Loading...
HomeMy WebLinkAbout20110825IRP Appendix Final.pdfAPPENDIX Appendix Table of Contents Appendix A – Technical Advisory Committee Presentations (page 1) Technical Advisory Committee Meeting No. 1 (page 2) Technical Advisory Committee Meeting No. 2 (page 49) Technical Advisory Committee Meeting No. 3 (page 112) Technical Advisory Committee Meeting No. 4 (page 262) Technical Advisory Committee Meeting No. 5 (page 345) Technical Advisory Committee Meeting No. 6 (page 438) Appendix B – Work Plan for the 2011 Electric Integrated Resource Plan (page 493) Appendix C – Comprehensive List of Energy Efficiency Equipment and Measures Included in the Study (page 499) Appendix D – Conservation Potential Assessment Study (page 572) Appendix E – North Idaho Transmission Study (page 841) Appendix F – 2011 Electric IRP New Resource Table for Transmission (page 849) 2011 Electric Integrated Resource Plan Appendix A – Technical Advisory Committee Presentations Avista 2011 Electric Integrated Resource Plan 1 Avista’s 2011 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 1 Agenda Thursday, May 27, 2010 Conference Room 130 Topic Time Staff 1. Introduction 10:30 Lafferty 2. Work Plan 10:35 Lyons 3. Load & Resource Balance Update 11:00 Shane 4. Resource Planning Environment 11:35 Lyons 5. Lunch 12:00 6. 2011 IRP Topic Discussions 1:15 Analytical Process Changes Gall Hydro Modeling Shane Resource Adequacy Kalich Loss of Load Probability Gall Energy Efficiency Hermanson Scoping the 2011 Plan Kalich 7. Adjourn 3:30 Avista 2011 Electric Integrated Resource Plan 2 Work Plan John Lyons Technical Advisory Committee Meeting #1 2011 Electric Integrated Resource Plan May 27, 2010 Avista 2011 Electric Integrated Resource Plan 3 Technical Advisory Committee Meetings May 27, 2010: Work plan, load & resource balance, resource planning environment, and 2011 IRP topic discussions (analytical process changes, hydro modeling, resource adequacy, loss of load probability, energy efficiency, and scoping the 2011 plan) August 2010: Risk and resource assumptions, loss of load probability analysis, scenarios and futures, and energy efficiency October 2010: Load forecast, preliminary electric and gas price forecasts, updated load & resource forecast balance, and transmission cost studies February 2011:Review of modeling and assumptions, and draft PRS March 2011: Review of scenarios and futures, and portfolio analysis April 2011: Review of final PRS and action items June 2011: Review of the 2011 IRP Avista 2011 Electric Integrated Resource Plan 4 2011 Integrated Resource Plan Modeling Process Preferred Resource Strategy AURORA “Wholesale Electric Market” 300 Simulations PRiSM “Avista Portfolio” Efficient Frontier Fuel Prices Fuel Availability Resource Availability Demand Emission Pricing Existing Resources Resource Options Transmission Resource & Portfolio Margins Conservation Trends Existing Resources Avista Load Forecast Energy, Capacity, & RPS Balances New Resource Options & Costs Cost Effective T&D Projects/Costs Cost Effective Conservation Measures/Costs Mid-Columbia Prices Stochastic Inputs Deterministic Inputs Capacity Value Avoided Costs Avista 2011 Electric Integrated Resource Plan 5 2011 Electric IRP Draft Outline 1. Executive Summary 2. Introduction and Stakeholder Involvement 3. Loads and Resources a)Load forecast and scenarios b)Existing resources c) Resource adequacy 4. Energy Efficiency and Demand Response a)Energy and capacity savings projections and methodology b)Two year energy savings target (I-937) & business planning process c) Demand response options and study results d)Risk and externalities 5. Environmental Issues a)Carbon emissions b)Other 6. Transmission Planning a)Resource integration b)Smart grid c) Other T&D efficiencies Avista 2011 Electric Integrated Resource Plan 6 2011 Electric IRP Draft Outline (cont) 7. Generation Resource Options a)New resource alternatives b)Thermal and hydro upgrades 8. Market Analysis a)Regional loads, transmission, resources b)Fuel price forecasts c)Risk modeling d)Market price forecasts e)Market scenario analysis 9. Preferred Resource Strategy a)The PRiSM Model and efficient frontier analysis b)Preferred Resource Strategy results and I-937 compliance c) Portfolio scenario analysis 10. Action Items Avista 2011 Electric Integrated Resource Plan 7 Load and Resource Balance Forecast Xin Shane Technical Advisory Committee Meeting #1 2011 Electric Integrated Resource Plan May 27, 2010 Avista 2011 Electric Integrated Resource Plan 8 L&R Changes From 2009 IRP Load- 10 year growth rate 1.8%, 20 year growth rate 1.6%for Peak and Energy. The forecast for year 2011 is 42 aMW lower than previous forecast or 3.6%lower Hydro- Uses Clark Fork Optimization Package Results Thermal- CS2 duct burner capacity is upgraded to 28 MW from 23 MW Avista 2011 Electric Integrated Resource Plan 9 Annual Average Energy Position Base Case 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 aM W Hydro Base Thermal Contracts Peakers Load Load w/ Cont. Avista 2011 Electric Integrated Resource Plan 10 Winter Capacity Position Base Case Planning Margin = 15% 0 500 1,000 1,500 2,000 2,500 3,000 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 MW Peakers Contracts Base Thermal Hydro Load Load w/PM, w/o Maint Avista 2011 Electric Integrated Resource Plan 11 August Capacity Position Base Case 0 500 1,000 1,500 2,000 2,500 3,000 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 MW Peakers Contracts Base Thermal Hydro Load Load w/PM, w/o Maint Avista 2011 Electric Integrated Resource Plan 12 Energy Positions –7 Scenarios (aMW) (1,000) (800) (600) (400) (200) 0 200 400 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 w/o Energy Efficiency No PURPA w/o Short-term Purchases NPCC PM Base Case High Load Low Load Avista 2011 Electric Integrated Resource Plan 13 Winter Capacity Positions –7 Scenarios (MW) (1,600) (1,400) (1,200) (1,000) (800) (600) (400) (200) 0 200 400 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 Base Case w/o Energy Efficiency No PURPA w/o Short-term Purchases NPCC PM High Load Low Load Avista 2011 Electric Integrated Resource Plan 14 August Capacity Positions –7 Scenarios (MW) (1,600) (1,400) (1,200) (1,000) (800) (600) (400) (200) 0 200 400 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 Base Case w/o Energy Efficiency No PURPA w/o Short-term Purchases NPCC PM High Load Low Load Avista 2011 Electric Integrated Resource Plan 15 Washington State RPS (aMW) On-line Year Apprentice Labor Upgrade Energy 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 WA State Retail Sales Forecast 656 668 681 693 702 712 721 730 740 751 Load 10% Chance of Exceedance 29 30 30 31 31 32 32 33 33 34 Planning RPS Load 685 698 711 724 733 744 753 763 773 785 RPS %0%3%3%3%3%9%9%9%9%15% Required Renewable Energy 0.0 20.3 20.8 21.1 21.5 65.6 66.5 67.4 68.2 115.2 Renewable Resources Purchased RECs 0.0 5.7 5.7 5.7 5.7 0.0 0.0 0.0 0.0 0.0 Kettle Falls 1983 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Stateline 1999 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Long Lake 3 1999 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 Little Falls 4 2001 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 Cabinet 2 2004 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 Cabinet 3 2001 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 Cabinet 4 2007 1.0 1.99 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Noxon 1 2009 1.0 2.90 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 Reardan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Hydro 10% Chance of Exceedance (4.2)(4.2)(4.2)(4.2)(4.2)(4.2)(4.2)(4.2)(4.2)(4.2) Total Qualifying Resources 10.9 16.5 16.6 16.6 16.6 10.9 10.9 10.9 10.9 10.9 Net REC Position (Completed)10.9 (3.8)(4.2)(4.6)(5.0)(54.7)(55.6)(56.5)(57.4)(104.4) Budgeted Hydro Upgrades Noxon 2 2011 1.0 1.00 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Noxon 3 2010 1.0 1.30 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 Noxon 4 2012 1.0 1.20 0.0 0.6 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 Nine Mile 2012 1.2 3.80 0.0 2.3 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 Hydro 10% Chance of Exceedance (0.5)(1.3)(2.0)(2.0)(2.0)(2.0)(2.0)(2.0)(2.0)(2.0) Total Budgeted Hydro Upgrades 1.3 3.8 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 Rollover Credits 0.0 12.1 12.2 14.1 15.6 16.7 0.0 0.0 0.0 0.0 Net REC Postion (Budgeted Upgrades)with Rollover 12.1 12.2 14.1 15.6 16.7 (31.9)(49.5)(50.4)(51.3)(98.3) Net REC Postion (Budgeted Upgrades)w/o Rollover 12.1 0.1 1.9 1.5 1.1 (48.6)(49.5)(50.4)(51.3)(98.3) Avista 2011 Electric Integrated Resource Plan 16 Planning Environment John Lyons Technical Advisory Committee Meeting #1 2011 Electric Integrated Resource Plan May 27, 2010 Avista 2011 Electric Integrated Resource Plan 17 Major Planning Issues 1.Renewable Portfolio Standards –State and federal 2.Greenhouse Gas Regulations –State, regional, and federal –Emissions performance standards and reporting 3.Energy Efficiency Requirements 4.Reliability Planning 5.Variable Resource Integration 6.Electric Vehicles 7.Smart Grid 8.PURPA Avista 2011 Electric Integrated Resource Plan 18 State & Federal Greenhouse Gas Reduction Goals Kerry-Lieberman Waxman-Markey 2013 4.75%3% (2012) 2020 17%17% 2030 42%42% 2050 83%83% Percentage goals below 2005 greenhouse gas emissions Washington Goals 2020 1990 emissions 2035 25% below 1990 2050 50% below 1990 Avista 2011 Electric Integrated Resource Plan 19 Key Components Kerry-Lieberman (American Power Act) Allowances: –75% emissions based and 25% load based –Prohibition from receiving excess allocations –Electricity sector begins in 2013, natural gas in 2016 –Increased levels of free allocations Preemption of state cap-and-trade programs Preempt EPA regulation through Clean Air Act Carbon fees for petroleum Emissions credit limitations Emissions credit banking and borrowing Avista 2011 Electric Integrated Resource Plan 20 American Power Act –Price Collars $- $10.00 $20.00 $30.00 $40.00 $50.00 $60.00 $70.00 $80.00 $90.00 $100.00 20 1 3 20 1 5 20 1 7 20 1 9 20 2 1 20 2 3 20 2 5 20 2 7 20 2 9 20 3 1 Price Floor Price Ceiling 2009 IRP Avista 2011 Electric Integrated Resource Plan 21 EPA Tailoring Rule Clean Air Act permitting requirements for greenhouse gas (GHG) emissions from large stationary sources January 2, 2011: Prevention of Significant Deterioration (PSD) requirements for GHG emissions for new and modified facilities needing non-GHG PSD permits and increasing GHG emissions 75,000 tons CO2-e or more per year July 1, 2011: PSD requirements on new facilities emitting 100,000 tons CO2-e and modifications increasing GHG emissions 75,000 tons Rulemaking in 2011 setting emission thresholds and permitting requirements for 2013 Avista 2011 Electric Integrated Resource Plan 22 Analytical Process Changes James Gall Technical Advisory Committee Meeting #1 2011 Electric Integrated Resource Plan May 27, 2010 Avista 2011 Electric Integrated Resource Plan 23 2011 Integrated Resource Plan Modeling Process Preferred Resource Strategy AURORA “Wholesale Electric Market” 300 Simulations PRiSM “Avista Portfolio” Efficient Frontier Fuel Prices Fuel Availability Resource Availability Demand Emission Pricing Existing Resources Resource Options Transmission Resource & Portfolio Margins Conservation Trends Existing Resources Avista Load Forecast Energy, Capacity, & RPS Balances New Resource Options & Costs Cost Effective T&D Projects/Costs Cost Effective Conservation Measures/Costs Mid-Columbia Prices Stochastic Inputs Deterministic Inputs Capacity Value Avoided Costs Avista 2011 Electric Integrated Resource Plan 24 Modeling Enhancements and Questions/Feedback Modeling Enhancements Study period 2012 –2031 Use Loss of Load Probability/Expectation to target planning margins Resource retirements as an option in PRiSM Add other matrices to evaluate portfolio risk (i.e. Tail Var, CoVar, CO2) Increased number of resource upgrades as options (thermal and hydro) Increased number of distribution efficiency programs Evaluate demand response programs Further enhance relationships of regional market variables (i.e. correlations) Questions/Feedback Real versus nominal costs/prices reporting Market analysis (more, less, same- stochastic or scenario focused) Portfolio analysis (more, less, or same) Other requests Avista 2011 Electric Integrated Resource Plan 25 Hydro System Optimization Modeling Xin Shane Technical Advisory Committee Meeting #1 2011 Electric Integrated Resource Plan May 27, 2010 Avista 2011 Electric Integrated Resource Plan 26 Structure of Hydro System Optimization Package System Optimization Model Water Budget Model Output Database Input Database