual Number of Transformers Changed Out Planned Energy Savings from Transformers (MWh) Projected Energy Savings from Replaced Transformers (MWh)* 2012 2,687 2,529 2,304 2,430 2013 2,555 2,599 2,304 2,671 2014 2,930 2,625 2,304 3,002 2015 305 2,557 299 2,547 2015 – Pad/Subm 2,030 342 1,447 603 2016 1,419 1,265 2016 – Pad/Subm 87 149 2017 948 940 2017 – Pad/Subm 259 466 2018 347 330 2018 – Pad/Subm 1,092 1,853  Note: values in red have missed the goal *Conservative estimate based on no load loss Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 45 of 88 Metric Performance In 2015, we cut back the funding on the TCOP program but were still able to complete in total more transformer’s than expected. Fewer padmount transformers were completed but many more overhead transformers were replaced instead. Budgeting for the last few years has had an effect on the expected program and will continue to impact the program going forward. New metrics have been developed to account for the extended program due to the decreased budget. Summary The TCOP is accomplishing it objectives and reducing Avista’s and customer’s risks associated with Distribution transformers containing PCB’s and providing energy savings. Area and Street Lights Asset Management converted the existing area and street light data into our Geographical Information System (GIS) in 2012 and continued the work through 2014. This work updated and corrected the existing information and provided a platform to convert our High Pressure Sodium (HPS) lights to Light Emitting Diode (LED) fixtures beginning in 2015. The recent cost and reliability improvements in LED lights have made converting 100W HPS lights to LED fixtures cost effective. The rate schedule was approved for the state of Washington for 100W and 200W HPS street lights for 2015 and for all non- decorative wattage of both street and area lights for Washington and Idaho in 2016. Selected Metrics Table 15 shows the metrics selected for the Street light change out program. The number of lights changed out represents the reduction of maintenance costs due to the increased durability of LED lights. It also provides a leading indicator of how many future light failures we may experience. The energy savings represents the value of changing out the less efficient HPS lights and quantifies the approximate amount of energy saved each year by replacing less efficient HPS lights with more efficient LED ones. Table 15, Area and Street Light Conversion Metrics Year Planned Number of Lights Changed Out Number of Lights Changed Out Planned Energy Savings from Lights (W) Actual Energy Savings from Lights (W) 2015 3,500 4,166 262,500 312,450 2016 4,000 300,000 2017 5,000 375,000 2018 6,500 487,500 2019 8,000 600,000 Summary This program is not unique, years ago a systematic change out of mercury vapor lights occurred. However, some of these lights remained well after the program ended. This program should have a better result due to the new technology in mapping being used for lights. This program may also expand to the remaining decorative lights in the future. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 46 of 88 Distribution Vegetation Management (VM) Our Vegetation Management program maintains the clearance zone free of vegetation for the distribution system clear of trees and other vegetation. This reduces outages caused by trees and to a lesser extent squirrel caused outages. Our Distribution System runs for 7,702 circuit miles in Washington, Idaho, and Montana. The Vegetation Management program also covers work on the Transmission System and the High Pressure Gas Pipeline system, however the purpose here is to only look at the Distribution System. For the Distribution System, our analysis has shown that a pro-active maintenance program provides the best value to our customers. While our past practices were a four and seven year cycle based on vegetation type and had a reduced clearing diameter, our analysis has indicated a five year clearing cycle at a normal clearing distance has advantages. Our current goal is to be on a 5 year cycle, however, we don’t always hit our target distance (Table 18) and are closer to a 6 year cycle. The purpose of Vegetation Management is to meet regulatory compliance, provide the best value to our customers, and maintain current reliability. The Vegetation Management program continues herbicide spraying and enlarged the risk tree programs to further improve vegetation management. Both of these additions strive to improve the performance of the system by reducing vegetation related events. Selected KPIs and Metrics For VM, we selected one leading KPI and a lagging KPI. These KPIs were set for the old analysis and ended last year, we linearly progressed these numbers to buffer us until we can establish new KPI goals. The leading KPI is the number of Distribution Feeders miles managed each year. This indicates how well the actual work matches the planned work and the model. The results of the work in VM should directly impact the number of Tree Growth and Tree Fell events in OMT which is the lagging KPI. The number of Tree Growth events and Tree Fell events are summed for each year and compared to the AM models predictions if the plan is followed. The goals for each KPI by year are shown in Table 18. The AM model for Tree Growth events and Tree Fell events shows varying KPI’s for each year due to the strict following of the 5 year cycle based on when the feeder was last done. For a VM metric, we selected the Tree- Weather OMT events by year. As seen in Figure 16, there is a relationship between weather events and VM. We assume that improvements in VM results should impact the number of Tree-Weather OMT events and set a goal shown in Table 18. The goal for Tree-Weather events is based on the AM models average value over a 10 year period. This metric was not included as a KPI, because weather events are very unpredictable and random in nature. Once the relationship has been better established, it may become a KPI. Another metric selected for monitoring is the cost per mile for VM on the distribution feeders. While no goals have been established, this will measure how effective our AM spending gets the work done and how much work is required to clear the lines. The costs per mile should drop in future years, because the amount of work required to clear the feeders should decline after reaching a 5 year cycle. The total number of miles of all planned work was modified in 2011. Beginning in 2011, the costs per mile calculation includes all planned work and not just the miles cleared. So, the total number of miles for all planned work was included in the metrics. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 47 of 88 Table 16, Vegetation Management Metric Goals Projected SAIFI - Tree Fall Actual SAIFI - Tree Fall Projected SAIFI - Tree Grow Actual SAIFI - Tree Grow 2010 1.40E-07 0.092136448 8.84E-08 0.007012046 2011 1.40E-07 0.062998204 8.84E-08 0.003838547 2012 1.40E-07 0.067319172 8.84E-08 0.005569335 2013 1.40E-07 0.054556299 8.84E-08 0.005691876 2014 1.40E-07 0.057820669 8.84E-08 0.009617668 2015 1.40E-07 0.084106127 8.84E-08 0.003505633 Note: values in red missed the goal VM KPI Performance Both Figure 16 and Figure 17 show the same trends for Tree Growth, Tree Fell, and Tree Weather. Table 17 shows the results for Tree Growth and Tree Fell outages and how well these align with the projected outages. Table 17 shows the field confirmed outages due to Tree-Weather events. These are a subset of the OMT outages and only include outages that, after being field verified, were still deemed tree caused. For the last 5 years our average actual annual miles managed is just below the miles needed to remain on a 5 year cycle. Last year’s missed goal was caused by budget cut late in the year and it is likely that the slightly less than anticipated average miles is due to this and other past budget cuts. It is important to keep the program funded at a 5 year pace to continue to achieve our anticipated Projected Tree Growth + Tree Fell OMT Events – 5 Year Cycle. Table 17, VM KPI Performance Note: values in red missed the goal *Linear progression from previous metrics Year Projected Tree Growth + Tree Fell OMT Events – 2009 Plan Projected Tree Growth + Tree Fell OMT Events – 5 Year Cycle Actual Number of OMT Events Projected Annual Miles Managed Actual Annual Miles Managed w/o Risk Tree or Spraying Percent Model Error 2009 1120 556 765 1,220 790 136% 2010 620 540 836 1,560 1,304 155% 2011 790 500 727 1,560 1,747 145% 2012 1210 520 712 1,560 1,296 137% 2013 1390 630 647 1,560 1,459 103% 2014 1400 780 793 1,560 1,663 102% 2015 1730* 777* 620 1,560* 1,405 - Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 48 of 88 Figure 16, OMT Events Data Trends for Tree-Weather, Tree Growth, and Tree Fell Sub-Reasons Tree Fell, 506 Tree Fell, 392 Tree Fell, 377 Tree Fell, 298 Tree Fell, 393 Tree Fell, 340 Tree Growth, 330 Tree Growth, 335 Tree Growth, 335 Tree Growth, 349 Tree Growth, 400 Tree Growth, 280 Weather, 895 Weather, 325 Weather, 314 Weather, 216 Weather, 166 Weather, 208 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2010 2011 2012 2013 2014 2015 Nu m b e r o f T r e e G r o w t h , W e a t h e r , T r e e F e l l O M T E v e n t s Year Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 49 of 88 Figure 17, OMT Outage and Partial Outage Data Trends for Tree-Weather, Tree Growth, and Tree Fell Sub-Reasons VM Metric Performance The Tree OMT Events for 2015 continued to show improvement and were below the AM model projections (see Table 17). However, we