Avista 2011 Electric Integrated Resource Plan 27 Water Budget Model Overview The Water Budget Model’s primary goal is to recognize the storage capabilities inherent in system reservoirs, optimizing water releases to maximize generation values while enforcing project constraints. Today’s computers cannot optimize at an adequate detail level to extend the hourly Optimization Model to annual or multi-year timeframes Water Budget Model simplifies certain aspects, allowing optimization across many weeks to years Approach is a best practice, “industry standard” Avista 2011 Electric Integrated Resource Plan 28 System Optimization Model Overview Hourly model, with potential for more granularity (i.e., intra-hour analyses) Each project is represented in detail, including: –Accurate (piece-wise) reflection of individual turbine efficiency curves; –Physical and license-constrained reservoir elevations; –Tailrace elevations; –Minimum and maximum flow constraints; and –Other regulation constraints Shapes generation into the most beneficial (i.e., most economic) time periods using storage reservoirs Maximizes generation by flowing water through the most efficient points on each turbine’s power curve Avista 2011 Electric Integrated Resource Plan 29 Model vs Actual Generation- Clark Fork Example (aMW) Before Benchmarking 150.0 200.0 250.0 300.0 350.0 400.0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Actual Generation Model Output After Benchmarking 150.0 200.0 250.0 300.0 350.0 400.0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Actual Generation Model Output Cabinet Unit 4 Upgrade was online Avista 2011 Electric Integrated Resource Plan 30 Next Steps Complete Spokane River Model Complete Upgrade Analyses for the Following Projects –Long Lake–new power house with 1 or 2 new units (30-120 MW, pumped storage) –Post Falls–replace powerhouse with between 1 and 3 new units (25-40 MW) –Monroe Street–one additional unit (~45 MW capacity) –Cabinet Gorge–one or 2 new units (60-120 MW, help with total dissolved gas mitigation) Avista 2011 Electric Integrated Resource Plan 31 Resource Adequacy Clint Kalich Technical Advisory Committee Meeting #1 2011 Electric Integrated Resource Plan May 27, 2010 Avista 2011 Electric Integrated Resource Plan 32 Concepts Generator Capacity Services –Energy –Reserve for forced outages and extended load (i.e., hot and cold weather) excursions –Regulating –Load following –Energy imbalance (mismatches between scheduled and actual generation) Traditional Resource Planning Methodologies –Energy L&R •Average forecast •Plus contingency energy –Capacity L&R •Average peak load •Plus planning margin Avista 2011 Electric Integrated Resource Plan 33 Capacity Services Definitions Energy –Average capability to do work over a given time horizon –Conversion of fuel (water, wind, coal, gas, wood, etc.) to electricity Planning Reserves –Operating Reserve –capacity held back to cover forced outages and non-firm imports •5%-7%-5% of online capacity for hydro-thermal-wind •at minimum half must be “spinning;” the remaining can be “non-spinning” •first hour of system contingency met through NWPP Reserve Sharing Group –Regulating Reserve –spinning reserve immediately responsive to AGC •generally a seconds-to-5-minute product Avista 2011 Electric Integrated Resource Plan 34 Capacity Services Definitions, Cont. Planning Reserves, Cont. –Load Following •Reserve-like product to follow variations in load and resources across the trading hour *beyond 5 minutes *can be spinning or non-spinning (traditionally spinning in the NW) –Energy Imbalance •“Make-up energy” •Covers variations between hourly scheduled and actual generation levels Avista 2011 Electric Integrated Resource Plan 35 Potential Changes to L&R Planning Margin Operating Reserve –5% hydro and wind –7% thermal Regulating Reserve: ~25 MW Load Following: TBD Energy Imbalance –Wind and solar ~10-15% –Load ~2% Weather Variation: TBD Avista 2011 Electric Integrated Resource Plan 36 Key Considerations by Resource All Resources –Abilities to provide individual capacity services discussed above –Potential maintenance schedules –Forced outage characteristics Hydro –Sustained peaking capabilities –Run-of-river vs. reservoir storage vs. pumped storage –Upstream inflows during critical events Gas-Fired Thermals –Weather impacts –Resource type (peaking versus base-load, etc.) –Fuel availability over peak events Avista 2011 Electric Integrated Resource Plan 37 Key Considerations by Resource, Cont. Coal –Ramp rates Load Interruption (aka demand-side management) –Coincidence of measure with system peaking periods –Frequency of interruption rights –Duration of interruption rights –Sustainability of interruption savings •Especially when looking outside of industrial/large commercial classes Avista 2011 Electric Integrated Resource Plan 38 Key Considerations by Resource, Cont. Market Purchases –How much is available during critical events •Transmission constraints •Surpluses on 3rd party systems –“Firmness” of anticipated deliveries •Is 3rd party “firming” the sale? •In other words, will purchases be cut during critical events to serve 3rd-party system? Avista 2011 Electric Integrated Resource Plan 39 Illustration of Capacity Obligation 1000 100 25 66 20 100 0 200 400 600 800 1,000 1,200 1,400 1-in-2 peak energy load following regulation op. reserves forecast error planning margin total planning margin forecast error op. reserves regulation load following 1-in-2 peak energy 311 MW of additional capacity, or 31% 311 MW of additional capacity, or 31% Avista 2011 Electric Integrated Resource Plan 40 Metrics to Measure Resource Adequacy Loss of Load Probability (LOLP) –Percent of iterations that have at least one loss of load event Loss of Load Expectation (LOLE) –Days with an event; units are the number of days per year Loss of Load Hours (LOLH) –Hours with an event; units are the number of hours per year Expected or Equivalent Unserved Energy (EUE) –Average quantity of energy not served in each iteration (MWh) Avista 2011 Electric Integrated Resource Plan 41 Planning Margin Perspectives Avista Margin History –10% of peak load, plus 90 MW (1980s-2008) –15% of peak load (2009) FERC Standard Market Design: 12-18% Northwest Power and Conservation Council: 23% winter (January) , 24% summer (July) Avista 2011 IRP Margin –Based on probabilistic reliability study •LOLP, LOLE, LOLH, EUE metrics *5% LOLP (proposed) *1 day in 10 years LOLE (proposed) *LOLH and EUE (TBD) Avista 2011 Electric Integrated Resource Plan 42 Loss of Load Probability James Gall Technical Advisory Committee Meeting #1 2011 Electric Integrated Resource Plan May 27, 2010 Avista 2011 Electric Integrated Resource Plan 43 Overview Why Avista’s capacity planning margin is 15% of peak load. Without conducting a statistical analysis regarding probability of no serving all customer load due to lack of generation, the 15% should be questioned- especially as additional variable generation is added. Modeling 8,760 hours for ~1,000 potential outcomes (draws, games, iterations, etc) Study 2012, ‘16, ‘20, ‘24, and ’28 Randomizes: forced outages, temperature, loads, wind generation, and hydro conditions Takes into account hydro constraints, market purchases, and reserves including: within hour load variation, variable resource reserves, and operating reserves Can illustrate benefits using demand response and federal emergency hydro Avista 2011 Electric Integrated Resource Plan 44 For the Next TAC meeting Detailed presentation on how model works Finalize 2012 study (final load & wind modules) Market reliance scenarios Test 2009 IRP’s Preferred Resource Strategy for later years Avista 2011 Electric Integrated Resource Plan 45 Energy Efficiency & Demand Response Lori Hermanson Technical Advisory Committee Meeting #1 2011 Electric Integrated Resource Plan May 27, 2010 Avista 2011 Electric Integrated Resource Plan 46 Energy Efficiency Progress Since Last IRP Targets and Year-to-Date Achievement I-937 Plan for Washington accepted with conditions –Target for Washington electric only –Year-to-date results toward I-937 targets Demand Response Pilot – Tested and improved equipment capability on Avista’s system –Initiated 10 successful events of either cycling heating or AC or shutting off water heaters for 2-4 hrs – Proved customers’ strong willingness to participate with few opt-outs –Low northwest on/off-peak price differentials makes these programs not cost effective Avista 2011 Electric Integrated Resource Plan 47 Next Steps for 2011 IRP Conservation Potential Assessment (all states, gas/electric ) –Issue RFP in June –Complete RFP by October –Evaluate TRC cost-effectiveness with draft IRP electric price forecast in November –Establish energy efficiency placeholder levels in early January –Update with finalized IRP electric price forecast in late January –Finalize energy efficiency levels in early February –Draft energy efficiency and demand response section of IRP document Avista 2011 Electric Integrated Resource Plan 48 Avista’s 2011 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 2 Agenda September 8th and 9th, 2010 Avista Headquarters – Spokane, Washington Wednesday, September 8th Leave from Avista 8:30 am Lancaster Tour 9:30 am Rathdrum CT & Boulder Park Stops Lunch – Sawtooth Grill 12:30 pm Upper Falls & Monroe Street 1:45 pm Return to Avista 4:00 pm Thursday, September 9, 2010 Avista Conference Room 130 Topic Time Staff 1. Introduction 10:00 Storro 2. Resource Assumptions 10:05 Lyons 3. Reliability Planning 10:35 Gall 4. Lunch 11:30 5. Sustainability Report 12:30 Wuerst 6. Combined Heat and Power Generation 1:30 Dempsey 7. Energy Efficiency 2:30 Hermanson 8. Adjourn 3:30 Avista 2011 Electric Integrated Resource Plan 49 Resource Assumptions John Lyons Technical Advisory Committee Meeting #2 2011 Electric Integrated Resource Plan September 9, 2010 Avista 2011 Electric Integrated Resource Plan 50 Supply Side Resource Data Sources Power Council –6th Power Plan Resource lists developed internally from: –Trade journals –Press releases from other companies –Engineering studies and models –State commission announcements –Proposals from developers Consulting firms/reports State and federal resource studies Data sources are used to check and refine generic resource assumptions Avista 2011 Electric Integrated Resource Plan 51 Resource Updates from 2009 IRP Focusing on resource options identified in the 6th Power Plan Lancaster PPA began serving Avista Utilities load on January 1, 2010 150 MW of Northwest based wind in the 2009 Preferred Resource Strategy has been postponed Noxon Rapids Unit #3 upgrade completed in April 2010; Unit #2 and #4 upgrades scheduled for April 2011 and April 2012 Started work on the Nine Mile upgrade Avista 2011 Electric Integrated Resource Plan 52 Natural Gas-Fired Resources Resource Type First Year Size (MW) Levelized Overnight Costs (2012 $/MWh) * Capital Cost Excludes AFUDC (Nominal 2012) SCCT (aero)2014 46 $106 $1,033/kW SCCT (frame)2014 83 $114 $591/kW Hybrid SCCT 2014 94 $103 $1,107/kW CCCT (air)2016 270 $88 $1,105/kW CCCT (water)2016 275 $85 $1,053/kW Small Cogeneration 2015 5 $112 $3,472/kW Reciprocating Engine 2014 99 $111 $1,139 /kW * Prices are based on a preliminary gas price forecast Avista 2011 Electric Integrated Resource Plan 53 Other Thermal Resources Resource Type First Year Size (MW) Levelized Overnight Costs (2012 $/MWh) Capital Cost Excludes AFUDC (Nominal 2012) Coal (Ultra-critical)2018 300 $123 $3,250/kW Coal (IGCC)2014 300 $138 $3,252/kW Coal (IGCC w/sequestration) 2018 250 $156 $4,722/kW Nuclear 2021 500 $150 $5,802/kW Avista 2011 Electric Integrated Resource Plan 54 Renewable Resources Resource Type First Year Size (MW) Levelized Overnight Costs (2012 $/MWh) Capital Cost Excludes AFUDC (Nominal 2012) Wind 2016 50 $106 $1,951/kW Geothermal 2017 15 $110 $4,463/kW Wood Biomass 2015 25 $166 $3,710/kW Landfill Gas 2014 3.2 $60 $2,023/kW Manure Digester 2013 0.85 $111 $4,304/kW Waste Water Treatment 2014 0.85 $114 $4,304/kW Solar Photovoltaic 2014 5 $429 $7,140/kW Solar Thermal 2016 25 $195 $4,751/kW Avista 2011 Electric Integrated Resource Plan 55 Avista Hydro Upgrades Resource Type Year Size (MW) Little Falls 1 Upgrade 2014 1.0 Little Falls 2 Upgrade 2015 1.0 Little Falls 3 Upgrade 2016 1.0 Little Falls 4 Upgrade 2017 1.0 Post Falls New Powerhouse TBD TBD Upper Falls Upgrade 2019 2.0 Long Lake Second Powerhouse / Pumped Storage 2020 60 Long Lake Second Powerhouse 2020 50 –60 Cabinet Gorge Unit 5 2015 50 Monroe Street Unit 2 TBD 37.5 Cost estimates for these potential Avista resource upgrades will be presented at a later TAC meeting after the estimates are further developed Avista 2011 Electric Integrated Resource Plan 56 Reliability Planning James Gall Technical Advisory Committee Meeting #2 2011 Electric Integrated Resource Plan September 9, 2010 Avista 2011 Electric Integrated Resource Plan 57 Overview Objective Develop a planning tool to help quantify the amount of resources need above expected peak load Why A 15% capacity planning margin is currently added to forecast peak load. Without conducting a statistical analysis regarding the probability of not serving all customer load and reserve requirements, the 15% should be questioned- especially as variable generation is added. End Result Determine load variation adder to include in long-term load & resource balance (In addition to regulating reserves and regulating margin) Avista 2011 Electric Integrated Resource Plan 58 Modeling 8,760 hours for 800 potential outcomes (draws, games, iterations, etc) This presentation includes 2012 and 2017 Other years of interest 2016, 2020, 2025, 2027 Randomizes: forced outages, temperature, loads, wind generation, and hydro conditions Includes hydro constraints, short-term market purchases, and reserves including: within hour load variation, variable resource reserves, and operating reserves Can illustrate benefits of using demand response and federal hydro Avista 2011 Electric Integrated Resource Plan 59 Load Forced Outage Rates Historical Temperatures Thermal Availability Maintenance Schedules Wind Randomization Model Hydro Availability Wind Output Demand Response Operating Reserves Net Power Contracts Thermal Capacity Curves Historical Water Conditions Reliability Model Customer Appeal Other DR Programs Long-Term Contracts + Short Term Contract Limits Avista 2011 Electric Integrated Resource Plan 60 Loads Load shapes are derived from historic daily high and low temperatures Uses 120 years of Spokane temperatures The average load of all iterations matches the energy load forecast The average of the peak load is within the standard error of the peak load forecast Hourly load forecast uses monthly regression model with coefficients: –hour, day, temperature, and major weather event triggers Avista 2011 Electric Integrated Resource Plan 61 Hydro Randomly selects a hydro year between 1928 and 1999 Each hydro year includes monthly energy averages Run-of-river facilities –Monthly energy average is used for all hours of the month –No shaping or reserves are assumed to be available Storage facilities – Monthly average generation equals the “drawn” hydro level –In case of planned/forced outage, water can be spilled –Linear program moves energy into hours needed to meet load –Reservoir min and max levels, ramping rates, and daily limits are enforced –Unused capacity is held as operating reserves Avista 2011 Electric Integrated Resource Plan 62 Thermal Plants are considered available rather than dispatched Temperature dependency –Gas-fired facilities use capacity based upon location temperature –Temperatures are randomly drawn and are the same as the temperatures used in the load calculation Forced outages –Input forced outage rate and mean-time-to-repair –Outages occur randomly using a frequency and duration method –Ramp rates are used following outages Maintenance schedules –Planned maintenance schedules are assumed –Typical outages are in April though June Avista 2011 Electric Integrated Resource Plan 63 Wind Uses monthly on/off peak duration curves (see chart on left of January on-peak hours) Random number selects position on curve Following hour is correlated to previous hour using a correlation factor and variation January On-Peak Wind Duration Curve January Hourly Simulated Wind Generation Avista 2011 Electric Integrated Resource Plan 64 Wind (continued) Historical data from BPA control area shows generation is mitigated in below 32°F and above 95° F. (see chart below on left) Capacity factors are reduced at specified temps to model this phenomenon, (see chart on right) BPA Wind CF vs Spokane Temperatures Capacity Factor Adjustments for Specific Temperatures Avista 2011 Electric Integrated Resource Plan 65 Demand Curtailment Customer appeal –Public appeal to all customers to conserve energy, radio/TV broadcasts –Base case includes 25 MW reductions up to two times per year for hours across the peak Industrial process –Not included in base case –Designed to shift load from peak hours Sensitivities studies can help determine value of programs Avista 2011 Electric Integrated Resource Plan 66 Reserves Operating Reserves: –5% hydro and 7% thermal are simplified to 6% of load minus market purchases –Simplification allows linearization of the objective function Regulating Margin: –1.6% of average hourly load level (based on historical average of max load within hour versus average load) –Capacity is for within hour load variations Intermediate (Wind) Resource Regulation: –Lesser of 10% of nameplate capacity or generation amount Reserves are met by excess hydro capacity and thermal generation in excess of load Avista 2011 Electric Integrated Resource Plan 67 Third Party Transactions Long term firm power agreements are considered in the objective function Short-term transactions are treated as available market purchase, no short-term sales are considered In tight market conditions (low or high temperatures) market availability is limited to 300 MW on-peak and 500 MW off-peak. In other market conditions the market availability is limited to 500 MW on-peak and 750 MW off-peak. Scenario analysis will be performed to understand the change in loss of load given these assumptions Avista 2011 Electric Integrated Resource Plan 68 Objective Function Load Serving - Load [SM] + Available thermal capacity [RM] + Dispatched hydro capability [LP] + Wind generation [SM/RM] +/- LT Contracts + Federal Hydro (optional) + Demand Curtailment (optional) [LP] + Market Purchases >= 0 or event triggered Operating Reserves - Operating Reserve Requirement - Intra-hour load regulation - Wind regulation + Available thermal capacity + Unused hydro capacity >= 0 or event triggered SM: Stochastic Model RM: Randomization Model LP: Linear Program Avista 2011 Electric Integrated Resource Plan 69 Metrics Monthly and Annual Data Loss of Load Probability (LOLP): percent of iterations with a reserve or load loss –Calculation: iterations with event / # of iterations –Metric: 5% or less Loss of Load Hour (LOLH): expected number of hours each year with a load loss –Calculation: total hours with event / (# of iterations) –Metric: 0.24 (24 hours per 10 years) Loss of Load Expectation (LOLE): expected number of days each year with a load loss –Calculation: Days with event / # of iterations –Metric: 1 day in 10 years or 0.10 or less [or do we want 0.05, 1 in 20?] Equivalent Unserved Energy (EUE): average MWh of lost load over a year Avista 2011 Electric Integrated Resource Plan 70 2012 Assumptions Noxon Rapids 4 is on maintenance Jan –mid March 300 MW on-peak market No Federal hydro release Avista 2011 Electric Integrated Resource Plan 71 2012 Draft Results Item Annual Results Target LOLP 4.8%Below 5% LOLH 0.255 Not below 0.24 LOLE 0.066 Below 0.10 EUE 38.47 TBD Results Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Iterations Load loss w/o reserves 7 2 3 0 0 0 2 1 0 0 0 1 Load loss w/ reserves 5 2 3 0 0 0 2 1 0 0 0 1 Reserve violatons 16 3 0 0 0 0 7 4 0 0 0 0 Total Load Loss or Reserve Violatons 20 5 3 0 0 0 7 5 0 0 0 1 LOLP 2.5%0.6%0.4%0.0%0.0%0.0%0.9%0.6%0.0%0.0%0.0%0.1% Hours at Loss Load loss w/o reserves 79 31 22 0 0 0 7 6 0 0 0 10 Load loss w/ reserves 64 27 20 0 0 0 6 6 0 0 0 8 Reserve violations 37 7 0 0 0 0 29 9 0 0 0 0 Total Load Loss or Reserve Violations 98 34 20 0 0 0 29 15 0 0 0 8 LOLH 0.12 0.04 0.03 - - - 0.04 0.02 - - - 0.01 Other Data Reserves Used (MWh/Iterations)12 8 5 - - - 1 1 - - - 2 Unserved Energy (MWh/Iterations)14 8 6 - - - 1 1 - - - 3 Reserve Violations (MWh/Iterations)3 0 - - - - 2 0 - - - - Unserved Energy (MWh/Iterations)2 0 1 - - - 0 0 - - - 0 EUE: Unserved Energy/Reserves (MWh/Iteratons)4.7 0.7 1.2 0.0 0.0 0.0 2.2 0.3 0.0 0.0 0.0 0.1 Market used (iterations)286 120 39 6 518 548 349 374 92 56 91 37 Market used (hours)5,100 1,450 968 19 5,785 6,136 4,072 8,246 1,179 727 2,055 332 Probability of market 35.8%15.0%4.9%0.8%64.8%68.5%43.6%46.8%11.5%7.0%11.4%4.6% Avista 2011 Electric Integrated Resource Plan 72 2012 Draft Results (What if Noxon 4 was not on Maintenance?) Item Annual Results Target LOLP 2.5%Below 5% LOLH 0.14 Below 0.24 LOLE 0.035 Below 0.10 EUE 18.99 TBD Results Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Iterations Load loss w/o reserves 1 1 0 0 0 0 0 0 0 0 2 0 Load loss w/ reserves 1 1 0 0 0 0 0 0 0 0 2 0 Reserve violatons 7 0 0 0 1 0 4 2 1 0 0 2 Total Load Loss or Reserve Violatons 8 1 0 0 1 0 4 2 1 0 2 2 LOLP 1.0%0.1%0.0%0.0%0.1%0.0%0.5%0.3%0.1%0.0%0.3%0.3% Hours at Loss Load loss w/o reserves 54 13 0 0 0 0 0 0 0 0 9 0 Load loss w/ reserves 51 12 0 0 0 0 0 0 0 0 6 0 Reserve violations 15 0 0 0 2 0 10 8 2 0 0 6 Total Load Loss or Reserve Violations 66 12 0 0 2 0 10 8 2 0 6 6 LOLH 0.08 0.02 - - 0.00 - 0.01 0.01 0.00 - 0.01 0.01 Other Data Reserves Used (MWh/Iterations)12 2 - - - - - - - - 1 - Unserved Energy (MWh/Iterations)13 2 - - - - - - - - 1 - Reserve Violations (MWh/Iterations)1 - - - 0 - 0 0 0 - - 0 Unserved Energy (MWh/Iterations)1 0 - - - - - - - - 0 - EUE: Unserved Energy/Reserves (MWh/Iteratons)2.1 0.3 0.0 0.0 0.0 0.0 0.5 0.4 0.0 0.0 0.4 0.2 Market used (iterations)203 83 49 6 539 560 352 382 82 41 95 34 Market used (hours)3,954 1,110 985 8 5,712 5,971 3,822 8,183 1,039 485 2,353 267 Probability of market 25.4%10.4%6.1%0.8%67.4%70.0%44.0%47.8%10.3%5.1%11.9%4.3% Avista 2011 Electric Integrated Resource Plan 73 Results (DRAFT) Study LOLP (% of draws) LOLH (Avg un-served hours) LOLE (Avg un-served days) EUE (Avg Un-served MWh) 2012 4.8%0.255 0.066 38.47 2012 (Noxon Available all Year) 2.5%0.140 0.035 18.99 2017 (with 150 MW wind) 1.5%0.099 0.019 20.75 2017 (No Wind) 1.9%0.110 0.028 20.17 Avista 2011 Electric Integrated Resource Plan 74 How Many Iterations Is Enough? Avista 2011 Electric Integrated Resource Plan 75 Next Steps For Reliability Planning Study additional years Re-evaluate number of draws Run scenarios for different market availability amounts, demand curtailment, and wind penetration Evaluate moving model from Excel/WB to a different platform to increase speed Lock down acceptable metrics for load loss Develop new planning margin based upon results of the study More to come at a future TAC meeting Avista 2011 Electric Integrated Resource Plan 76 Avista’s 2010 Sustainability Report TAC Presentation SEPT. 9, 2010 “To be persuasive, we must be believable; to be believable, we must be credible; to be credible, we must be truthful.” Edward R. Murrow Avista 2011 Electric Integrated Resource Plan 77 Our commitment to sustainability: Avista’s goal is to provide energy for today’s customers while preserving the ability of future generations to do the same. We strive to engage our stakeholders --customers, investors, employees, communities and others –in achieving this goal. Avista 2011 Electric Integrated Resource Plan 78 Why do a Corporate Sustainability Report? •Trust and transparency have been found to be as important to corporate reputation as service quality. •CSR is a means to provide enterprise-wide information in a single location about our company’s strategies and actions impacting people, planet and performance –topics key to building trust. •An increasing number of investors, customers and other stakeholders and prospective employee are looking for this information. 