must update the Vegetation Management models to improve projections and potentially update the program plan. The cost per mile for VM in 2015 was $1,058 (see Table 19). This much lower than average. This is partially due to the large amount of miles of distribution that was inspected after the large storm in November of this year. We need to update the Vegetation Management model to address changes in the program which will help understand the impact to our system. Tree Fell, 234 Tree Fell, 215 Tree Fell, 229 Tree Fell, 183 Tree Fell, 223 Tree Fell, 219 Tree Growth, 77 Tree Growth, 71 Tree Growth, 93 Tree Growth, 90 Tree Growth, 123 Tree Growth, 87 Weather, 620 Weather, 178 Weather, 170 Weather, 137 Weather, 101 Weather, 122 0 100 200 300 400 500 600 700 800 900 1000 2010 2011 2012 2013 2014 2015 Nu m b e r o f T r e e R e l a t e d O M T P a r t i a l O u t a g e s Year Tree Fell Tree Growth Weather Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 50 of 88 Table 18, Tree-Weather OMT Events Metric for Vegetation Management Year Projected Tree-Weather OMT Events – 2009 Plan Projected Tree- Weather OMT Events – 5 Year Cycle Actual Field Verified Tree Caused Weather Events Actual Number of Tree-Weather OMT Events Percent Model Error 2009 420 166 258 357 215% 2010 80 50 403 895 1790% 2011 220 70 159 325 464% 2012 580 70 150 314 449% 2013 800 170 121 216 127% 2014 1120 430 97 166 39% 2015 1358* 416* 84** 208 - Note: values in red missed the goal *Linear progression from previous metrics **Extrapolated out to include December numbers. The field checking has not been completed for all December tree weather events. Table 19, VM Cost per Mile and All Vegetation Management Work Metric Year Actual Annual Miles Managed all work Cost per Mile of VM 2009 N/A $6,575 2010 N/A $2,990 2011 3,455 $2,612 2012 3,364 $3,272 2013 4,014 $1,657 2014 4,721 $1,439 2015 5,565 $1,058 VM Model Performance The AM model for Distribution VM was revised in 2010, but the recent changes to the work performed and errors experienced justify updating the model. We anticipate completing the update in 2016. VM Summary Depending on how the program is evaluated, not enough miles are completed each year to achieve the goal of a 5 year cycle. The costs per mile may be too high and/or the current funding levels are too low and the impacts of herbicide spraying and enhanced risk tree work modify the meaning of work per mile. Vegetation Management’s performance does show continued improvement but further analysis will provide an opportunity to re-evaluate our current performance and update future expectations. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 51 of 88 Distribution Grid Modernization Program Avista initiated a Grid Modernization Program designed to reduce energy losses, improve operation, and increase the long-term reliability of its overhead and underground electric distribution system. The program includes replacing poles, transformers (Pad Mount, OH & Submersible), cross arms, arresters, air switches, grounds, cutouts, riser wire, insulators, conduit and conductors in order to address concerns related to age, capacity, high electrical resistance, strength, and mechanical ability. The program also includes the addition of wildlife guards, smart grid devices, switched capacitor banks, balancing feeders, removing unauthorized attachments, replacing open wire secondary, and reconfigurations. When funded to a level that allows 5-6 feeders to be upgraded per year, the continuous program represents a 60 year interval to upgrade all the feeders in Avista’s system and coordinates all of its activities with Avista’s Wood Pole Management. The objectives of the Grid Modernization Program are listed in Table 20. Table 20, Grid Modernization Program Objectives Objective Objective Description Safety Focus on public and employee safety through smart design and work practices Reliability Replace aging and failed infrastructure that has a high likelihood of creating a need for unplanned crew call-outs Avoided Costs Replace equipment that has high energy losses with new equipment that is more energy efficient and improve the overall feeder performance Operational Ability Replace conductor and equipment that hinders outage detection and install automation devices that enable isolation of outages Capital Offset Avoid future equipment O&M costs with programmatic rebuild of failing system Selected Metrics The metrics selected include miles of work completed, OMT sustained outages on feeders with Feeder Upgrade work completed, and energy savings provided by completed work. Based on Avista’s 2015 Integrated Resource Plan dated August 31st, 2015, Table 8.3, the realized and anticipated energy savings by identified feeders is shown in Table 21. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 52 of 88 Table 21, Energy Savings based on Integrated Resource Plan Feeder Service Area Year Complete Annual Energy Savings (MWh) 9CE12F4 Spokane, WA (9th & Central) 2009 601 BEA12F1 Spokane, WA (Beacon) 2012 972 F&C12F2 Spokane, WA (Francis & Cedar) 2012 570 BEA12F5 Spokane, WA (Beacon) 2013 885 CDA121 Coeur d'Alene, ID 2013 438 OTH502 Othello, WA 2014 21 RAT231 Rathdrum, ID 2014 0 M23621 Moscow, ID 2015 413 WIL12F2 Wilbur, WA 2015 1,403 WAK12F2 Spokane, WA (Waikiki) 2016 175 RAT233 Rathdrum, ID 2019 471 SPI12F1 Northport, WA (Spirit) 2019 127 Total 6,076 The miles of work planned is ultimately driven by the approved budget and generally can only be projected for 5 years. In order to maintain a 60 year cycle, Avista would need to address an average of 137 miles per year of overhead circuit miles. For tracking the impacts of the work on outages, we will monitor the following OMT sub-reasons shown in Table 22. While the Grid Modernization will affect all of the sub-reasons listed in Table 22Error! eference source not found., the sub-reasons identified as potentially avoidable represent the most direct impact of the work. We assume that the number of OMT sustained outages will be reduced by 0.1 outages per mile of overhead work completed. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 53 of 88 Table 22, OMT Sub-Reasons impacted by Grid Modernization OMT Sub-Reason GM Potentially Avoidable Wood Pole Management Arrester x Bird x Capacitor x Conductor - Pri x Conductor - Sec x Connector - Pri x Connector - Sec x Cross arm - rotten x x Cutout/Fuse x x Elbow x Insulator x x Insulator Pin x x Lightning Pole Fire Pole - rotten x x Recloser x Regulator x Snow/Ice x Squirrel x Switch/Disconnect x Transformer - OH x x Transformer UG x Undetermined Weather Wildlife Guard x x Wind x Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 54 of 88 Figure 18, OMT Sustained Outages related to Grid Modernization 0 5 10 15 20 25 30 35 40 45 50 0 200 400 600 800 1000 1200 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Gr i d M o d F e e d e r O u t a g e s Sy s t e m -Wi d e O u t a g e s Year OMT Sustained Outages related to Grid Modernization Grid Mod Feeder Outages System-Wide Outages Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 55 of 88 Figure 19, Wood Pole Management and Grid Modernization Before and After Metric Performance The results of the first four years work are shown in Table 23 the major event days from 2015 were removed to more accurately show program value). The year 2012 marks the beginning of the program. The number of miles actually completed missed the goal of 137 and the number of sustained outages just fell short of its goal. Figure 19 shows the prior and post trends for WPM and Grid Mod. These trends are broken down to be outage specific per program on a per mile of OH Conductor basis. The graph shows a steady trend downward for both programs after work is done on a feeder. Grid Mod work tends to trend down prior to the completion date due to the time it takes to complete the Grid Mod work and in some cases feeders being previously completed by WPM. A feeder may take multiple years to complete thus some portion of the benefits are gained in the couple years before completion. The before/after portion of the graph is set so that all the work done for these programs since 2008 is set to a zero year on the year it was completed. The program is reducing outages as seen in Figure 19 and Table 23 even though the planned miles have yet to be met. Missing this goal increases our program cycle, the current goal is a 60 year cycle. Continuing to miss this mileage can impact the sustained outages over time. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 Nu m b e r o f S e l e c t e d E v e n t s p e r M i l e o f F e e d e r C o n d u c t o r Before and After work (Years) Wood Pole Management & Grid Modification Before and After Average before WPM Average after WPM Average after Grid Mod Average before Grid Mod Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 56 of 88 Table 23, Metric Performance for Grid Modernization Program Year Planned Miles for Modernization (Miles)* Actual Miles Completed (Miles)** Anticipated Number of Sustained Outages Realized Number of Sustained Outages 2012 95 73.33 2340 2251 2013 137 53.83 2327 1840 2014 137 78.64 2313 1791 2015 137 85.2 2300 2342 2016 190*** 2286 2017 190*** 2272 *Note: The planned or anticipated values may be modified to match approved work plans for each year that more accurately align with the actual work planned. Overall outages are based on the Reliability Outage events considered **Data from Grid Modernization Group ***Grid Mod works on both overhead and underground equipment. Future metrics and analysis will be based on total circuit miles Summary The Grid Modernization Program began in earnest in 2012 and represents feeder replacement work and upgrades founded on smart grid work. Overall the program is improving outages and improving the health of our system. The anticipated miles completed and cycle time may need to be modified in the future if the miles continue to miss the goal, however, the anticipated outage reduction appears to be on target and so the mileage is not an issue at this time. Worst Feeders Since 2009, Avista has invested $1-2M annually to improve the reliability of its most underperforming distribution circuits (aka – Worst Feeders). The Company operates over three hundred and fifty (350) individual circuits throughout Northern Idaho and Eastern Washington. Many of these circuits serve rural geographic regions and may extend for hundreds of miles. In most situations, rural circuits route through heavily timbered national forest areas and are subject to tree, wind, and storm related outages. Avista’s SAIFI target in 2015 was 1.17. So, on average, an Avista customer could expect one sustained, contingency outage event in 2015. However, many rural customers experience three to five sustained outages per year with a few circuits topping the SAIFI chart at above six (see Table 24). Avista operating engineers are instructed to systematically review outage logs for these circuits and determine an appropriate level of treatment. Projects vary by individual circumstance but in many cases additional circuit reclosers are installed to reduce outage exposure and to automatically restore power to upstream customers. In other locations, circuits in outage prone areas are converted from overhead to underground. In other situations, circuits are effectively ‘hardened’ by shortening conductor span lengths or by increasing phase spacing. Of particular note is the Grangeville 1273 circuit. Though its SAIFI metric is the highest in the Company, the current average of 9.02 is a significant improvement over the previous three year average of 21.9. A program investment of $217,686 was made on this line and Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 57 of 88 has help to improve its reliability performance. On another circuit, Roxboro 751, over 1 million dollars was invested to convert overhead line segments to underground cable and the SAIFI statistics improved from 5.35 to 2.67. In fact, Roxboro now ranks 35th in our feeder list and does not appear in the top twenty ‘worst feeders’ as depicted in the graphics. In 2016, Avista plans to invest $1.5 million dollars in ten (10) circuit projects. This includes the final phase of the Roxboro 751 project along with other multi- year projects including Gifford Feeders 34F1 and 34F2 together with Colville 34F1 projects. Other projects are first year efforts to improve the service reliability of rural distribution circuits. The 2016 capital plan for the worst feeder program is indicated in Table 25. Table 24, Worst Feeder SAIFI 3 Year Average 2012-2014 FDR SAIFI 3yr Avg GRV1273 9.02 STM633 6.82 SPI12F1 6.40 ODN732 6.28 GIF34F1 5.21 GIF34F2 4.79 CHW12F4 4.48 VAL12F2 4.47 CLV34F1 4.44 RDN12F2 4.43 JPE1287 4.27 CHW12F3 4.25 CKF711 4.13 SAG741 4.11 SPR761 4.07 VAL12F1 3.54 SWT2403 3.47 CHW12F2 3.46 MIS431 3.45 RDN12F1 3.40 Table 25, Worst Feeder Projects and Costs Project Code (SUB FDR SAIFI RANK- DESC) $ in 000’s GIF 34F1 (5) 250 SPT4S21- Reroute heavily tree area 100 COT2404 50 RSA 431 - various locales 50 LAT 421- various 50 GIF 34F2 (6) - Twin Lake 250 JPE1787(11)-WEI1289(25) 100 CLV 34F1 (9) 250 ROX 751 OH/UG Conversion (35) 150 SPO- #6 Crapo Removal 8 miles 250 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 58 of 88 Feeder Tie Circuits Urban distribution feeders can be connected to other feeders as a means of “back-up” to serve customer load. By closing a “tie” switch between the two feeders, it is possible to electrically “feed” a portion of the adjacent feeder. Service reliability can be compromised by the contingency loss of substation equipment such as the substation transformer, and voltage regulator. Car-hit poles can cause lengthy outages. Critical issues with picking up an adjacent feeder include the reserve capacity of the host feeder and the end of line service voltage. In rural areas, feeders with back-up capability are rare because the distance between adjacent circuits may be several miles. As with urban feeders, loss of substation equipment can cause feeder outages. Also, losing a portion of the main feeder trunk on a rural, radial feeder due to a tree through the line and/or via wind damage can also cause an outage that could be minimized with a “tie” feeder capability. Feeder Tie projects increase the reliability of both of the circuits involved in the “tie”. ARD12F2-ORN12F1 Tie Circuit This feeder tie project will allow the Arden12F2 distribution feeder to be fed by Orin12F1. The “tie” is being built by installing new conductor between the “gap” in the two circuits (see Figure 20). The conductor has a cross sectional area allowing it to pick up the load of Arden12F2. In addition the voltage drop of the “tie” conductor is small. Also, a set of voltage regulators is being installed to increase the voltage on the Arden12F2 feeder to keep it within the required limits. If there is an outage on the Orin12F1 feeder, the Arden12F2 will be able to pick up a portion of Orin12F1, but not the entire feeder. This is a two year project with a cost of $850,000 covering a distance of 2 miles between the two feeders. Figure 20, ARD12F2 to ORN12F1 Tie Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 59 of 88 DAV12F2-RDN12F1 Tie Circuit This circuit tie will allow Rearden12F1 to be fed from Davenport12F2 and vice versa. The “tie” is being built by installing new conductor between the “gap” in the two circuits (see Figure 21). Also, a set of voltage regulators is being installed to increase the voltage on the host feeder to support customer service voltage. This is a multiyear project with a cost of $1.8 million dollars, connecting a distance of 10 miles between the two feeders. At this point in time, approximately 5 miles of the tie circuit has been upgraded to 556 AAC. This new conductor will allow either substation to carry 4 MVA in the Summer, and 6 MVA in the Winter. When all the conductor is upgraded, the load carrying capability will be doubled and either substation can pick up the other any time of the year. Summary This program is a new program and metrics have yet to be established. Metrics will be worked on this year with the department running this program. We need to see the results from these future metrics before we draw any conclusions from the program. Figure 21, DAV12F2 - RDN12F1 Tie Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 60 of 88 Spokane Electric Network Equipment Types and Aging Major network equipment falls into four categories: network transformers, network protectors, cable (primary and secondary), and physical facilities – duct banks, vaults, manholes, and handholes. Transformers and Protectors – some age, and maybe initial cost, data may be available via Maximo. A casual search indicates 27 transformers with purchase dates between 1930 and 1950 still in service in the network – these records are not verified. Another casual search of network protector records indicates units dating to 1947 still in service. Cable – we do not have specific records regarding age of cables. A fair percentage is “OLD” – comments below. Physical facilities – again, no specific records. Again, a fair percentage is “OLD”. KPI and Metrics There are no established performance metrics for the downtown network. Given that the very nature of the network architecture is intended to prevent outages, and that OMT does not “see” network events, we have no specific outage data other than to state that the numbers would be small in comparison with the rest of the Avista system. Assuming the “network communications” project discussed in the “Non-routine Projects” section below actually comes to fruition, we would be better able to identify, track, and analyze outages should they actually occur. Capital Budgets and Spending - Overview CapX expenses in the downtown network fall into six general categories. Five are covered in “blanket” projects; the sixth category is funded by specific CPRs. Details: 1. New services: Commercial, residential, Street Lights 2. Replacement of old primary cable (Paper Insulated Lead Cable, “PILC”) 3. Replacement of old secondary cable (PILC or Rubber Insulated Neutral Cable, “RINC”) 4. Purchase and replacement of aging transformers and network protectors 5. Repair/refurbishment/replacement of vaults/manholes/handholes 6. The fifth category, covered by specific CPRs, may involve projects such as: a. Work required due to extensive city projects – e.g., the upcoming major rebuild of Lincoln and Monroe Sts where we have extensive existing facilities which will need major work or replacement b. Adding a “SCADA” and communications capability to the existing network – a trial project for Post West is budgeted. New Services – Expenses Generally self-explanatory. ’15 budget $200K Replacement of old PILC primary cable– Expenses Our 2015 budget for PILC cable replacement was $340K. The PILC primary cable in our network is typically 30 years old or more; we do not have specific information on when much of it was installed. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 61 of 88 Our network has about 96,700 feet of primary cable, about 47,900 feet is still PILC. We have targeted for replacing 7,500 feet of primary PILC each year. In 2015, due to personnel shortages and other more pressing work, we only replaced 6300 feet of primary cable. The PILC cable has been very reliable through the years of service; however, as it ages, we have observed an increase in failures. Our goal of maximizing service in the downtown network drives the PILC replacement effort. Figure 22 and Figure 23 are illustrations of failures that occurred with older PILC cable. Avista was fortunate in that we have only had one PILC cable failure in 2015 and one in 2013. This low failure rate is in large part due to the proactive replacement of the old cable. Owing to the redundant nature of our network, neither of these events resulted in customer outages. Figure 22, A faulted PILC cable Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 62 of 88 Figure 23, A second faulted PILC cable Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 63 of 88 Replacement of old PILC and RINC secondary cable– Expenses Factors driving replacement of PILC primary and PILC/RINC secondary are essentially the same. We replaced about 4,600 feet of secondary cable in 2015. Purchase of new and replacement of aging transformers and network protectors– Expenses Our 2015 budget for purchasing transformers and protectors was $920K; for replacement activities including associated cable, vault accessories, etc. was $1.1M. We have 174 transformers in our network, each equipped with a network protector. Network transformers and network protectors are specialized devices specifically designed and built to ensure maximum operating reliability, and in the case of the protector, to improve and ensure safety for the crews working on the network. We target replacing 12 transformers per year, and generally, the protector is replaced at the same time (there are exceptions). Replacement of a network transformer is a labor-intensive operation, and typically involves added expenses for hiring a crane to move the old and new transformers in and out of the vault, traffic control, and often crew overtime. We prioritize replacing very old transformers, transformers which are found to still have PCB oil, and transformers where routine oil sampling indicates contamination. In addition, transformers where oil sampling indicates high concentrations of combustible gasses (typically caused by internal arcing or similar events) are replaced immediately. In 2015 we replaced one transformer due to a high concentration of combustible gasses, one due to contaminated oil, and one ca. 1947 vintage transformer after a bulge was noted in the primary compartment case. We also replaced three aged transformers on a more “routine” basis. A transformer failure can be a dramatic and dangerous event. Avista has been fortunate to not experience a violent transformer failure in recent years (a quick search indicates that the last one was in 2008.) Figure 24 illustrates the transformer which failed in 2008 due to some anomaly in the primary compartment. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 64 of 88 Repair/refurbishment/replacement of vaults/manholes/handholes– Expenses Our 2015 budget for this work was $500K. Our system contains 140 vaults, 325 manholes, and 295 handholes. Many of these, particularly manholes and handholes, date from the early 1900s and are still in service. In particular, where these are located in a traveled street, they have often deteriorated due to stresses from traffic, weather, and related factors. Vaults which have grated covers for circulating air for transformer cooling are often subjected to chemicals used for deicing streets in winter, which collects in the vaults and deteriorates the concrete. When these facilities become deteriorated to the extent we have found in some cases, they represent not only the possibility of interruptions to service, but becoming traffic hazards as well. In the case of facilities in sidewalk areas, we have seen cases where cracking or buckling concrete, or deformed lids, have the potential to be a trip hazard for pedestrians. Mitigating the vault, manhole, and handhole deterioration has ranged from being as simple as installing a new lid to removal and replacement of the entire facility. Figure 25 through Figure 27 illustrate various underground facility deterioration we have recently found, and some of the remediation efforts undertaken. Figure 24, A network transformer after a failure in the primary compartment Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 65 of 88 In 2015, we repaired or replaced 6 of these facilities. We have 3 more in queue pending a break in winter weather, and we have not started our 2016 inspection cycle. Figure 26, Duct bank damage entering an old deteriorated manhole Figure 25, Interior of a badly deteriorated old manhole in a heavily traveled street Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 66 of 88 Non-routine Projects Being Carried Out on Specific CARs– Expenses We had two open CPRs for network projects in 2015. Network Communications Stage 1– Expenses This project was budgeted for $122.4K The scope of this pilot project involves adding communications capabilities to network protectors in a subset of the Post St West sub-network. This communications capability will enable remote reading of protector status (closed, tripped, locked open, number of protector operations), and remote instantaneous load readings. This capability will not immediately improve system reliability, but will pave the way for additional capability such as remote protector switching and remote indication of vault conditions (temperature alarm, unauthorized entry, etc.) which is expected to benefit overall network operation and maintenance. For convenience – think “smart grid” for the downtown Spokane network. The CPR was first opened in 2014, but to date, lack of personnel resources has resulted in no charges. This CPR remains open for 2016. Monroe and Lincoln St Repaving– Expenses This project was budgeted for $495K ($475K construction, $20K removal/retirement) The City of Spokane has informed Avista of plans to extensively renovate and repave both Lincoln and Monroe Streets from 3rd Ave north to Main St in the main downtown corridor. This project will result in Avista needing to extensively modify, rebuild, and possibly even move network facilities in those streets. The CPR was opened in 2015 in anticipation of ordering long-lead items, but planning delays resulted in no expenditures in ’15. The CPR remains open for 2016. Figure 27, Complete replacement of a badly deteriorated manhole Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 67 of 88 Distribution Line Protection Avista's Electric Distribution system is configured into a trunk and lateral system. Lateral circuits are protected via fuse-links and operate under fault conditions to isolate the lateral in order to minimize the number of affected customers in an outage. Engineering recommends installation of cut-outs on un-fused lateral circuits and the replacement of obsolete fuse equipment (e.g. Chance, Durabute/V-shaped, Open Fuse Link/Grasshopper, Q-Q, Load Break/Elephant Ear, and Porcelain Box Cutouts). As part of the program, sizing of fuses will be reviewed to assure protection of facilities, as well as coordination with upstream/downstream protective devices. This is a targeted program to ensure adequate protection of lateral circuits and to replace known defective equipment. Assets Not Specifically Covered Under a Program These assets do not have a planned AM program, so no specific metrics or KPIs have been identified. The general metrics discussed above for number of OMT Events (Table 1) and the associated action level; Risk Action Curve limits; and requests by responsible parties will determine in the future if a plan will be developed or if action is needed. In summary, Table 26 lists assets we continue to monitor to determine if and when planned actions are needed. Table 26, Assets Not Specifically Covered Under a Program Asset Other information Distribution Capacitors Smart Grid added switch capacitors but our initial analysis did not indicate a strategy was justified Distribution Cutotuts Addressed through the WPM program and Distribution Line protection Dead End Insulators - Distribution Mid- Line Reclosers Substation Asset Management is analyzing strategies for this asset Distribution Mid- Line Voltage Regulators Substation Asset Management is analyzing strategies for this asset Open Wire Secondary Previous analysis indicated that this program was not financially justified. We believe Grid Mod will address many of these issues. Primary Conductors - Primary Connections - Secondary Conductors - Primary Conductors - Riser Termination -- URD Secondary Cable Although we are monitoring this one closely we have yet to see a need to implement a strategy Conclusion In this report, we documented and examined the KPIs and metrics AM selected for the AM Distribution system programs and provided the results for 2015. Some of the metrics compared how an asset performed with a program and how it would have performed without a program. The difference in performance provide an estimate of the cost saving and value of an AM program. While the exact savings are impossible to calculate in most cases, it provides a relative comparison and supporting justification or motivation for change in AM decisions made in the past. Other KPIs and metrics Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 68 of 88 provided indications of how well an asset performed and help determined if further work is required. Some AM models clearly need more work to better predict future conditions and will be scheduled in the future if it makes sense. This year other non-AM programs were included in this report and submitted by the group in charge of each program. These program write-ups did not follow the same template as the AM write-ups but were included within the document for project comparison. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 69 of 88 Distribution Vegetation Management 2016 Washington AIR12F1 AIR12F2 AIR12F3 CFD1210 CFD1211 CHE12F1 CHE12F2 CHE12F3 CHE12F4 CLA56 EWN241 FOR2.3 GIF34F2 INT12F1 INT12F2 L&R511 L&S12F1 L&S12F2 L&S12F3 L&S12F4 L&S12F5 LOO12F1 LOO12F2 MLN12F2 ROK451 ROX751 SE12F1 SE12F2 SE12F3 SE12F4 SE12F5 SOT522 SOT523 SPI12F1 TUR111 TUR112 TUR113 TUR115 TUR116 TUR117 TVW131 TVW132 VAL12F1 Idaho CGC331 CKF711 DAL131 DAL132 DAL133 DAL134 GRV1271 GRV1272 GRV1273 GRV1274 KAM1291 KAM1292 KAM1293 KOO1298 KOO1299 RAT231 RAT233 SAG741 SPT4S21 SPT4S22 SPT4S23 SPT4S30 Montana NRC352 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 70 of 88 2017 Washington CHW12F1 CHW12F2 CHW12F3 CHW12F4 COB12F1 COB12F2 DVP12F1 DVP12F2 ECL221 ECL222 FWT12F1 FWT12F2 FWT12F3 FWT12F4 GLN12F1 GLN12F2 GRN12F1 GRN12F2 GRN12F3 L&R512 LEO611 LEO612 LF34F1 LIB12F1 LIB12F2 LIB12F3 LIB12F4 MEA12F1 MEA12F2 MLN12F1 OTH501 OTH502 OTH503 OTH505 ROS12F1 ROS12F2 ROS12F3 ROS12F4 ROS12F5 ROS12F6 Idaho BUN422 BUN423 BUN424 BUN426 CRG1260 CRG1261 CRG1263 MIS431 NEZ1267 ODN731 ODN732 ORO1280 ORO1281 ORO1282 PIN441 PIN442 PIN443 POT321 POT322 PRA221 PRA222 PVW241 PVW243 WOR471 SWT2403 WIK1278 WIK1279 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 71 of 88 2018 Washington 3HT12F1 3HT12F2 3HT12F3 3HT12F4 3HT12F5 3HT12F6 3HT12F7 3HT12F8 9CE12F1 9CE12F2 9CE12F3 9CE12F4 ARD12F1 BKR12F1 BKR12F3 C&W12F1 C&W12F2 C&W12F3 C&W12F4 C&W12F5 C&W12F6 CLV12F1 CLV12F2 CLV12F3 CLV12F4 CLV34F1 DRY1208 DRY1209 GAR461 HAR4F1 HAR4F2 KET12F1 MIL12F1 MIL12F2 MIL12F3 MIL12F4 NW12F1 NW12F2 NW12F3 NW12F4 NW13T23 PAL311 PAL312 RDN12F1 RDN12F2 RIT731 RIT732 SPA442 SPU121 SPU122 SPU123 SPU124 SPU125 WAK12F1 WAK12F2 WAK12F3 WAK12F4 Idaho BIG411 BIG412 BIG413 BLU321 COT2401 COT2402 HUE141 HUE142 LKV341 LKV342 LKV343 LKY551 M15511 M15512 M15513 M15514 M15515 M23621 NMO521 NMO522 OSB522 STM631 STM632 STM633 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 72 of 88 2019 Washington ARD12F2 BKR12F2 DEP12F1 DEP12F2 DIA231 DIA232 EFM12F1 EFM12F2 H&W12F1 H&W12F2 KET12F2 LAT421 LAT422 LIN711 ORI12F1 ORI12F2 ORI12F3 SUN12F1 SUN12F2 SUN12F3 SUN12F4 SUN12F5 SUN12F6 WAS781 WIL12F1 WIL12F2 Idaho BLA311 CDA121 CDA122 CDA123 CDA124 CDA125 JUL661 LOL1359 OGA611 OLD721 OLD722 OSB521 PF211 PF212 PRV4S40 SLW1316 SLW1348 SLW1358 SLW1368 SPL361 TEN1253 TEN1254 TEN1255 TEN1256 TEN1257 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 73 of 88 2020 Washington BEA12F1 BEA12F2 BEA12F3 BEA12F4 BEA12F5 BEA12F6 BEA13T09 F&C12F1 F&C12F2 F&C12F3 F&C12F4 F&C12F5 F&C12F6 FOR12F1 GIF34F1 LL12F1 NE12F1 NE12F2 NE12F3 NE12F4 NE12F5 ODS12F1 OPT12F1 OPT12F2 PDL1201 PDL1202 PDL1203 PDL1204 PST12F1 RSA431 SIP12F1 SIP12F2 SIP12F3 SIP12F4 SIP12F5 SLK12F1 SLK12F2 SLK12F3 SOT521 SPI12F2 SPR761 TKO411 TKO412 VAL12F2 VAL12F3 Idaho APW111 APW112 APW113 APW114 APW115 APW116 AVD151 AVD152 CKF712 DER651 DER652 HOL1205 HOL1206 HOL1207 IDR251 IDR252 IDR253 JPE1287 JUL662 LOL1266 N131222 N131321 PF213 SAG742 WAL542 WAL543 WAL544 WAL545 WEI1289 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 74 of 88 Distribution Wood Pole Management 2016 2017 2018 2019 2020 SOT522 BEA12F3 APW116 9CE12F1 LIN711 AIR12F3 BEA13T09 ARD12F1 9CE12F2 BLA311 APW114 COT2401 - ID ARD12F2 9CE12F3 CHW12F1 APW115 COT2402 - ID BEA12F4 BLU321 CHW12F2 CHE12F4 DVP12F2 BEA12F6 BLU322 CHW12F3 CLA56 F&C12F3 BIG411 FWT12F2 CHW12F4 L&S12F1 F&C12F4 CFD1210 - WA GIF34F2 EWN241 L&S12F2 F&C12F5 CHE12F1 INT12F1 JUL661 L&S12F3 F&C12F6 CHE12F2 INT12F2 JUL662 L&S12F4 FOR12F1 CMP12F2 LAT421 - WA KAM1291 L&S12F5 FOR2.3 FWT12F4 LAT422 - WA KAM1292 LKV341 IDR253 JPE1287 - ID LTF34F1 KAM1293 LKV342 OTH501 OPT12F1 NE12F5 LEO611 LKV343 PVW243 OPT12F2 PRV4S40 LOO12F2 LOL1359 - ID SIP12F1 OSB521 RSA431 MIS431 MLN12F1 SIP12F3 PST12F1 SPI12F2 ORI12F1 MLN12F2 SOT523 PST12F2 WAK12F1 ORI12F2 NLW1222 - ID SWT2403 - ID SLW1348 - ID WAK12F3 PIN441 SPT4S23 SPA442 - WA WAK12F4 POT321 SPT4S22 RDN12F1 RIT731 RIT732 SPL361 WEI1289 2021 2022 2023 2024 2025 CFD1210 ECL221 9CE12F4 BIG412 BKR12F1 CRG1260 ORO1282 BUN423 BKR12F3 CDA125 DVP12F1 PAL311 BUN426 CRG1261 CRG1263 FWT12F1 PAL312 CLV12F1 DER652 F&C12F2 FWT12F3 PIN443 GRV1274 H&W12F1 HAR4F2 HOL1205 POT322 M15512 H&W12F2 LEO612 HOL1206 RDN12F2 PDL1201 LIB12F3 LIB12F1 NE12F4 SPT4S21 PDL1202 ODS12F1 LIB12F4 PF213 STM631 SE12F1 ORI12F3 M15511 ROS12F3 VAL12F2 SLW1316 ORO1281 MIL12F1 SE12F3 VAL12F3 SOT521 SLK12F3 NEZ1267 SIP12F2 SUN12F1 WAL542 NLW1321 SLW1348 SUN12F3 NMO522 SLW1358 SIP12F5 WOR471 SUN12F6 TUR116 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 75 of 88 2026 2027 2028 2029 2030 AIR12F1 DAL131 CLV12F2 3HT12F4 BIG413 CFD1211 DAL132 CLV34F1 BEA12F5 BKR12F2 DRY1208 DAL134 ECL222 C&W12F1 BUN422 GRV1271 MEA12F2 GRN12F1 CDA121 BUN424 HUE141 MIL12F2 ROK451 CDA122 DRY1209 KOO1298 MIL12F4 TKO411 CDA124 GRN12F2 KOO1299 PF212 TKO412 CLV12F3 GRV1272 OGA611 PRA221 CLV12F4 GRV1273 PDL1203 PRA222 HOL1207 HUE142 PF211 TEN1253 LKY551 KET12F1 WAL543 TUR117 MEA12F1 L&R511 WIK1278 NE12F3 L&R512 WIK1279 SE12F5 LKY552 WIL12F1 TEN1257 NMO521 OSB522 PIN442 PVW241 WAL544 WAL545 2031 2032 2033 2034 2035 3HT12F1 CKF711 NW12F4 AIR12F2 BEA12F1 3HT12F2 CKF712 3HT12F5 CHE12F3 ODN731 3HT12F3 DIA231 3HT12F6 COB12F1 ODN732 CGC331 DIA232 3HT12F7 COB12F2 SPU121 M15514 EFM12F2 APW111 EFM12F1 SPU122 NRC351 HAR4F1 APW112 M15515 SPU123 ROX751 KET12F2 C&W12F2 MIL12F3 SPU124 SLW1368 LL12F1 C&W12F3 STM633 SPU125 SUN12F2 LOO12F1 C&W12F4 SUN12F4 TEN1254 TUR113 PDL1204 C&W12F5 SUN12F5 TUR111 STM632 C&W12F6 TUR115 NE12F2 VAL12F1 NW12F1 NW12F3 SPT4S30 WAK12F2 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 76 of 88 Grid Modernization 2016 Grid Modernization Plan Feeder Design Constr State Region Area BEA12F1 x WA West Spokane M23621 x ID South Pullman/Mosc MIL12F2 x x WA West Spokane MIS431 x WA East Kellogg ORO1280 x ID South Grangeville PDL1201 x WA South Lewiston/Clark RAT231 x ID East Coeur d'Alene RAT233 x x ID East Coeur d'Alene SPI12F1 x x WA West Colville SPR761 x WA West Othello TUR112 x WA South Pullman/Mosc WAK12F2 x WA West Spokane 2017 Grid Modernization Plan Feeder Design Constr State Region Area 2016 Carryover x x F&C12F1 x WA West Spokane M15514 x ID South Pullman/Mosc MIL12F2 x WA West Spokane MIS431 x WA East Kellogg ORO1280 x PDL1201 x WA South Lewiston/Clark RAT233 x x ID East Coeur d'Alene SPI12F1 x WA West Colville SPR761 x x WA West Othello TUR112 x x WA South Pullman/Mosc Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 77 of 88 2018 Grid Modernization Plan Feeder Design Constr State Region Area 2017 Carryover x x BEA12F2 x WA West Spokane DEP12F2 x WA West Deer Park F&C12F1 x x WA West Spokane HOL1205 x WA South Lewiston/Clark M15514 x ID South Pullman/Mosc MIL12F2 x ID West Spokane MIS431 x x WA East Kellogg TEN1255 x ID South Lewiston/Clark RAT233 x ID East Coeur d'Alene SPI12F1 x ID West Colville SPR761 x WA West Othello 2019 Grid Modernization Plan Feeder Design Constr State Region Area 2018 Carryover BEA12F2 x x WA West Spokane F&C12F1 x WA West Spokane HOL1205 x ID South Lewiston/Clark M15514 x ID South Pullman/Mosc MIL12F2 x WA West Spokane MIS431 x x ID East Spokane MLN12F1 x x WA West Deer Park RAT233 x x ID East Kellogg SPR761 x WA West Othello TEN1255 x x ID South Lewiston/Clark TEN1256 x WA South Lewiston/Clark TUR112 x WA South Pullman/Mosc Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 78 of 88 Transformer Change-Out Program TCOP Work Plan Year Program Working Count 2016 GMP 305 2016 TCOP 1027 2016 WPM 180 2017 GMP 459 2017 TCOP 480 2017 WPM 64 2017 Predicted Non Detect TCOP 204 2018 GMP 252 2018 TCOP 14 2018 WPM 138 2018 Predicted Non Detect GMP 5 2018 Predicted Non Detect TCOP 1031 Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 79 of 88 Business Cases Distribution Wood Pole Management Investment Name: Requested Amount Assessments: Duration/Timeframe Indefinite Financial: Dept.., Area: Strategic: Owner: Business Risk: Sponsor: Program Risk: Category: Mandate/Reg. Reference: Assessment Score:93 Recommend Program Description: Performance Capital Cost O&M Cost Other Costs Business Risk Score Customer IRR = 7.42% and avoids an average of 1,700 additional events per year 11,172,022$ 530,943$ 5,996,350$ 15 Alternatives: Performance Capital Cost O&M Cost Other Costs Business Risk Score Status Quo: No Wood Pole Management Increase OMT events by 1,700 events 8,186,361$ -$ 6,834,467$ 25 Alternative 1: Distribution Wood Pole Management - 20 Year Inspection Cycle describe any incremental changes in operations 10,712,022$ 530,943$ 5,996,350$ 15 Alternative 2: Distribution Wood Pole Management - 20 Year Inspection Cycle with Guy Wire describe any incremental changes in operations 11,172,022$ 530,943$ 5,996,350$ 0 Alternative 3 Name : Distribution Wood Pole Management - 10 Year Inspection Cycle with Guy Wire Replacement describe any incremental changes in operations 17,296,437$ 961,699$ 4,920,632$ 0 Program Cash Flows Capital Cost O&M Cost Other Costs Approved Previous 21,393,700$ -$ 18,767,986$ 2060 2015 11,500,000$ 10,600,000$ 2016 11,200,000$ 543,155$ 4,564,898$ 7,840,000$ 2017 14,700,000$ 555,648$ 4,574,638$ 12,000,000$ 2018 14,700,000$ 570,094$ 4,588,630$ 15,700,000$ 2019 14,700,000$ 584,916$ 4,611,573$ 16,060,000$ 2020 14,700,000$ 600,124$ 4,634,631$ 14,700,000$ 2021+15,700,000$ 615,728$ 4,657,804$ -$ Total 118,593,700$ 3,469,665$ 27,632,174$ 95,667,986$ ER 2016 2017 2018 2019 2020 Total 2060 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ Total -$ -$ -$ -$ -$ -$ Asset Maintenance Life-cycle asset management Distribution Wood Pole Management Estimated Total Capital Expenditure Cox/H. Rosentrater High certainty around cost, schedule and resources Program NESC - See WPM Compliance Plan for details Annual Cost Summary - Increase/(Decrease) Annual Cost Summary - Increase/(Decrease) Year Program Mandate Excerpt (if applicable): Additional Justifications: Any supplementary information that may be useful in describing in more detail the nature of the Project, the urgency, etc. The current WPM program complies with the following part of the National Electric Safety Code: 013, 121, 212 A, 212 B, and 261 A.2 Distribution Wood Pole Management Program inspects all Electric Distribution Feeders on a 10 year cycle and repairs or replaces wood poles, crossarms, missing lightning arresters, missing grounds, bad cutouts, bad insulating pins, bad insulators, leaking transformers, replaces guy wires not meeting current code requirements, and replaces pre-1981 transformers Distribution Wood Pole Management Program inspects all Electric Distribution Feeders on a 20 year cycle and repairs or replaces wood poles, crossarms, missing lightning arresters, missing grounds, bad cutouts, bad insulating pins, bad insulators, leaking transformers, replaces guy wires not meeting current code requirements on poles replaced by WPM, and replaces pre-1981 transformers Associated Ers (list all applicable): Distribution Wood Pole Management Program inspects all Electric Distribution Feeders on a 20 year cycle and repairs or replaces wood poles, crossarms, missing lightning arresters, missing grounds, bad cutouts, bad insulating pins, bad insulators, leaking transformers, and replaces pre-1981 transformers. Note: does not cover the additional costs associated with the backlog that is related to new requirements such as additional grounding and anchor rod replacements. Distribution Wood Pole Management Program inspects all Electric Distribution Feeders on a 20 year cycle and repairs or replaces wood poles, crossarms, missing lightning arresters, missing grounds, bad cutouts, bad insulating pins, bad insulators, leaking transformers, replaces guy wires not meeting current code requirements on poles replaced by WPM, and replaces pre-1981 transformers Run wood poles and associated equipment to failure Glenn Madden (Manager)Business Risk Reduction >5 and <= 10 7.42% Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 80 of 88 URD Primary Cable Investment Name: Requested Amount Assessments: Duration/Timeframe 2 Financial: Dept.., Area: Strategic: Owner: Operational: Sponsor: Business Risk: Category: Project/Program Risk: Mandate/Reg. Reference: Assessment Score:110 Recommend Project Description: Performance Capital Cost O&M Cost Other Costs ERM Risk Score Customer IRR = 10% and avoids an average of 600 outages per year 1,800,000$ -$ -$ 4 Alternatives: Performance Capital Cost O&M Cost Other Costs ERM Risk Score Status Quo: Increase number of Outage towards 700 per year -$ -$ 1,300,000$ 10 Alternative 1: Primary URD Cable Replacement Customer IRR = 10% and avoids an average of 600 outages per year 1,800,000$ -$ -$ 4 Alternative 2: Brief name of alternative (if applicable) describe any incremental changes in operations -$ -$ -$ 0 Alternative 3 Name : Brief name of alternative (if applicable) describe any incremental changes in operations -$ -$ -$ 0 Timeline Construction Cash Flows (CWIP) Capital Cost O&M Cost Other Costs Approved Previous 19,852,679$ -$ -$ 19,852,679$ 2012 1,800,000$ -$ -$ 1,982,000$ 2013 1,000,000$ -$ -$ 1,000,000$ 2014 1,000,000$ -$ -$ 750,000$ 2015 1,000,000$ -$ -$ 1,000,000$ 2016 1,000,000$ -$ -$ 200,000$ 2017 1,000,000$ -$ -$ 500,000$ 2018 1,000,000$ -$ -$ 1,000,000$ 2019 -$ -$ -$ -$ 2020 -$ -$ -$ 800,000$ Total 27,652,679$ -$ -$ 27,084,679$ Milestones (high level targets) November-11 Project Started December-12 Plant In Service mm/dd/yy open March-12 Project Plan December-12 Project Complete mm/dd/yy open June-12 Project Design mm/dd/yy open mm/dd/yy open March-12 Major Procurement mm/dd/yy open September-12 Construction Start mm/dd/yy open Current ER 2054 Mandate Excerpt (if applicable): Additional Justifications: Cost Summary - Increase/(Decrease) MH - >= 9% & <12% CIRR Life Cycle Programs Operations improved beyond current levels ERM Reduction >5 and <= 10 High certainty around cost, schedule and resources Describe other options that were considered Complete the replacement of the un-jacketed first generation of Primary URD cable Associated Ers (list all applicable): Cost Summary - Increase/(Decrease) Number of Primary URD Cable faults would increase and the cost to repair the cable would also increase. Without this work and the past 4 years of work, the increased O&M costs would sum up to $8.8 million over the next 5 years. Complete the replacement of the un-jacketed first generation of Primary URD cable Describe other options that were considered Jason Thackson Project n/a Primary URD Cable Replacement 2013 $1,800,000 Asset Management & Process Improvement Year Project Kevin Christie Milestones should be general. In some cases it may be as simple as project start, project complete. Use your judgementon project progress so that progress can be measured. 0 2 4 6 8 10 12 14 Replace Old URD Cable Time (Months) Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 81 of 88 Transformer Change Out Program Investment Name: Requested Amount Assessments: Duration/Timeframe 25 Financial: Dept.., Area: Strategic: Owner: Operational: Sponsor: Business Risk: Category: Program Risk: Mandate/Reg. Reference: Assessment Score:89 Recommend Program Description: Performance Capital Cost O&M Cost Other Costs Business Risk Score When completed save an average of 5.6 MW per hour and eliminate PCB environmental risks 5,800,000$ 105,000$ -$ 3 Alternatives: Performance Capital Cost O&M Cost Other Costs Business Risk Score Unfunded Program: n/a 4,500,000$ 200,000$ 900,000$ 12 Alternative 1: Transformer Change-Out Program When completed save an average of 5.6 MW per hour and 5,800,000$ 105,000$ -$ 3 Alternative 2:200,000$ -$ -$ 0 Alternative 3 Name : -$ -$ -$ 0 Program Cash Flows 5 years of costs Current ER 1003 Capital Cost O&M Cost Other Costs Approved 2060 2535 2012 7,000,000$ 100,000$ -$ 6,000,000$ 2013 7,200,000$ 102,000$ -$ 2,924,015$ 2014 5,800,000$ 105,000$ -$ 3,944,000$ 2015 5,800,000$ 107,000$ -$ 3,750,000$ 2016 5,800,000$ 110,000$ -$ 2,200,000$ 2017 1,100,000$ 1,900,000$ 2018 1,700,000$ Total 32,700,000$ 524,000$ -$ 22,418,015$ Mandate Excerpt (if applicable): Additional Justifications: Asset Management & Process Improvement Life Cycle Programs Distibution Transformer Change-Out Program 7,000,000$ Year Program Medium - >= 5% & <9% CIRR Glenn Madden (Manager) & Al Fisher (Dir)Operations require execution to perform at current levels Don Kopczynski ERM Reduction >5 and <= 10 Program High certainty around cost, schedule and resources n/a Annual Cost Summary - Increase/(Decrease) The Distribution Transformer Change-Out Program has three main drivers. First, the pre-1981 distribution transformers that are targeted for replacement average 42 years of age and are a minimum of 30 years old. Their replacement will increase the reliability and availability of the system. Secondly, the transformers to be replaced are inefficient compared to current standards and their replacement will result in energy savings. Thirdly, pre-1981 transformers have the potential to have pcb containing oil. The transformers to be removed early in the program are those that are most likely to have pcb containing oil and their replacement will reduce the risk of pcb containing oil spills which are a safety, environmental, and a public relations concern. Annual Cost Summary - Increase/(Decrease) No planned replacement program for distribution transformers. Substancially higher risk of a pcb containing oil spill occuring. The Distribution Transformer Change-Out Program has three main drivers. First, the pre-1981 distribution transformers that are targeted for replacement average 42 years of age and are a minimum of 30 years old. Their replacement will increase the reliability and availability of the system. Secondly, the transformers to be replaced are inefficient compared to current Distribution Engineering has proposed that any pole that the TCOP does work on needs to have the guy replaced with the new standard guy insulator (fiber cable). Associated Ers (list all applicable): Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 82 of 88 Area and Street Light Investment Name: Street Light Management Requested Amount $475,000 Assessments: Duration/Timeframe Indefinite 2014 Financial: Dept.., Area: Operations Strategic: Owner: Al Fisher Business Risk: Sponsor: Don Kopczynski Program Risk: Category: Program Mandate/Reg. Reference: n/a Assessment Score:89 Recommend Program Description: Performance Capital Cost O&M Cost Other Costs Business Risk Score 7.92%475,000$ (250,000)$ (750,000)$ 8 Alternatives: Performance Capital Cost O&M Cost Other Costs Business Risk Score Unfunded Program: Continue maintaining the street lights as failures occur 6.29% 2 - S3 event in 10 years -$ 1,500,000$ 1,800,000$ 16 Alternative 1: 7.92% 1.5 - S3 event in 10 years 475,000$ (250,000)$ (750,000)$ 8 Alternative 2: 7.28% 1 - S3 event in 10 years 890,000$ (250,000)$ (1,175,000)$ 12 Alternative 3:7.82% 1 - S3 event in 10 years 895,000$ (250,000)$ (1,165,000)$ 12 Program Cash