0 20 40 60 80 100 2008 2004 # of S&P 100 companies including web-based sustainability information 0 20 40 60 80 2008 2007 # of S&P 100 companies producing formal sustainability reports “The time has come to usher in a new era…of responsibility.” President Barak Obama Source: Social Investment Forum, Dec. 2009) Avista 2011 Electric Integrated Resource Plan 79 Objectives of Avista’s Sustainability Report: •Be a launch pad for initiating stakeholder conversations and enhancing engagement, internally and externally •Provide information about Avista’s environmental, operations, governance and socially responsible programs and actions and business practices •Act as a catalyst for internal strategy and goal setting Avista 2011 Electric Integrated Resource Plan 80 What goes into a sustainability report? •Sustainability Action Team –Internal, cross-enterprise Environmental, Safety, Production & Generation, DSM/Energy Solutions, Power Supply, Facilities, Supply Chain, Human Resources, Finance, Corporate Communications •Prioritizing topics for inclusion Assess stakeholder interest Assess society’s interest Determine business position Determine impact on reputation Public or reportable information •Structure of the report •Distribution of the report 113 Performance indicators reported on Avista 2011 Electric Integrated Resource Plan 81 Avista 2011 Electric Integrated Resource Plan 82 Considerations for Future Sustainability Reporting •Review of 2010 report by GRI • Determine project’s scope and direction and align these with Avista’s strategic direction •Initiate in-depth conversations with departments across the company to determine additional reporting and data assurance opportunities •Expand the number of external stakeholders who give feedback on the report • Increase the visibility of Avista’s sustainability report and practices across stakeholders and other audiences without “green washing” Avista 2011 Electric Integrated Resource Plan 83 Materiality: Which information to Include? High HighLow Im p o r t a n c e t o S t a k e h o l d e r s Relevance for Avista Avista’s Energy Efficiency Biodiversity Corporate Citizenship Customer Satisfaction Direct Use of Natural Gas DSM Programs Employee Satisfaction Energy Security Environmental Performance Ethical Business Practices Executive Compensation Financial Performance GHG Footprint Global Climate Change Governance Human Resources NGO Relations Public Policy Rates Resource Planning Safety Stakeholder Engagement System Reliability Supply Chain Waste Discharge Water use Work Force Diversity Topics to Consider Others?? Avista 2011 Electric Integrated Resource Plan 84 Cogeneration Case Study Thomas C. Dempsey, PE Manager Generation Joint Projects Technical Advisory Committee Meeting #2 2011 Electric Integrated Resource Plan September 9, 2010 Avista 2011 Electric Integrated Resource Plan 85 Cogeneration “Cogeneration is the use of a heat engine or a power station to simultaneously generate both electricity and useful heat.”- Wikipedia “A combined cycle is characteristic of a power producing engine or plant that employs more than one thermodynamic cycle”-Wikipedia Cogeneration= Power [kW]+ Heat [Btu/hr] Combined Cycle = Gas Turbine Power [kW] + Steam Turbine Power [kW] Avista 2011 Electric Integrated Resource Plan 86 Cogeneration Design Avista 2011 Electric Integrated Resource Plan 87 Efficiency of a Combined Cycle Plant Efficiency = What you get/What you pay for Heat Rate = What you pay for/What you get Heat Rate = 1/Efficiency How does the efficiency of a combined cycle plant compare with that of a cogeneration facility? Shown below are numbers typical to advanced combined cycle combustion turbine facilities. What we pay for is the fuel expressed in terms of British Thermal Units [Btu’s]. What we “get” is electrical energy expressed in terms of kilowatt-hours [kWh’s]. Advanced combined cycle turbines have higher heating value net efficiencies around 50%. %503412 6800 1 1 kWh Btu kWh BtuncycleEfficieCombinedCy eNetHeatRatncycleEfficieCombinedCy NOTE: Btu’s and kWh’s are both units of “energy”. We multiply by the unit conversion factor of 3412 in order to arrive at a dimensionless number which we can express as percent. Avista 2011 Electric Integrated Resource Plan 88 Efficiency of a Cogeneration Facility Efficiency = What you get/What you pay for There are many ways of looking at the efficiency of a cogeneration facility. The calculation below is calculated strictly in terms of useful energy divided by fuel energy. For the example turbine modeled, the thermal efficiency as calculated below is much higher than the thermal efficiency for my example combined cycle plant. %75 78808 35606412.36801 EfficiencyCogenCycle h kBtu h kBtu kWh kBtukW EfficiencyCogenCycle Fuel HeatyElectricitiencyCogenEffic NOTE: Solar Taurus 70, Spokane Elevation, 150 psig steam, no duct firing Avista 2011 Electric Integrated Resource Plan 89 Comparing Combined Cycle with Cogen on Equivalent TermsAvista 2011 Electric Integrated Resource Plan 90 Comparing Combined Cycle with Cogen on Equivalent TermsAvista 2011 Electric Integrated Resource Plan 91 Comparing Combined Cycle with Cogen on Equivalent Terms For this example, the cogen facility uses only 87.8% if the gas that would be used by a combined cycle plant in conjunction with an auxiliary boiler to produce steam. At a gas price of $4.00 per Million Btu, the combined cycle would incur an additional $6.40 per MWh in fuel costs. In most cases this magnitude of reduction in costs is not enough to overcome the low economies of scale and other costs associated with cogen. Avista 2011 Electric Integrated Resource Plan 92 Cogeneration Fuel Savings in Context •At $4.00 per MMBtu, this cogen case shows a reduction of $6.40/MWh in fuel costs. •For an 80% capacity factor, maintaining 5 additional employees to operate the cogen facility around the clock will cost approximately $10.00/MWh (only 1 employee on shift most of the time). Labor costs for the combined cycle facility will be on the order of $2.50 per MWh due to enormous economies of scale effects. •Maintenance costs for the cogen facility will be on the order of $4-$7 per MWh more than that of the combined cycle facility. •Capital cost recovery on a per MWh basis is significantly higher for the cogen facility due to economy of scale effects. •In the Pacific Northwest there are significant periods every year where it is uneconomic to run due to hydro run-off. A cogen facility would either have to run during uneconomic times or the plant would have to have complete redundancy with gas fired boilers. Avista 2011 Electric Integrated Resource Plan 93 Energy Efficiency Approach for the 2011 Electric Integrated Resource Plan Lori Hermanson Technical Advisory Committee Meeting #2 2011 Electric Integrated Resource Plan September 9, 2010 Avista 2011 Electric Integrated Resource Plan 94 Evolvement of Energy Efficiency Growth in annual tariff rider funding and program offerings over the last 10 years –Five times more electric funding –Nearly 12 times more natural gas funding Heightened regulatory requirements and increasing amounts of Evaluation, Measurement & Verification (EM&V) –Annual electric (I-937 conditions) and natural gas verification of savings (Washington decoupling) –EM&V Collaborative as required by the Washington Utilities and Transportation Commission (WUTC) –final paper filed 9/1/10 –WUTC required 3-6% of conservation budget on EM&V IRP action item and one of the I-937 conditions –potential studies every two years Avista 2011 Electric Integrated Resource Plan 95 Approach for Estimating Energy Efficiency Potential Energy Market Profiles by end use, fuel, segment and vintage Customer surveys Utility data Secondary data Forecast data: Customer growth Price forecast Purchase shares Codes and standards EE measure list Measure costs Energy analysis to estimate savings Develop prototypes and perform energy analysis Baseline Forecast by End Use EE Potential Midwest Residential (305 TWh) Space heat 7% Air conditioning 12% Water Heat 6% Refrigeration 9% Cooking 2% Dryers 6% Freezers 2% Lighting 16%Washers 1% Dishwashers 2% Color TV 8% PCs 2% Furnace Fans 3% Other Uses 24% Technical Potential Economic Potential Maximum Achievable Potential Realistic Achievable Potential 201020202030 2008 2010 2020 2030 An n u a l E l e c t r i c I n t e n s i t y ( k W h / h h ) Base-year Energy Consumption by state, fuel and sector Utility data Avista 2011 Electric Integrated Resource Plan 96 Global Energy Partners LoadMAPTM Analysis Framework (Load Management Analysis and Planning tool) Market Profiles Base-year Energy Consumption by technology, end use, segment, vintage & sector Forecast Results Market size Equipment saturation Fuel shares Technology shares Vintage distribution Unit energy consumption Coincident demand Customer segmentation Forecast Data Economic Data Customer growth Energy prices Exogenous factors Elasticities Technology Data Efficiency options Codes and standards Purchase shares Energy-efficiency analysis List of measures Saturations Adoption rates Avoided costs Cost-effectiveness screening Baseline forecast Savings Estimates (Annual & peak) Technical potential Economic potential Achievable potential Energy-efficiency forecasts: Technical Economic Achievable Avista 2011 Electric Integrated Resource Plan 97 Market Segmentation for Energy Efficiency State and fuels By sectors –Residential •Limited Income •Single-family housing •Multifamily housing •Mobile homes and manufactured housing –Commercial and industrial by rate class –Pumping Vintage (retrofit vs. lost-opportunity) Appliances/end uses (space heat, cooling, lighting, water heat, motors) and technologies (lamps, chillers, color TVs, etc) Equipment efficiency (old, standard, high efficiency) Avista 2011 Electric Integrated Resource Plan 98 Market Segmentation for Demand Response State Energy metric (peak demand) for annual, summer and winter Sector –Residential –Commercial and industrial combined Appliances/end uses (space heat, cooling, water heat, process, other) Enabling technology (with and without enabling technology) Avista 2011 Electric Integrated Resource Plan 99 Energy Market Profile Example: Residential End Use Technology Saturation UEC Intensity Usage (kWh)(kWh/HH)(GWh) Cooling Central AC 86%3,985 3,433 1,587 Cooling Room AC 13%3,188 410 190 Space Heating Electric Resistance 5%18,214 910 421 Space Heating Electric Furnace 0%18,943 -- Combined Heat/CoolAir Source Heat Pump 13%14,004 1,820 842 Combined Heat/CoolGeo-Thermal Heat Pump 0%9,242 -- Water Heating Water Heater 24%2,793 663 307 Interior Lighting Screw-in 100%1,242 1,242 574 Interior Lighting Linear Fluorescent 100%243 243 112 Exterior Lighting Screw-in 85%374 318 147 Exterior Lighting Linear Fluorescent 85%73 62 29 Appliances Refrigerator 100%891 891 412 Appliances Freezer 42%376 157 73 Appliances Second Refrigerator 20%1,326 265 123 Appliances Clothes Washer 96%561 540 250 Appliances Clothes Dryer 84%821 693 321 Appliances Combined Washer/Dryer 0%786 -- Appliances Dishwasher 61%173 105 49 Appliances Cooking 71%750 533 247 Electronics Personal Computer 65%470 306 142 Electronics Color TV 96%313 300 139 Electronics Other Electronics 100%343 343 159 Miscellaneous Pool Pump 13%2,671 339 157 Miscellaneous Furnace Fan 68%431 293 136 Miscellaneous Other Miscellaneous 100%194 194 90 Total 14,069 6,505 Cooling 26% Space Heating 11% Combined Heating/Cooling 11% Water Heating 6% Interior Lighting 10% Exterior Lighting 3% Appliances 21% Electronics 7% Miscellaneous 5% End-use shares of total residential sector use Avista 2011 Electric Integrated Resource Plan 100 Baseline End-Use Forecast Definition of baseline forecast: Comprehensive end-use forecast Forecast without future utility programs Incorporates appliance standards and building codes already on the books Typically includes naturally occurring efficiency (consistent with 6th Plan) Process for developing the baseline forecast 1.End-use segmentation 2.Energy market profiles –snapshot of current energy use 3.Technologies/efficiency options available today and in the future 4.Forecast data and assumptions 5.Assess and compare with existing forecasts Avista 2011 Electric Integrated Resource Plan 101 End-Use Segmentation Example Residential Commercial Industrial Cooling Cooling Process Heating Central AC Central Chiller Electric resistance Room AC Packaged AC Radio frequency Space Heating PTAC Process Cooling and Refrigeration Electric Resistance Space Heating Machine Drive Electric Furnace Electric Resistance 1-5 hp motors Combined Heating/Cooling Combined Heating/Cooling 5-20 hp motors Air Source Heat Pump Air Source Heat Pump 20-50 hp motors Geothermal Heat Pump Geohermal Heat Pump 50-100 hp motors Water Heating Water Heating 100-200 hp motors Interior Lighting Interior Lighting 200-500 hp motors Screw-in Screw-in 500-1,000 hp motors Linear Fluorescent Linear Fluorescent 1,000-2,500 hp motors Exterior Lighting Exterior Lighting >2,500 hp motors Screw-in Screw-in Facility HVAC Linear Fluorescent Linear Fluorescent Facility lighting Appliances Refrigeration Incandescent Refrigerator Walk-in Refrigeration Fluorescent Freezer Reach-in Refrigeration HID Clothes Washer Office Equipment Clothes Dryer PC Combined Washer/Dryer Server Dishwasher Monitor Cooking Printer/Copier Electronics Food Service Personal Computer Ventilation Color TV Miscellaneous Other Electronics Miscellaneous Pool Pump Furnace Fan Other Miscellaneous Avista 2011 Electric Integrated Resource Plan 102 Energy Market Profiles Description Energy market profiles describe how customers use energy in a recent base year Market profile elements Market size Fuel shares/saturations by end use Unit energy consumption (UECs, EUIs) by end use/tech Peak factors Profile elements are calibrated to match customer segments’ use in base year from billing system Key data sources Market characterization data Previous potential studies Global’s previous customer surveys Prototypes and BESTTM analysis Avista 2011 Electric Integrated Resource Plan 103 Forecast Data and Assumptions Forecast drivers Customer growth Other exogenous variables Energy prices Income Usage elasticities by end use for each exogenous variable Technology forecasts Equipment purchase shares by decision type Replace on burnout New construction Non-owner acquisition Shares are user defined Defaults based on trends in EIA’s Annual Energy Outlook Incorporate existing appliance/equipment standards Will be refined using PNW and Avista data Avista 2011 Electric Integrated Resource Plan 104 Sample Baseline Forecast for Residential Sector Residential Use by End Use (GWh) 2007 2010 2012 2015 2018 % Change Avg. growth rate Cooling 2,093 2,128 2,151 2,186 2,227 6.4%0.56% Space Heating 862 863 864 867 871 1.1%0.10% Combined Heating/Cooling 883 923 951 989 1,029 16.5%1.39% Water Heating 482 495 503 515 528 9.7%0.84% Interior Lighting 858 872 880 840 802 -6.6%-0.62% Exterior Lighting 215 215 215 202 189 -11.8%-1.14% Appliances 1,711 1,741 1,760 1,787 1,816 6.1%0.54% Electronics 578 616 641 679 718 24.2%1.97% Miscellaneous 412 423 430 441 453 9.9%0.86% Total 8,093 8,274 8,395 8,506 8,633 6.7%0.59% Residential Use in the Base Year (2007)Residential Forecast (GWh) Cooling 26% Space Heating 11% Combined Heating/Cooling 11% Water Heating 6% Interior Lighting 10% Exterior Lighting 3% Appliances 21% Electronics 7% Miscellaneous 5% - 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 2007 2010 2012 2015 2018 An n u a l U s e ( G W h ) Cooling Space Heating Combined Heating/Cooling Water Heating Interior Lighting Exterior Lighting Appliances Electronics Miscellaneous Avista 2011 Electric Integrated Resource Plan 105 Energy Efficiency Potential 1.Characterize energy efficiency measures 2.Perform economic screen 3.Assemble data for estimating achievable potential 4.Calculate potential 5.Develop supply curves based on levelized costs of each individual measure (low, medium, high-case potential differentiations) Avista 2011 Electric Integrated Resource Plan 106 Definitions of Energy Efficiency Potential Technical Potential –most efficient measures are adopted, regardless of cost or customer acceptance Economic Potential –only cost-effective measures are adopted by customers Apply TRC test Avista avoided costs + 10% conservation adder (consistent with 6th Plan) Achievable Potential Council’s definition –85% of economic potential at the end of ten years Other definition? Avista 2011 Electric Integrated Resource Plan 107 Estimate Demand Response Potential Develop revised peak demand forecast –After savings from EE are applied Identify capacity-constraint time period –Winter peak day (cold weather) –Summer peak day (hot weather) Identify and characterize relevant DR options (e.g., direct load control, curtailable/interruptible tariffs, demand bidding) Estimate potentials Avista 2011 Electric Integrated Resource Plan 108 Estimating Demand Response Potential Develop baseline forecast by segment –Peak by segment –Customer by segment Program data –Participants in base year –Forecast of participants –Per customer impacts in base year Assess cost effectiveness Compute peak reduction Avista 2011 Electric Integrated Resource Plan 109 Deliverables that Feed IRP Process Report documenting entire study and presentation to Avista (electric –October, natural gas 2011) LoadMAP, fully populated for future updates Updated avoided costs from Aurora available in November as well as updated load and price forecasts Updated potentials for energy efficiency and demand response for final input in model Avista 2011 Electric Integrated Resource Plan 110 Potential Study Timeline Month August September October Nov Dec Jan Feb March AprilWeek123412341234 Kick-off meeting M Final work plan t Gather data Electricity Analysis Market characterization t Baseline forecasts t EE measure list t Preliminary potential estimates M Final potential estimates t Draft report w/supply curves R Demand Response Analysis Market characterization t Baseline forecasts t Identify DR programs M Preliminary potential estimates t Draft report R Natural Gas Analysis EE measure analysis t Baseline forecasts t EE measure list t Preliminary potential estimates tM Final potential estimates t Draft report R Final Report (on all analyses)R, M Meetings (in-person or webcast)M Memos, interim deliverables t Reports R Avista 2011 Electric Integrated Resource Plan 111 Avista’s 2011 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 3 Agenda Avista Headquarters – Spokane, Washington Thursday, December 2, 2010 Avista Conference Room 428 Topic Time Staff 1. Introduction 9:00 Storro 2. Transmission (costs & issues) 9:05 Waples 3. Potential Hydro Upgrades 10:00 Wenke 4. Potential Thermal Upgrades 10:45 Graham 5. Lunch 11:30 6. Load Forecast 12:30 Barcus 7. Stochastic Modeling 1:30 Gall 8. Adjourn 2:30 To participate by phone: 1. Please join my meeting. https://www2.gotomeeting.com/join/271248826 2. Join the conference call: Dial +1 805 309 0016 Access Code: 271-248-826 Audio PIN: Shown after joining the meeting Meeting ID: 271-248-826 GoToMeeting® Avista 2011 Electric Integrated Resource Plan 112 New Resource Integration –Transmission Executive Level Summary of Avista 2010 Resource Integration Study Work Scott Waples, Reuben Arts, and the Avista System Planning Group Technical Advisory Committee Meeting #3 2011 Electric Integrated Resource Plan December 2nd, 2010 Avista 2011 Electric Integrated Resource Plan 113 Federal Standards of Conduct Mandatory Federal Standards of Conduct Require That: No non-public transmission information be shared with the Avista Merchant Function. Please note that there are Avista Merchant Personnel in attendance at this meeting. Meeting Notices: This meeting was Posted on the Avista OASIS website on 11/19/2010. Avista 2011 Electric Integrated Resource Plan 114 Federal Standards, Requirements, and Risks Mandatory Federal Standards Include: No overloads all lines and equipment in service (N-0). No overloads or loss of load for one element out of service (N-1). Some relaxation of the above for two elements out (N-2). Resource Integration requirements (Avista or 3rd party generation) are the same as those for the general system –all Standards must be met. Potential Sanctions: Up to $1M Per Day Per Occurrence. Mitigation Plan must be provided and progress demonstrated. Avista 2011 Electric Integrated Resource Plan 115 Recent Examples of Avista Construction Benewah Station: 230 / 115 kV Station with a Single 125 MVA Transformer. 230 kV Connections between the North and South Avista Load Centers. 230 kV Double Breaker / Double Bus Configuration for increased reliability. Benewah –Shawnee 230 kV line: Completes transmission required for both load service and the West of Hatwai transfer requirements. Allows for resource integration in the center and south areas of the Avista system. Avista 2011 Electric Integrated Resource Plan 116 Avista 2011 Electric Integrated Resource Plan 117 Avista 2011 Electric Integrated Resource Plan 118 Avista 2011 Electric Integrated Resource Plan 119 Examples of Future Construction Required to Meet NERC / WECC Reliability Standards Moscow Station: 230 / 115 kV Station, single 250 MVA transformer. Increases capacity to the Moscow / Pullman area and relieves loading on the Shawnee transformer. Westside Station: 230 / 115 kV Station, two 250 MVA transformers. Increases capacity and security to the West Plains area of Spokane County, and relieves heavy loading on large transformers in the central Spokane area. Irvin 115 kV and Associated 115 kV Reconductoring: 115 kV Switching Station and other upgrades to meet additional load growth in the Spokane Valley. Avista 2011 Electric Integrated Resource Plan 120 Westside Rebuild –2 x 250 MVA TransformersAvista 2011 Electric Integrated Resource Plan 121 Moscow 230/115 kV Estimate and Schedule 2010 2011 2012 2013 2014 total Transmission $575,000 $575,000 $1,150,000 Substation $500,000 $1,500,000 $3,000,000 $4,775,000 $2,750,000 $12,525,000 Distribution $25,000 $25,000 total $500,000 $1,500,000 $3,000,000 $5,350,000 $3,350,000 $13,700,000 Avista 2011 Electric Integrated Resource Plan 122 Irvin Project Avista 2011 Electric Integrated Resource Plan 123 Avista Non-IRP Generation Queue Active (see http://www.oatioasis.com/avat/index.html): Project # 08: –75 MW, in Facility Study Stage. Project # 14: –210 MW, in System Impact Study Stage (SIS). Project #17: –100 MW, in Facility Study Stage. Project # 26: –42MW, in SIS Stage. Project # 27: –10 MW, in SIS Stage. Project # 29: –6.5 MW, in SIS Stage. Avista 2011 Electric Integrated Resource Plan 124 Non-coincident IRP Interconnection Requests Potential West Plains / Devils Gap Integration : Reardan: –90 MW, 2014 –+60 MW (150 MW total), 2014 Long Lake: –+ 30 MW (118 MW total), 2018 –+ 60 MW (148 MW total), 2018 –+ 100 MW (188 MW total), 2018 Little Falls: –+ 4MW (40 total), 2014-2017 Avista 2011 Electric Integrated Resource Plan 125 Avista 2011 Electric Integrated Resource Plan 126 Non-coincident IRP Interconnection Requests Potential “Far West” (Big Bend) Area Integration : Othello Area: –Up to 100 MW in 2014, 2015, or 2019 (2015 energization is the most probable) Avista 2011 Electric Integrated Resource Plan 127 Avista 2011 Electric Integrated Resource Plan 128 Non-coincident IRP Interconnection Requests Potential “Central Area” Thermal or Wind Integration : Benewah: –300 MW 2018 Rosalia: –300 MW, 2018 Potential “East & North Area” Thermal or Wind Integration : Rathdrum: –300 MW, 2018 –+ 100 MW (400 MW total), 2018 Sandpoint: –100-300 MW, 2018 Avista 2011 Electric Integrated Resource Plan 129 Avista 2011 Electric Integrated Resource Plan 130 Non-coincident IRP Interconnection Requests Other “Large” Hydro Integration : Cabinet Gorge (“East”): + 60 MW, 2018 Monroe Street (Spokane): + 20MW, 2018 or +60 MW, 2018 Post Falls (Coeur d’ Alene): + 14 MW, 2018 “Small” Hydro Integration : Upper Falls (Spokane): + 2 MW, 2019 Avista 2011 Electric Integrated Resource Plan 131 Avista 2011 Electric Integrated Resource Plan 132 Study Process and Cost Estimates Study Process: Avista System Planning does transmission system analysis using WECC approved “study cases” (which we modify) for all analyses and uses approved software tools (PTI, GE, PowerWorld) to “do the math” on various alternatives. Pre-Engineering Cost Estimates: Avista Engineering does pre-engineering cost estimation. Estimates are generally plus or minus 50% accuracy (no rights-of-way, soils analysis, firm quotes for equipment, etc.). Transmission integration is often about 10% of total project costs (but can be much higher depending on where the resource is integrated). Avista 2011 Electric Integrated Resource Plan 133 Transmission Study Process With Respect to Resource Type “We (Transmission) Don’t Care”! Transmission Analysis is “Resource Blind”: –Wind –Water –Gas –Pumped Storage –Other Transmission Integration Costs Will be the Same for ANY Resource. Avista 2011 Electric Integrated Resource Plan 134 West Plains / Devils Gap Area Necessitates a “Tipping Point” Analysis: Total potential generation is 4 MW to 254 MW –lots of options! Voltage Level Analysis: –How much can be integrated at 115 kV: o At no cost? o At a “max 115 kV development” cost? –How much can be integrated at 230 kV: o Can it be done with only one 230 kV line? o What are the costs for one versus two lines? What are the $/MW costs for the various options? (Need a map from John…) Avista 2011 Electric Integrated Resource Plan 135 West Plains / Devils Gap Area 115 kV Analysis: 4 MW requires no transmission additions (one bookend). 75 MW can be integrated for about $15M. Requires new 115 kV line and station upgrades. 230 kV Analysis: 254 MW can be added for about $30-$55M (2-230 kV lines). These costs don’t include the planned 230 kV Spokane Loop. “All Things Being Equal” $$/MW Comparison: 75 MW @ 115 kV @ $15M => $200/kW 254 MW @ 230 kV @ $30-$55M => $118-$217/kW Avista 2011 Electric Integrated Resource Plan 136 “Central” and “East” Areas 230 kV Integration: Benewah: 300 MW @ about $5M Rosalia: 300 MW @ about $8M Rathdrum: –300 MW @ about $5M (Will require Gen Dropping). –400 MW @ about $5M (Will require Gen Dropping). – A concern is “too many eggs” on the Rathdrum Prairie: o Existing Rathdrum –160 MW. o Existing Lancaster –270 MW. o New Rathdrum –300-400 MW. All studies are post integration of the Lancaster generation into the Avista 230 kV system. Avista 2011 Electric Integrated Resource Plan 137 “Far West” (Big Bend) Area Othello 115 kV Analysis: 17 MW requires no transmission additions (one bookend). 