Flows Capital Cost O&M Cost Other Costs Approved Previous -$ -$ -$ -$ New ER 2013 -$ -$ -$ -$ 2014 475,000$ (250,000)$ -$ -$ 2015 484,500$ (500,000)$ -$ 2,400,000$ 2016 494,190$ (750,000)$ -$ 1,500,000$ 2017 504,074$ (1,000,000)$ -$ 1,500,000$ 2018 -$ -$ -$ 1,500,000$ 2019 -$ -$ -$ 1,500,000$ 2020 Total 1,957,764$ (2,500,000)$ -$ 8,400,000$ ER 2013 2014 2015 2016 2017 Total New ER -$ 475,000$ 484,500$ 494,190$ 504,074$ 1,957,764$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ Total -$ 475,000$ 484,500$ 494,190$ 504,074$ 1,957,764$ Associated Ers (list all applicable): Life-cycle asset management Moderate certainty around cost, schedule and resources Annual Cost Summary - Increase/(Decrease) Annual Cost Summary - Increase/(Decrease) Mandate Excerpt (if applicable): Additional Justifications: Street Light Maintenance Program. This program is a 5 year planned replacement of bulbs and 10 year planned replacement of photocells. This alternative has the starterboards running to failure. Street Light Maintenance Program. This program is a 5 year planned replacement of bulbs and starterboards and a 10 year planned replacement of photocells. Street Light Maintenance Program. This program is a 5 year planned replacement of bulbs and a 10 year planned replacement of photocells and starterboards. Business Risk Reduction >5 and <= 10 7.92% Street Light Maintenance Program. This program is a 5 year planned replacement of bulbs and 10 year planned replacement of photocells. This alternative has the starterboards running to failure. The lights are currently maintained based on customer feedback and/or due to being noticed by an Avista employee. Many street lights are out for long periods of time which can put us at risk. We also spend a large amount of time driving from issue to issue. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 83 of 88 Grid Modernization Investment Name: Requested Amount Assessments: Duration/Timeframe Indefinite Financial: Dept.., Area: Strategic: Owner: Business Risk: Sponsor: Program Risk: Category: Mandate/Reg. Reference: Assessment Score:133 Recommend Program Description: Performance Capital Cost O&M Cost Other Costs Business Risk Score When completed save an average of 1,970 MWh* annually & Reduce Outages 21,000,000$ -$ 198,000$ 4 Alternatives: Performance Capital Cost O&M Cost Other Costs Business Risk Score Unfunded Program: n/a 120,000$ -$ 1,980,000$ 25 Alternative 1: Brief name of alternative (if applicable) When completed save an average of 1,970 MWh* annually & Reduce Outages 21,000,000$ -$ 198,000$ 4 Alternative 2: Brief name of alternative (if applicable) describe any incremental changes in operations -$ -$ -$ 0 Alternative 3 Name : Brief name of alternative (if applicable) describe any incremental changes in operations -$ -$ -$ 0 Program Cash Flows Capital Cost O&M Cost Other Costs Approved Previous 7,308,357$ -$ -$ 7,308,357$ Dist Grid Modernization 2470 2014 8,686,019$ -$ -$ 9,586,000$ Sandpoint SG 2570 2015 11,000,000$ -$ -$ 12,310,000$ Grid Mod Automation 2599 2016 12,000,000$ -$ -$ 7,000,000$ 2017 13,000,000$ -$ -$ 13,000,000$ 2018 15,000,000$ -$ -$ 15,000,000$ 2019 18,000,000$ -$ -$ 21,000,000$ 2020 21,000,000$ -$ -$ 20,800,000$ Total 105,994,376$ -$ -$ 106,004,357$ ER 2015 2016 2017 2018 2019 Total Dist Grid Modernization -$ -$ -$ -$ -$ -$ 2470 11,000,000$ 11,000,000$ 13,000,000$ 15,000,000$ 15,000,000$ 65,000,000$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ Sandpoint SG -$ -$ -$ -$ -$ -$ 2570 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ Grid Mod Automation -$ -$ -$ -$ -$ -$ 2599 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ Total 11,000,000$ 11,000,000$ 13,000,000$ 15,000,000$ 15,000,000$ 65,000,000$ The Dist Grid Modernization Program provides benefits to customers, employees, and shareholders by replacing problematic poles, cross-arms, cut- outs, transformers, conductor, etc. In addition, adding switched capacitor banks and smart grid devices is of benefit due to increased energy efficiency and system reliability. Describe other options that were considered Describe other options that were considered Troy A. Dehnel Business Risk Reduction >15 6.4% Customer IRR Mandate Excerpt (if applicable): WSDOT Target Zero, an FHWA mandated initiative in MAP-21, requires that utilities move all non-breakaway structures out of the clear zone as defined in the 10/2005 AASHTO "A Guide for Accommodating Utilities Within Highway Right-of-Way. WA State law requires that we complete this task by year 2030. Additional Justifications: WAC 468-34-350 - Control Zone Guidelines, WAC 468-34- 300 - Overhead Lines Location, RCW 47.32.130 Dangerous Objects and Structures as Nuisances, RCW 47.44.010 Wire and Pipeline and Tram and Railway Franchises - Application - Rules on Hearing and Notice, RCW 47.44.020 Grant of Franchise - Condition - Hearing. Associated Ers (list all applicable): Distribution Engineering Life-cycle asset management Distribution Grid Modernization See Plan Below Don Kopczynski High certainty around cost, schedule and resources Program Federal & State Clear Zone Mitigation Directives Annual Cost Summary - Increase/(Decrease) The Distribution Grid Modernization Program provides value to customers and shareholders by improving Grid Reliability, Energy Savings and Operational Ability through a systematic and managed upgrade of our aging distribution system. This program seeks cost effective opportunities to increase service quality performance and system availability through the identification of locations that would benefit from the addition of switched capacitor banks, regulators and smart grid devices. The long-term plan represented by the IRR of 6.4% aims to upgrade 6 feeders per year to cover the whole distribution system in a 60 year cycle. This coordinates well with Wood Pole Management's 20 year cycle. The average cost to rebuild each feeder is estimated to be $3.5M. Annual Cost Summary - Increase/(Decrease) No systematic plan for wholistic address of conductors, reconfiguring services for better access, or adding devices that benefit the performance of the feeder. Year Program Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 84 of 88 Worst Feeder Investment Name: Requested Amount Assessments: Duration/Timeframe on-going Financial: Dept.., Area: Strategic: Owner: Operational: Sponsor: Business Risk: Category: Program Risk: Mandate/Reg. Reference: Assessment Score:84 Recommend Program Description: Performance Capital Cost O&M Cost Other Costs Business Risk Score Improve the overall system performance of the Company's "top ten" worst feeders. 2,000,000$ -$ -$ 12 Alternatives: Performance Capital Cost O&M Cost Other Costs Business Risk Score Unfunded Program: Ten to twenty rural FDRs whose SAIFI exceeds 10 -$ -$ -$ 20 50% funding annual spend restricted to top five worst feeders 1,000,000$ -$ -$ 12 25% funding work plan restricted to enhanced protection 500,000$ -$ -$ 0 describe any incremental changes in operations -$ -$ -$ 0 Program Cash Flows 5 years of costs Current ER 2414 Capital Cost O&M Cost Other Costs Approved Previous 6,000,000$ 5,050,550$ 2015 2,000,000$ -$ -$ 1,035,041$ 2016 2,000,000$ 1,500,000$ 2017 2,000,000$ 2,500,000$ 2018 2,000,000$ -$ -$ 2,000,000$ 2019 2,000,000$ -$ -$ 2,000,000$ Total 10,000,000$ -$ -$ 9,035,041$ Mandate Excerpt (if applicable): Additional Justifications: Engineering/Operations Life Cycle Programs Underperforming Elec Ckts (Worst FDRs) $2,000,000 Year Program Medium - >= 5% & <9% CIRR Dave James Operations require execution to perform at current levels Howell/H Rosentrater ERM Reduction >5 and <= 10 Program Moderate certainty around cost, schedule and resources Any supplementary information that may be useful in describing in more detail the nature of the Program, the urgency, etc. n/a Annual Cost Summary - Increase/(Decrease) Initiating in 2009, ER 2414- "Worst Feeders" was proposed by Asset Management to improve the service reliability of the Company's worst-performing electric distribution circuits. Many rural feeders significantly exceed the Company SAIFI target of 2.1. This program is coordinated through divisional Area Engineers to identify treatment of these feeders. Work plans may include, reconstruction, hardening, vegetation management, conversion from OH to UG, enhanced protection, and relocation. Annual Cost Summary - Increase/(Decrease) Rural area reliability indices expected to worsen as infrastructure ages and deteriotes. Expect customer contacts to local media and state government and regulatory bodies. Funding at $1,000,000 would restrict current treatment to top five worst feeders. Funding at 500,000 would restrict treatment to enhanced protection only (adding midline reclosers, additional fusing) Associated Ers (list all applicable): Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 85 of 88 Feeder Tie Circuits Investment Name: Requested Amount Assessments: Duration/Timeframe on-going Financial: Dept.., Area: Strategic: Owner: Business Risk: Sponsor: Program Risk: Category: Mandate/Reg. Reference: Assessment Score:33 Recommend Program Description: Performance Capital Cost O&M Cost Other Costs Business Risk Score Electric Delivery Capacity 4,000,000$ -$ -$ 4 Alternatives: Performance Capital Cost O&M Cost Other Costs Business Risk Score Unfunded Program: n/a -$ -$ -$ 16 Alternative 1: Brief name of alternative (if applicable) describe any incremental changes in operations -$ -$ -$ 4 Alternative 2: Brief name of alternative (if applicable) describe any incremental changes in operations -$ -$ -$ 0 Alternative 3 Name : Brief name of alternative (if