100 MW can be integrated for between $13-$25M. Requires new 115 kV line, local 115 kV line reconductor, and a new POI 115 kV substation (the lower costs require generator dropping). 230 kV Analysis: 250 MW can be added for about $8M. Requires a new POI 230 kV substation. Does not consider contractual constraints on the Walla Walla –Wanapum 230 kV line Avista 2011 Electric Integrated Resource Plan 138 “North” and Other Hydro Sandpoint, Idaho: Sandpoint: 50 MW @ about $2-5M (depending on BPA). More than 50 MW is probably cost prohibitive. Other “Large” Hydro: Cabinet Gorge: 60 MW @ about $2-$10M (Cabinet Gorge – Rathdrum @ 100 Degrees Centigrade & 115 kV reconductor). Monroe Street: 20 MW @ about $3M (does not include Metro). Monroe Street: 60MW @ about $3M (as above). Post Falls: 14 MW @ about $1M Other “Small” Hydro Integration : Upper Falls: 2 MW @ about $1M Avista 2011 Electric Integrated Resource Plan 139 “Off System” Resources Integration of 100-300 MW: Potential at Bell, Hatwai, Hot Springs, or Mid Columbia: Wheeling over the BPA system presently costs $4.4M/year plus $2.5M/year for losses (@$50/MW-hr) for 300 MW of BPA transmission service (if it is available). The BPA rate is expected to increase by about 9% in 2013. A BPA “Lines and Loads” Study (funded by AVA) is required to determine capacity in the BPA Grid. A study similar to the FERC “Market Power Study” is used to determine at what cost these resources could be integrated into the Avista Grid. Recent studies have indicated that as much as $50M could be required for 300 MW of integration from BPA into the Avista system. Avista 2011 Electric Integrated Resource Plan 140 Future Work? Generic Break Point Studies for IRP / 3rd Party Developers: “How many MW can we integrate where for about what $$?” –Main Grid 230 kV Stations. –Select 115 kV Stations. Potential Open Seasons: “Does anyone want to get to the Mid Columbia?” “Does anyone want to get out of Montana?” “Does anyone want to get to PAC or IPC?” Canada –Northwest –California Transmission Project: “If this project is built, how should we interconnect?” “What other markets would this project access?” Avista 2011 Electric Integrated Resource Plan 141 Finis Questions? Avista 2011 Electric Integrated Resource Plan 142 Hydro Upgrade Opportunities Steve Wenke Technical Advisory Committee Meeting #3 2011 Electric Integrated Resource Plan December 2, 2010 Avista 2011 Electric Integrated Resource Plan 143 Presentation Outline Background of Avista’s Hydro System Looking Back on What has Been Done Current Upgrade Projects Other Opportunities Issues Avista 2011 Electric Integrated Resource Plan 144 Background Aging hydro system Advancements in hydro turbine technology Hydraulic size of facilities Avista 2011 Electric Integrated Resource Plan 145 Avista’s Hydro Portfolio First project was Monroe Street that came on line in 1891. “Newest” Spokane River plant is Upper Falls which came on line in 1920. The larger Clark Fork River projects were developed in the mid to late 1950’s Avista 2011 Electric Integrated Resource Plan 146 Aging Technology Modern turbine designs convert the energy of falling water at a rate of about 94% efficiency Combined Cycle Gas Plant –52% Wind Turbine 40-50% 1960 and earlier vintage hydro plants have efficiencies of abut 88% or lower Estimate 80% at Upper Falls Estimate 85% at Little Falls Avista 2011 Electric Integrated Resource Plan 147 Plant Hydraulic Designs The older Spokane River Plants were sized based on the needs of the day Base loaded energy Ability to swing output to make loads (i.e. regulation) Generator island areas (i.e. generator were not networked together) The result are plants that are relatively high on the flow exceedence curves Avista 2011 Electric Integrated Resource Plan 148 The Opportunity In simple terms, with unit flow capacity (cfs) and plant head (height of dam) the same, we should be able to improve the energy output of an older hydro unit by as much as 6% by replacing the old turbine with a modern designed unit. In fact, this does vary for each particular site based on the civil works of the specific dams Avista 2011 Electric Integrated Resource Plan 149 Plant Hydraulic Designs 0 5 10 15 20 25 30 35 40 45 0 10 20 30 40 50 60 70 80 90 100 Upper Falls Monroe Street Post Falls Long Lake Nine Mile Little Falls Modern Design Target Flows Flow Duration Curve for Long Lake HED Avista 2011 Electric Integrated Resource Plan 150 Noxon Rapids Upgrades Variable Efficiency Curves Avista 2011 Electric Integrated Resource Plan 151 New Runner Comparison Noxon Unit Efficiency 84 86 88 90 92 94 80 85 90 95 100 MW Output % E f f i c i e n c y Unit 1 Unit 2 Unit 3 Unit 4 New Avista 2011 Electric Integrated Resource Plan 152 Looking Back We have been actively pursuing hydro upgrades since 1989 Monroe Street -1992 Nine Mile Units 3 and 4 -1994 Cabinet Gorge Unit 1 -1994 Long Lake Units 1, 2, 3, and 4 –1994 -1999 Little Falls Units 2 and 4 –1994, 2001 Cabinet Gorge Units 2, 3, and 4 –2001 –2004 Noxon Rapids Units 1, 3 2009, 2010 Avista 2011 Electric Integrated Resource Plan 153 Character of the Upgrades Powerhouse Replacement Powerhouse Refurbishment and Unit Replacement Runner Replacement Unit Replacement Powerhouse Additions To this point in time, we have not added new powerhouse additions to existing facilities Avista 2011 Electric Integrated Resource Plan 154 What we have done to date: Energy (GWh’s) - 100 200 300 400 500 600 700 800 900 0 20 40 60 80 100 120 140 160 180 Mo n r o e S t r e e t U n i t 1 Ni n e M i l e U n i t s 3 & 4 Ca b i n e t U n i t 1 Lo n g L a k e U n i t 4 Li t t l e F a l l s U n i t 3 Lo n g L a k e U n i t 1 Lo n g L a k e U n i t 2 Lo n g L a k e U n i t 3 Ca b i n e t U n i t 3 Li t t l e F a l l s U n i t 4 Ca b i n e t U n i t 2 Ca b i n e t U n i t 4 No x o n U n i t 1 No x o n U n i t 2 No x o n U n i t 3 No x o n U n i t 4 Ni n e M i l e U n i t s 1 & 2 Li t t l e F a l l s U n i t 1 Li t t l e F a l l s U n i t 2 Up p e r F a l l s U n i t 1 Lo n g L a k e 2 n d P h s e Ca b i n e t G o r g e 2 n d P h s e Po s t F a l l s R e d e v e l o p Mo n r o e s t r e e t 2 n d P h s e 1992 1994 1994 1994 1994 1996 1997 1999 2001 2001 2004 2007 2009 2010 2011 2012 2012 2015 2016 Cu m u l a t i v e G W h In c r e m e n t a l G W h Planned Avista 2011 Electric Integrated Resource Plan 155 What we have done to date:Added Hydro Capacity (MW’s) - 50 100 150 200 250 300 350 400 0 10 20 30 40 50 60 70 Mo n r o e S t r e e t U n i t 1 Ni n e M i l e U n i t s 3 & 4 Ca b i n e t U n i t 1 Lo n g L a k e U n i t 4 Li t t l e F a l l s U n i t 3 Lo n g L a k e U n i t 1 Lo n g L a k e U n i t 2 Lo n g L a k e U n i t 3 Ca b i n e t U n i t 3 Li t t l e F a l l s U n i t 4 Ca b i n e t U n i t 2 Ca b i n e t U n i t 4 No x o n U n i t 1 No x o n U n i t 2 No x o n U n i t 3 No x o n U n i t 4 Ni n e M i l e U n i t s 1 & 2 Li t t l e F a l l s U n i t 1 Li t t l e F a l l s U n i t 2 Up p e r F a l l s U n i t 1 Lo n g L a k e 2 n d P h s e Ca b i n e t G o r g e 2 n d P h s e Po s t F a l l s R e d e v e l o p Mo n r o e s t r e e t 2 n d P h s e 199219941994 1994199419961997 1999200120012004 2007200920102011 2012201220152016 Cu m u l a t i v e C a p a c i t y ( M W ) In c r e m e n t a l C a p a c i t y ( M W ) Planned Avista 2011 Electric Integrated Resource Plan 156 Summary Over the past 20 years, we have added 334,000 MWh’s and 120 MW’s of hydro to our system We are currently planning to add an estimated 49,000 MWh’s and 48 MW’s There are considerations for an additional 116,000 MWh’s and 176 MW’s Avista 2011 Electric Integrated Resource Plan 157 Current Projects Little Falls Refurbishment Nine Mile Redevelopment Avista 2011 Electric Integrated Resource Plan 158 Little Falls Upgrade Seeking an increase in turbine efficiency Current estimated efficiency is 80% Upgraded runners are expected to be 85% Approximately 2 MW improvement expected Avista 2011 Electric Integrated Resource Plan 159 Little Falls Upgrade General Scope of work would include replacement of all of the old equipment at the plant –a major undertaking Photo Showing New Turbine Runners Being installed in Unit 4 in 2001 Avista 2011 Electric Integrated Resource Plan 160 Little Falls Upgrade Expected additional Capacity –2 MW Expected additional Energy –8,760 MWh Estimated Costs - $1.5 million Other Considerations: –Much of the existing equipment is at the end of its service life and will likely be replaced, significantly increasing the scope of this project work. –We have yet to explore expansion plans for this site, and may elect to do so. Avista 2011 Electric Integrated Resource Plan 161 Nine Mile Redevelopment This project is to replace Units 1 and 2. These are original 1908 machines and are no longer repairable. The basic scope is to remove the old systems and install new turbines, generators, switchgear, and controls to update the plant. Avista 2011 Electric Integrated Resource Plan 162 Nine Mile Redevelopment Avista 2011 Electric Integrated Resource Plan 163 Nine Mile Redevelopment Expected additional Capacity –16 MW Expected additional Energy –11,800 MWh Estimated Costs - $38 million Other Considerations: –This addresses Units 1 and 2. Units 3 and 4 were replaced in the 1994. –Sediment buildup in the river needs to be addressed. –Existing balance of plant equipment is also to be replaced with this project work –We just completed a “Obermeyer Gate” installation to eliminate the flashboard system Avista 2011 Electric Integrated Resource Plan 164 Nine Mile Sediment Impacts Original Shoreline Main Channel Avista 2011 Electric Integrated Resource Plan 165 Nine Mile Flashboard Replacement From the 1940’s until last year, we Would install wooden flashboards On the dam to get an additional 10 Feet of head. Each spring these Would be released and have to be Replaced each year. Avista 2011 Electric Integrated Resource Plan 166 Nine Mile Obermeyer Gate Inflatable Bladders To control gates Steel Plate Avista 2011 Electric Integrated Resource Plan 167 Other Opportunities Upper Falls Runner Replacement Long Lake Second Powerhouse Addition Cabinet Gorge Second Powerhouse Addition Post Falls Refurbishment Monroe Street Second Powerhouse Addition Avista 2011 Electric Integrated Resource Plan 168 Upper Falls Runner Replacement Seeking to increase the output of the unit by replacing the turbine runner and modifying the existing draft tube to improve efficiency. Avista 2011 Electric Integrated Resource Plan 169 Upper Falls Runner Replacement General Scope of Work would be to remove the old runner, modify the draft tube, stay vanes, and discharge area, and install a new runner Avista 2011 Electric Integrated Resource Plan 170 Upper Falls Runner Replacement Expected additional Capacity -2 MW’s Expected additional Energy 8,600 MWh’s Estimated Costs - $6.8 million Other Considerations: –New license conditions have not yet been considered in this options. –Would require considerable modification to the existing draft tube system Avista 2011 Electric Integrated Resource Plan 171 Long Lake Second Powerhouse Seek to increase plant capacity by the addition of a second powerhouse and large capacity unit Avista 2011 Electric Integrated Resource Plan 172 Long Lake Second Powerhouse Avista 2011 Electric Integrated Resource Plan 173 Long Lake Second Powerhouse Expected additional Capacity –60 - 120 MW Expected additional Energy –158,000 –178,000 MWh Estimated Costs - $120+ million Other Considerations: –Impacts of construction to the existing plant –Condition of small arch dam to be used as a cofferdam Avista 2011 Electric Integrated Resource Plan 174 Cabinet Gorge Second Powerhouse Seek to increase plant capacity by the addition of a second powerhouse and match Noxon Rapids flow capacity Avista 2011 Electric Integrated Resource Plan 175 Cabinet Gorge Second Powerhouse Avista 2011 Electric Integrated Resource Plan 176 Cabinet Gorge Second Powerhouse Expected additional Capacity –50 MW Expected additional Energy –57,000 MWh Estimated Costs - $115 million Other Considerations: –This project would favorably impact the Total Dissolved Gas (TDG) issue at Cabinet Gorge and is currently under consideration by the Clark Fork License team. Avista 2011 Electric Integrated Resource Plan 177 Post Falls Refurbishment This would involve removing all of the old station equipment and replacing it with new units. The building exterior would remain intact Avista 2011 Electric Integrated Resource Plan 178 Post Falls Upgrade The Scope is to remove the old horizontal units and replace them with high efficiency and higher capacity vertical units Existing Horizontal Unit Vertical Unit Configuration Avista 2011 Electric Integrated Resource Plan 179 Post Falls Upgrade Expected Additional Capacity – 19 MW’s Expected additional Energy –33,000 MWh’s Estimated Costs - $75 million Other Considerations: –Need to evaluate this plan against new license conditions Avista 2011 Electric Integrated Resource Plan 180 Monroe Street Second Powerhouse The basic project here is to harness the capacity of the 140 waterfall that the Spokane River drops in downtown Spokane Avista 2011 Electric Integrated Resource Plan 181 Monroe Street Second PowerhouseAvista 2011 Electric Integrated Resource Plan 182 Monroe Street Second Powerhouse Expected Additional Capacity – 37.5 MW’s Expected additional Energy –142,000 MWh’s Estimated Costs - $95 million Other Considerations: –Downtown Spokane and Riverfront Park locations make this a challenging option –Would require a significant make over of the western edge of Riverfront Park, and channel dredging Avista 2011 Electric Integrated Resource Plan 183 Hydro Upgrades –Other Issues Aging equipment is driving much of the work. Gaining valuable experience for our work force Current incentives for REC’s and tax incentives are playing a part Needs for future capacity Environmental Drivers –Total Dissolved Gas –desire to reduce spill at some sites –Needs for more modern plants with appropriate systems to avoid possible releases –Licenses have provided some certainty around investment opportunities. –Significant permit time for second powerhouse projects Avista 2011 Electric Integrated Resource Plan 184 Potential Thermal Upgrades Jason Graham Generation Engineer Avista 2011 Electric Integrated Resource Plan 185 Overview •Conversion of Rathdrum CT to a Combined Cycle Power Plant •Water Demineralization System for Inlet Fogging at Rathdrum CT •Inlet Chiller at Coyote Springs 2 •Cold Day Performance Software Upgrade at Coyote Springs 2 •Advanced Hot Gas Path Hardware Upgrade at Coyote Springs 2 •Cooling Optimization Hardware Upgrade at Coyote Springs 2 •Wood Fuel Gasification at Kettle Falls Generation Site Avista 2011 Electric Integrated Resource Plan 186 Rathdrum Combustion Turbine Rathdrum, Idaho •Two General Electric 7EA Combustion Turbines •On Line in 1994 •Simple Cycle Configuration •Approximately 160 MW Combined Output •Heat Rate of 11,612 Btu/kWh (HHV) Avista 2011 Electric Integrated Resource Plan 187 Conversion of Rathdrum CT to a Combined Cycle Power Plant Avista 2011 Electric Integrated Resource Plan 188 Conversion of Rathdrum CT to Combined Cycle Water Cooled Condenser Incremental Output Increase: 78.4 MW At 5°F 85.2 MW at 55°F 91.4 MW at 100°F Overall Plant Heat Rate Change: -3782 Btu/kWhr (HHV) Variable Operating Costs:$1.50/MWh Fixed Operating Costs:$15/kWyr Capital Cost:$71M Plant Unavailable Time:6 Months Avista 2011 Electric Integrated Resource Plan 189 Conversion of Rathdrum CT to Combined Cycle Air Cooled Condenser Incremental Output Increase: 77.9 MW At 5°F 79.9 MW at 55°F 82.4 MW at 100°F Overall Plant Heat Rate Change: -3626 Btu/kWhr (HHV) Variable Operating Costs:$1.30/MWh Fixed Operating Costs:$15/kWyr Capital Cost:$81.5M Plant Unavailable Time:6 Months Avista 2011 Electric Integrated Resource Plan 190 Water Demineralizer at Rathdrum CT for Inlet Fogging Avista 2011 Electric Integrated Resource Plan 191 Water Demineralizer at Rathdrum CT for Inlet Fogging Incremental Output Increase: N/A At 5°F 4.4 MW at 55°F 17.6 MW at 100°F Overall Plant Heat Rate Change: -67 Btu/kWhr (HHV) Variable Operating Costs:$1.00/MWh Fixed Operating Costs:Insignificant Capital Cost:$1M Plant Unavailable Time:2 Months Avista 2011 Electric Integrated Resource Plan 192 Coyote Springs 2 Boardman, Oregon •One General Electric 7FA Combustion Turbine •Combined Cycle Configuration •On Line in 2003 •Approximately 279 MW Combined Output (Duct Fired) •Heat Rate of 6229 Btu/kWh (HHV) Avista 2011 Electric Integrated Resource Plan 193 Inlet Chiller at Coyote Springs 2 Avista 2011 Electric Integrated Resource Plan 194 Inlet Chiller at Coyote Springs 2 w/o Thermal Storage Incremental Output Increase: N/A At 5°F 0 MW at 55°F 29.8 MW at 100°F Overall Plant Heat Rate Change: Insignificant Variable Operating Costs:Insignificant Fixed Operating Costs:Insignificant Capital Cost:$10M Plant Unavailable Time:3 Months Avista 2011 Electric Integrated Resource Plan 195 Inlet Chiller at Coyote Springs 2 With Thermal Storage Incremental Output Increase: N/A At 5°F 0 MW at 55°F 32.2 MW at 100°F Overall Plant Heat Rate Change: Insignificant Variable Operating Costs:Insignificant Fixed Operating Costs:Insignificant Capital Cost:$10M Plant Unavailable Time:3 Months Avista 2011 Electric Integrated Resource Plan 196 Cold Day Performance Software Upgrade at Coyote Springs 2 Avista 2011 Electric Integrated Resource Plan 197 Cold Day Performance Software Upgrade at Coyote Springs 2 Incremental Output Increase: 17.6 MW At 5°F 0.8 MW at 55°F 1.2 MW at 100°F Overall Plant Heat Rate Change: Insignificant Variable Operating Costs:None Fixed Operating Costs:None Capital Cost:$4.5M Plant Unavailable Time:2 Months Avista 2011 Electric Integrated Resource Plan 198 Advanced Hot Gas Path Hardware Upgrade at Coyote Springs 2 Source: General Electric Avista 2011 Electric Integrated Resource Plan 199 Advanced Hot Gas Path Hardware Upgrade at Coyote Springs 2 Incremental Output Increase: 8.6 MW At 5°F 8.0 MW at 55°F 7.1 MW at 100°F Overall Plant Heat Rate Change: -76 Btu/kWhr Variable Operating Costs:None Fixed Operating Costs:$3.9M Capital Cost:$18M Plant Unavailable Time:None Avista 2011 Electric Integrated Resource Plan 200 Cooling Optimization Hardware Upgrade at Coyote Springs 2 Source: General Electric 7FA Cooling Optimization Package, Image removed, GE Proprietary Avista 2011 Electric Integrated Resource Plan 201 Cooling Optimization Hardware Upgrade at Coyote Springs 2 Incremental Output Increase: 2.8 MW At 5°F 2.6 MW at 55°F 2.3 MW at 100°F Overall Plant Heat Rate Change: -35 Btu/kWhr Variable Operating Costs:None Fixed Operating Costs:None Capital Cost:$7.2M Plant Unavailable Time:2 Months Avista 2011 Electric Integrated Resource Plan 202 Kettle Falls Generating Station Kettle Falls, Washington •Wood Fired Boiler with General Electric Steam Turbine •On Line in 1983 •Approximately 48 MW Output Avista 2011 Electric Integrated Resource Plan 203 Gasification of Wood Fuel at Kettle Falls Generation Site Nexterra Gasification System 1.Fuel In-Feed System 2.Gasifier 3.Automatic Ash Removal System 4.Syngas Avista 2011 Electric Integrated Resource Plan 204 Gasification of Wood Fuel at Kettle Falls Generation Site • Gasification of wood fuel for use in turbines is in it’s infancy •Difficulty with adequately cleaning the syngas for use in a turbine •No reliable data on expected costs or operational characteristics Avista 2011 Electric Integrated Resource Plan 205 Questions? Avista 2011 Electric Integrated Resource Plan 206 Load Forecast Randy Barcus Technical Advisory Committee Meeting #3 2011 Electric Integrated Resource Plan December 2, 2010 Avista 2011 Electric Integrated Resource Plan 207 Load Forecast 2011-2035 Outline Economy Weather Price Elasticity Customer Regressions Small Sector Forecasts Large Customer Forecasts Irrigation and Pumping Sales Sales Forecast Load Forecast Expected Peak Forecast Load Forecast Scenarios 2 Avista 2011 Electric Integrated Resource Plan 208 Real Gross Metropolitan Product ($millions) History 1995-2010, Forecast 2010-2035 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 19 9 5 19 9 6 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 20 3 2 20 3 3 20 3 4 20 3 5 Spokane Real Gross Metropolitan Product (Millions 2000$)Kootenai Real Gross Metropolitan Product (Millions 2000$) 3 Spokane Kootenai 1995-2010 1.84%4.81% 2010-2015 2.83%3.50% 2010-2020 2.68%3.40% 2010-2030 2.52%3.16% 2010-2035 2.47%3.09% Avista 2011 Electric Integrated Resource Plan 209 Real Gross Metropolitan Product Annual Percent Change 4 -4% -2% 0% 2% 4% 6% 8% 10% 19 9 5 19 9 6 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 20 3 2 20 3 3 20 3 4 20 3 5 Spo-RGDP(%)Kot-RGDP(%) Avista 2011 Electric Integrated Resource Plan 210 Annual Population—thousands of persons History 1995-2010, Forecast 2010-2035 0 100 200 300 400 500 600 700 800 900 19 9 5 19 9 6 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 20 3 2 20 3 3 20 3 4 20 3 5 Spokane Population Kootenai Population 5 Spokane Kootenai 1995-2010 1.08%2.87% 2010-2015 1.18%2.16% 2010-2020 1.09%2.08% 2010-2030 0.98%1.97% 2010-2035 0.93%1.95% Avista 2011 Electric Integrated Resource Plan 211 Population Annual Percent Change 0% 1% 2% 3% 4% 5% 6% 19 9 5 19 9 6 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 20 3 2 20 3 3 20 3 4 20 3 5 Spo-Pop(%)Kot-Pop(%) 6 Avista 2011 Electric Integrated Resource Plan 212 Annual Housing Starts History 1995-2010, Forecast 2010-2035 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 19 9 5 19 9 6 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 20 3 2 20 3 3 20 3 4 20 3 5 Spokane Housing Starts, Total Private (SAAR)Kootenai Housing Starts, Total Private (SAAR) 7 Avista 2011 Electric Integrated Resource Plan 213 Average Annual Non-Ag Employment—thousands History 1995-2010, Forecast 2010-2035 0 50 100 150 200 250 300 350 400 19 9 5 19 9 6 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 20 3 2 20 3 3 20 3 4 20 3 5 Spokane Employment (NAICS), Total Nonfarm (Thous.)Kootenai Employment (NAICS), Total Nonfarm (Thous.) 8 Spokane Kootenai 1995-2010 0.94%2.70% 2010-2015 1.62%2.45% 2010-2020 1.31%2.02% 2010-2030 1.00%1.61% 2010-2035 0.92%1.48% Avista 2011 Electric Integrated Resource Plan 214 Non-Ag Employment Annual Percent Change -8% -6% -4% -2% 0% 2% 4% 6% 8% 19 9 5 19 9 6 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 20 3 2 20 3 3 20 3 4 20 3 5 Spo-Emp(%)Kot-Emp(%) 9 Avista 2011 Electric Integrated Resource Plan 215 Average Annual Unemployment Rate--Percent 0 2 4 6 8 10 12 19 9 5 19 9 6 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 20 3 2 20 3 3 20 3 4 20 3 5 Spokane Unemployment Rate (%)Kootenai Unemployment Rate (%) 10 Avista 2011 Electric Integrated Resource Plan 216 Average Annual Household Income—Thousands $ 50 75 100 125 150 175 200 19 9 5 19 9 6 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 20 3 2 20 3 3 20 3 4 20 3 5 Spokane Average Household Income (Thous.)Kootenai Average Household Income (Thous.) 11 Spokane Kootenai 1995-2010 3.27%3.07% 2010-2015 3.19%3.13% 2010-2020 3.57%3.59% 2010-2030 3.49%3.42% 2010-2035 3.50%3.36% Avista 2011 Electric Integrated Resource Plan 217 Average Household Income—Percent Change Compared to U.S. Consumer Price Index (CPIU) -4.0% -2.0% 0.0% 2.0% 4.0% 6.0% 8.0% 19 9 5 19 9 6 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 20 3 2 20 3 3 20 3 4 20 3 5 Spo-AHHI(%)Kot-AHHI(%)Consumer Price Index 12 Avista 2011 Electric Integrated Resource Plan 218 Weather Assumptions We use degree days (heating and cooling) base 65 degrees We define ―normal‖ as the average of the last 30 years of actual data; for this forecast, the period is 1980-2009 We assume the first year (2011) of the forecast is ―normal‖ A gradual warming trend in temperature equal to the University of Washington ―Climate Change Scenarios‖ 2008 study Average case converted by us to heating and cooling degree days http://cses.washington.edu/cig/fpt/ccscenarios.shtml Spokane HDD 1970-1999 Average 6,848 Spokane CDD 1970-1999 Average 411 Low 1.1 6,547 95.6%Low 1.1 511 124.3% 2025 Computation Average*2.0 6,300 92.0%2025 Computation Average*2.0 593 144.3% High 3.3 5,944 86.8%High 3.3 711 173.0% Low 1.5 6,437 94.0%Low 1.5 548 133.2% 2045 Computation Average*3.2 5,971 87.2%2045 Computation Average*3.2 702 170.8% High 5.2 5,423 79.2%High 5.2 884 215.1% Low 2.8 6,081 88.8%Low 2.8 666 162.0% 2085 Computation Average*5.3 5,396 78.8%2085 Computation Average*5.3 893 217.3% High 9.7 4,190 61.2%High 9.7 1,294 314.7% 13 Avista 2011 Electric Integrated Resource Plan 219 Price Elasticity The price elasticity assumptions are unchanged from the prior IRP –Residential -0.15 –Commercial -0.10 –Cross-price +0.05 –Income +0.75 We monitor price elasticity estimates for consistency –Energy Information Administration –Itron Energy Forecasting Group –American Gas Association/Gas Forecasters Forum 14 Avista 2011 Electric Integrated Resource Plan 220 Customer Regressions We use annual housing starts forecasts from Global Insight, Inc. to forecast residential customers—this method is new –The dependent variable is annual residential customer additions, the independent variable is annual housing starts –We forecast Idaho and Washington Schedule 1 customers using separate models We use annual residential customer additions to forecast