applicable) describe any incremental changes in operations -$ -$ -$ 0 Program Cash Flows Capital Cost O&M Cost Other Costs Approved 2015 3,735,000$ -$ -$ 3,573,505$ 2514 2515 2516 2016 3,810,000$ -$ -$ 3,810,000$ 2017 4,175,000$ -$ -$ 4,175,000$ 2018 3,900,000$ -$ -$ 3,900,000$ 2019 4,000,000$ -$ -$ 4,000,000$ 2020 4,000,000$ -$ -$ 4,000,000$ 2021+4,000,000$ -$ -$ -$ Total 27,620,000$ -$ -$ 23,458,505$ ER 2016 2017 2018 2019 2020 Total 2514 2,000,000$ 2,000,000$ 2,000,000$ 2,000,000$ 2,000,000$ 10,000,000$ 2515 1,000,000$ 1,000,000$ 1,000,000$ 1,000,000$ 1,000,000$ 5,000,000$ 2516 810,000$ 1,175,000$ 900,000$ 1,000,000$ 1,000,000$ 4,885,000$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ 0 -$ -$ -$ -$ -$ -$ Total 3,810,000$ 4,175,000$ 3,900,000$ 4,000,000$ 4,000,000$ 19,885,000$ Describe other options that were considered Describe other options that were considered Describe other options that were considered David Howell Business Risk Reduction - None 0.00% Mandate Excerpt (if applicable): Avista Distribution Planning Criteria (500 Amp) Additional Justifications: This program is a foundational element of the Company's overall effort to maintain the electric delivery system. While many of the asset managmeent program such as WPM, TCOP, Worst Feeders, and Grid Mod are targeted efforts to maintain reliability, this program specifically identifies thermal, voltage, and capacity 'tie' constraints. The program represents the collective effort of distibution planners and area engineers to manager our ability to serve customer load, efficiently, and securely. Associated Ers (list all applicable): Distribution Engineering Life-cycle asset management Segment Reconductor & FDR Tie Program $4,000,000/year Heather Rosentrater Low certainty around cost, schedule and resources Program n/a Annual Cost Summary - Increase/(Decrease) The Company's Distribution Grid system includes 18,000 circuit miles of overhead and underground primary conductors. As load and generation patterns shift, certain areas (segments) of the system become thermally overloaded. These constrained portions of the system are identified through systematic planning studies or from operational studyworks conducted by Area Engineers. In addition, FDR 'Tie' switches are installed to allow load shifts between FDR circuits to balance loads and in response to either maintenance or forced outages. Annual Cost Summary - Increase/(Decrease) Avista's Distribution System Planning criteria (e.g. 500 A Plan) mandates performance levels for distribution circuits including capacity and voltage requirements. This program is aimed at maintaining compliance with planning criteria. Year Program Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 86 of 88 Network Investment Name: Requested Amount Assessments: Duration/Timeframe n/a Financial: Dept.., Area: Strategic: Owner: Operational: Sponsor: Business Risk: Category: Program Risk: Mandate/Reg. Reference: Assessment Score:97 Recommend Program Description: Performance Capital Cost O&M Cost Other Costs Business Risk Score Investments necessary to maintain current operations and to extend the life of current assets. 2,300,000$ 348,251$ 215,000$ 6 Alternatives: Performance Capital Cost O&M Cost Other Costs Business Risk Score Unfunded Program: n/a -$ -$ -$ 25 Alternative 1: Brief name of alternative (if applicable) describe any incremental changes in operations -$ -$ -$ 6 Alternative 2: Brief name of alternative (if applicable) describe any incremental changes in operations -$ -$ -$ 0 Alternative 3 Name : Brief name of alternative (if applicable) describe any incremental changes in operations -$ -$ -$ 0 Program Cash Flows 5 years of costs Current ER 2058 2237 2251 Capital Cost O&M Cost Other Costs Approved CapX Repl. Metro PILC Post St PILC Previous 6,750,000$ 6,338,007$ 2015 2,300,000$ 348,250$ 215,000$ 2,100,000$ 2016 2,300,000$ 348,250$ 215,000$ 2,300,000$ 2017 2,300,000$ 348,250$ 215,000$ 2,300,000$ 2018 2,300,000$ 348,250$ 215,000$ 2,300,000$ 2019 2,300,000$ 348,250$ 215,000$ 2,300,000$ 2020 2,300,000$ Total 11,500,000$ 1,741,250$ 1,075,000$ 13,600,000$ CapX Specific O&M O&B Mandate Excerpt (if applicable): Additional Justifications: Engineering Life Cycle Programs Spokane Elec. Network $2,300,000 annually Year Program MH - >= 9% & <12% CIRR John McClain Operations require execution to perform at current levels Cox/H Rosentrater ERM Reduction >5 and <= 10 Program High certainty around cost, schedule and resources Service to the core business district in Spokane is afforded a much higher level of service reliability than other urban or rural areas. This reflects the importance of continuous service to hospitals, law enforcement, city government, banking, legal, commerce, and retail sectors of the local economy. n/a Annual Cost Summary - Increase/(Decrease) Avista owns and maintains an underground electric network that serves the core business, financial and city government district of downtown Spokane from Division Street to Cedar and from Interstate 90 to the Spokane River. It is operated as a networked secondary system. Most mid to large cities in the United States operate similar electric grids. The system is configured to allow a single element forced outage (transformer, cable segment) without impact to customers. Outages can and do occur but those generally involve substation equipment failures or failures associated with work in progress. Like most utilities that operate networked secondary systems, Avista uses dedicated cable crew resources specifically trained to operate, construct, inspect and maintain these systems. All equipment and cables are located beneath city streets and adjacent properties. Topology in the Network is unique to Avista electric distribution and requires specialized material, equipment, tooling and training to perform maintenance repair, planned replacement and capacity growth projects. The scope of annual capital replacements and additions includes: 7500 feet of secondary cable, 7500 feet of primary cable, 10 refurbished manholes & vaults, 10 tranformer replacements, and 20 street light replacements. Annual Cost Summary - Increase/(Decrease) Unfunding Network operations assumes zero PM activities and an eventual loss system functionality. Describe other options that were considered Describe other options that were considered Describe other options that were considered Associated Ers (list all applicable): Various WUTC tariff schedules are associated with customer classifications in downtown Spokane. NESC/WAC govern public and worker safety. Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 87 of 88 Line Protection Investment Name: Requested Amount Assessments: Duration/Timeframe On-going Financial: Dept.., Area: Strategic: Owner: Operational: Sponsor: Business Risk: Category: Program Risk: Mandate/Reg. Reference: Assessment Score:93 Recommend Program Description: Performance Capital Cost O&M Cost Other Costs ERM Risk Score Investments necessary to maintain current operations and to extend the life of current assets. 250,000$ 10,000$ 8 Alternatives: Performance Capital Cost O&M Cost Other Costs ERM Risk Score Unfunded Program: n/a -$ -$ -$ 15 Alternative 1: Brief name of alternative (if applicable) describe any incremental changes in operations -$ -$ -$ 8 Alternative 2: Brief name of alternative (if applicable) describe any incremental changes in operations -$ -$ -$ 0 Alternative 3 Name : Brief name of alternative (if applicable) describe any incremental changes in operations -$ -$ -$ 0 Program Cash Flows 5 years of costs Current ER Capital Cost O&M Cost Other Costs Approved 2416 System Wide 2013 250,000$ 5,000$ -$ 250,000$ 2014 250,000$ 10,000$ -$ 250,000$ 2015 125,000$ 10,000$ -$ 125,000$ 2016 125,000$ 10,000$ -$ 125,000$ 2017 125,000$ 5,000$ -$ 125,000$ 2018 -$ -$ -$ 125,000$ 2019 -$ -$ -$ 125,000$ 2020 125,000$ Total 875,000$ 40,000$ -$ 1,250,000$ Mandate Excerpt (if applicable): Additional Justifications: Describe other options that were considered Describe other options that were considered Associated Ers (list all applicable): This program was funded for a 2-year period in the 2009-2010 timeframe. This request allows for completion of the Chance cutout replacements but also includes the installation of devices on unfused laterals. Avista's Electric Distribution system is configured into a trunk and lateral system. Lateral circuits are protected via fuse-links and operate under fault conditions to isolate the lateral minimize the number of affected customers. Engineering recommends treatment of the following: 1. Removal and replacement of Chance Cutouts 2. Removal and replacement of Durabute cutouts 3. Installation of cut-outs on unfused lateral circuits. This is a targeted program to ensure adequate protection of lateral circuits and to replace known defective equipment. The Chance fuse cutout devices are porcelain cutouts prone to mechanical failure at a much higher failure rate than peer group devices when manually operated by line craft personnel during various line switching scenarios. This presents a significant hazard to line personnel as Annual Cost Summary - Increase/(Decrease) Describe other options that were considered Dave James Operations require execution to perform at current levels Cox/H. Rosentrater ERM Reduction >5 and <= 10 Program Moderate certainty around cost, schedule and resources Engineering Life Cycle Programs Distribution Line Protection 875,000 5-years Year Program MH - >= 9% & <12% CIRR n/a Annual Cost Summary - Increase/(Decrease) Exhibit No. 7 Case No. AVU-E-16-03 H. Rosentrater, Avista Schedule 4, Page 88 of 88