commercial customer additions. –The dependent variable is annual commercial customer additions, the independent variable is residential customer additions For very large commercial customers, we add one in 2017, 2021, and 2028 in Washington and one in Idaho in 2025 15 Avista 2011 Electric Integrated Resource Plan 221 Small Sector Forecasts We forecast electricity sales by state, by rate schedule We produce monthly sales forecasts until 2015, annual to 2035 We define small sector sales in Washington as: –Residential schedule 1, 12, 22, 32 and 48 –Commercial schedule 11, 21, 28, 31 and 47 –Industrial schedule 11, 21, 31, 32 and 47 –Street Lighting schedule 41, 42, 44, 45 and 46 We define small sector sales in Idaho as: –Residential schedule 1, 12, 22, 32, 48 and 49 –Commercial schedule 11, 21, 31, 47 and 49 –Industrial schedule 11, 21, 31, 32, 47 and 49 –Street Lighting schedule 41, 42, 43 44, 45 and 46 We define large sector sales as schedule 25 commercial and industrial in both states 16 Avista 2011 Electric Integrated Resource Plan 222 Large Customer Forecasts We are prohibited from disclosing individual large customer sales Sector groupings –Paper Manufacturers –Potato Processors –Lumber and Wood Producers –Hospitals –Aircraft Parts Manufacturers –Universities –Wastewater Treatment Facilities –Ammunition Manufacturers –Cabinetry Manufacturers –Foundries –Mines –Hotels –Electronic Equipment Manufacturers –Courthouse/Office Building All together there are 13 commercial and 18 industrial meter points 17 Avista 2011 Electric Integrated Resource Plan 223 Large Customer Share of Total kWh Sales Commercial and Industrial Schedule 25 18 0% 5% 10% 15% 20% 25% 30% JA N FE B MA R AP R MA Y JU N JU L AU G SE P OC T NO V DE C AN N U A L Sch25 Commercial Sch25 Industrial 0% 5% 10% 15% 20% 25% 30% 19 9 7 19 9 9 20 0 1 20 0 3 20 0 5 20 0 7 20 0 9 20 1 1 20 1 3 20 1 5 20 1 7 20 1 9 20 2 1 20 2 3 20 2 5 20 2 7 20 2 9 20 3 1 20 3 3 20 3 5 Sch25 Commercial Sch25 Industrial Note—the above charts are stacked line Avista 2011 Electric Integrated Resource Plan 224 Irrigation and Pumping Sales Special Load Analysis 19 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% JA N FE B MA R AP R MA Y JU N JU L AU G SE P OC T NO V DE C AN N U A L 2011 Irrigation-Pumping/Total Sales 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 19 9 7 19 9 9 20 0 1 20 0 3 20 0 5 20 0 7 20 0 9 20 1 1 20 1 3 20 1 5 20 1 7 20 1 9 20 2 1 20 2 3 20 2 5 20 2 7 20 2 9 20 3 1 20 3 3 20 3 5 Annual Irrigation-Pumping/Total Sales Avista 2011 Electric Integrated Resource Plan 225 Customer Forecasts 20 250,000 300,000 350,000 400,000 450,000 500,000 19 9 7 20 0 0 20 0 3 20 0 6 20 0 9 20 1 2 20 1 5 20 1 8 20 2 1 20 2 4 20 2 7 20 3 0 20 3 3 Residential Commercial Industrial Street Lights 85.0% 87.5% 90.0% 92.5% 95.0% 97.5% 100.0% 19 9 7 20 0 0 20 0 3 20 0 6 20 0 9 20 1 2 20 1 5 20 1 8 20 2 1 20 2 4 20 2 7 20 3 0 20 3 3 Residential Commercial Industrial Street Lights Residential Commercial Industrial Street Lights Total Customers 2000-2010 1.44%1.19%0.94%1.37%1.41% 2010-2015 1.22%1.06%0.90%2.63%1.20% 2010-2020 1.26%1.14%0.85%2.49%1.24% 2010-2030 1.20%1.14%0.72%2.27%1.19% 2010-2035 1.17%1.12%0.69%2.18%1.16% Avista 2011 Electric Integrated Resource Plan 226 kWh Use per Average Residential Customer 21 10,000 10,500 11,000 11,500 12,000 12,500 13,000 13,500 14,000 14,500 15,000 19 9 7 19 9 9 20 0 1 20 0 3 20 0 5 20 0 7 20 0 9 20 1 1 20 1 3 20 1 5 20 1 7 20 1 9 20 2 1 20 2 3 20 2 5 20 2 7 20 2 9 20 3 1 20 3 3 20 3 5 Residential 50,000 55,000 60,000 65,000 70,000 75,000 80,000 85,000 90,000 95,000 100,000 19 9 7 20 0 0 20 0 3 20 0 6 20 0 9 20 1 2 20 1 5 20 1 8 20 2 1 20 2 4 20 2 7 20 3 0 20 3 3 Commercial Residential Commercial 2000-2010 -0.29%-0.50% 2010-2015 -0.49%0.65% 2010-2020 -0.47%0.70% 2010-2030 0.00%0.65% 2010-2035 0.27%0.64% Avista 2011 Electric Integrated Resource Plan 227 kWh Sales Customer Class 22 0 2,000,000,000 4,000,000,000 6,000,000,000 8,000,000,000 10,000,000,000 12,000,000,000 14,000,000,000 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 20 3 2 20 3 3 20 3 4 20 3 5 Residential Commercial Industrial Street Lights Residential Commercial Industrial Street Lights Total Sales 2000-2010 1.11%0.69%0.23%0.53%0.75% 2010-2015 0.72%1.71%2.74%2.49%1.56% 2010-2020 0.79%1.84%2.38%2.32%1.56% 2010-2030 1.19%1.79%1.78%2.03%1.55% 2010-2035 1.44%1.77%1.56%1.94%1.59% Avista 2011 Electric Integrated Resource Plan 228 Electric Car Forecast (PIH & PEV) 23 0 100,000,000 200,000,000 300,000,000 400,000,000 500,000,000 600,000,000 700,000,000 800,000,000 900,000,000 1,000,000,000 0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 20 3 2 20 3 3 20 3 4 20 3 5 Total Vehicles kWh Consumption Assumes 2,500 kWh average per vehicle Avista 2011 Electric Integrated Resource Plan 229 Load Forecast in Average MW 24 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 20 3 2 20 3 3 20 3 4 20 3 5 Avista 2011 Electric Integrated Resource Plan 230 Peak Demand in Megawatts 25 1,400 1,500 1,600 1,700 1,800 1,900 2,000 2,100 2,200 2,300 2,400 2,500 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 20 3 2 20 3 3 20 3 4 20 3 5 Peak Load Forecast based on Average Coldest Day Avista 2011 Electric Integrated Resource Plan 231 Medium Scenario Growth Rates 26 Energy 2000-2010 0.48% 2010-2015 1.85% 2010-2020 1.72% 2010-2030 1.66% 2010-2035 1.68% Peak Demand 0.87% 0.76% 1.22% 1.46% 1.55% Avista 2011 Electric Integrated Resource Plan 232 Load Forecast Prepared 10 Years Ago 27 For Forecast aMW Days Forecast MWH Actual aMW Days Actual MWH Percent Difference 2009 Jan 1,362 31 1,013,121 1,272 31 946,653 -6.6% Feb 1,266 28 850,592 1,186 28 796,895 -6.3% Mar 1,145 31 851,634 1,121 31 833,848 -2.1% Apr 1,080 30 777,278 980 30 705,751 -9.2% May 1,068 31 794,688 952 31 708,039 -10.9% Jun 1,089 30 783,858 979 30 704,569 -10.1% Jul 1,070 31 796,388 1,057 31 786,248 -1.3% Aug 1,074 31 798,938 1,034 31 769,272 -3.7% Sep 986 30 709,832 968 30 697,305 -1.8% Oct 1,109 31 825,286 1,014 31 754,464 -8.6% Nov 1,217 30 875,980 1,106 30 796,630 -9.1% Dec 1,335 31 993,573 1,321 31 982,507 -1.1% 10,071,167 9,482,181 -5.8% Avista 2011 Electric Integrated Resource Plan 233 Forecast Comparisons 28 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 F2011 929 954 989 1,013 965 995 1,013 1,021 1,046 1,069 1,088 1,098 1,082 1,063 1,094 1,109 1,131 1,148 1,165 1,186 1,209 1,228 1,244 1,260 F2010 1,088 1,098 1,076 1,101 1,130 1,151 1,174 1,197 1,216 1,235 1,260 1,278 1,296 1,315 F2009 1,088 1,113 1,119 1,148 1,171 1,188 1,202 1,222 1,252 1,270 1,289 1,311 1,329 1,347 F2007IRP 1,091 1,124 1,163 1,196 1,229 1,255 1,274 1,306 1,325 1,358 1,379 1,399 1,426 1,449 F2006 1,043 1,086 1,122 1,159 1,198 1,232 1,270 1,299 1,327 1,360 1,388 1,417 1,440 1,461 1,491 1,516 F2005 1,029 1,067 1,099 1,122 1,152 1,185 1,215 1,246 1,270 1,296 1,323 1,354 1,379 1,395 1,417 1,447 1,472 F2004 1,000 1,035 1,061 1,085 1,109 1,135 1,164 1,196 1,225 1,247 1,270 1,293 1,327 1,356 1,384 1,412 1,444 1,474 F1999 986 988 971 982 1,009 1,033 1,059 1,088 1,121 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 Av e r a g e M W i n c l u d i n g l o s s e s Net Native Load with Electric Cars F2011 F2010 F2009 F2007IRP F2006 F2005 F2004 F1999 Forecast 2011-2020 Actual 1997-2009 2010 has 9 months actual 2011 Forecast Growth Rates Base 2011 5 =1.63%, 10 =1.56%, 20 =1.60%, 24 =1.63% Avista 2011 Electric Integrated Resource Plan 234 Population Forecasts—Then and Now 29 Spokane County Census April 1st OFM 1995 OFM 2007 Avista 2000 Avista 2010 Decade Medium Growth Rate Decade Low Growth Rate Decade High Growth Rate 1960 278,333 1970 287,487 0.32% 1980 341,835 1.75% 1990 361,333 361,333 361,333 0.56% 2000 417,939 417,939 1.47% 2010*470,300 476,400 466,724 449,300 475,646 1.19% 2020 529,451 530,003 1.09%0.54%1.63% 2030 589,623 577,829 0.87%0.43%1.30% 2035 599,873 July 1st Estimates Avista 2011 Electric Integrated Resource Plan 235 Low, Medium and High Growth Scenarios Global Insight provides us with Medium Scenario economic forecasts We plan to overlay the 6th Power Plan range for Low and High NPPC Low 0.8%, Medium 1.4%, High 1.8% for 2010-2030 –http://www.nwcouncil.org/energy/powerplan/6/final/SixthPowerPlan_Ch3.pdf page 3-5 Avista’s 2010-2030 growth rate medium scenario 1.66% Overlay Low 0.95%, Overlay High 2.13% by ratio method 30 Avista 2011 Electric Integrated Resource Plan 236 Stochastic Modeling Assumption & Methodology Discussion James Gall Technical Advisory Committee Meeting #3 2011 Electric Integrated Resource Plan December 2, 2010 Avista 2011 Electric Integrated Resource Plan 237 2011 Integrated Resource Plan Modeling Process Preferred Resource Strategy AURORA “Wholesale Electric Market” 500 Simulations PRiSM “Avista Portfolio” Efficient Frontier Fuel Prices Fuel Availability Resource Availability Demand Emission Pricing Existing Resources Resource Options Transmission Resource & Portfolio Margins Conservation Trends Existing Resources Avista Load Forecast Energy, Capacity, & RPS Balances New Resource Options & Costs Cost Effective T&D Projects/Costs Cost Effective Conservation Measures/Costs Mid-Columbia Prices Stochastic Inputs Deterministic Inputs Capacity Value Avoided Costs Avista 2011 Electric Integrated Resource Plan 238 Why Conduct a Stochastic Study Quantifies the risk (range in prices/costs) of the wholesale electric market. Determines range in potential market value of each resource option. Determines the range in potential cost to serve customers over the IRP time period. IRP’s objective is plan on a resource portfolio that is not only least cost but at an acceptable level of risk. Avista 2011 Electric Integrated Resource Plan 239 Measurements of Risk Standard Deviation Mean Absolute Error Value at Risk Tail Var “90” Percentile Probability Avista 2011 Electric Integrated Resource Plan 240 Market Stochastic Study Variables Hydro availability Wind availability Coal prices Wood prices Oil prices Inflation Forced outages Natural gas prices Weather (load) Economic growth (load) Conservation (load) Carbon legislation Resource Capital Costs (?) Avista 2011 Electric Integrated Resource Plan 241 2009 Mid-Columbia Flat Electric Prices Avista 2011 Electric Integrated Resource Plan 242 2009 Mid-Columbia Flat Electric Prices with Individual Normalized Inputs Avista 2011 Electric Integrated Resource Plan 243 2009 Mid-Columbia Flat Normalized Electric Price $0.00 $10.00 $20.00 $30.00 $40.00 $50.00 $60.00 1 2 3 4 5 6 7 8 9 10 11 12 $ p e r M W h 2009 Normalized 2009 AURORA Backcast Avista 2011 Electric Integrated Resource Plan 244 Hydro Random draw of 70 historical hydro years. Avista projects use results of Avista hydro model Regional projects uses Northwest Power Pool model Mean: 17,849 Stdev: 2,506 (14%) Avista 2011 Electric Integrated Resource Plan 245 Historical Wind Generation 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 1 21 41 61 81 10 1 12 1 14 1 16 1 18 1 20 1 22 1 24 1 26 1 28 1 30 1 32 1 34 1 36 1 38 1 40 1 42 1 44 1 46 1 48 1 50 1 52 1 54 1 56 1 58 1 60 1 62 1 64 1 66 1 68 1 70 1 72 1 74 1 Ca p a c i t y F a c t o r January Wind Generation on BPA 2007 2008 2009 2010 Avista 2011 Electric Integrated Resource Plan 246 Wind Use 50 potential wind draws Each draw will be 8,760 hour shape Use separate wind shape available for most of the Western states and provinces NREL hourly simulated generation data (2004-06) is used to estimate capacity factors and correlations for non-NW areas Area CF Area CF Northwest 31.8%Southwest 28.8% California 30.6%Utah 29.0% Montana 37.2%Colorado 32.2% Wyoming 38.2%British Columbia 33.2% Eastern WA 30.6%Alberta 34.3% Avista 2011 Electric Integrated Resource Plan 247 Wind (Continued) Regression model using BPA/NREL data –Uses hour type, month, hour -1, hour -2 for the coefficients –Northwest: 97.5% R2, 4.7% (CF standard error) –Random error with normal distribution to create variability Avista 2011 Electric Integrated Resource Plan 248 Coal, Oil, and Wood Prices Assume normal distribution of annual change in price Mean prices are based on Wood Mackenzie for oil and coal Standard Deviations: –Coal: 10% –Oil: 25% –Wood: 10% Avista 2011 Electric Integrated Resource Plan 249 Inflation Based on Global Insights forecast for average and standard deviation Average inflation is assumed to be 1.70%, w/ standard deviation of 1% (59% of mean) Avista 2011 Electric Integrated Resource Plan 250 Forced Outages Historical Outage rates are available from NERC’s GAR Report –GADS- Generation Availability Report Data available for Coal, Nuclear, NG, and Oil by size of plant –Both planned and unplanned outages are tracked –Data is only available for all plants (no drill down option) AURORA’s has random forced outage logic –Uses mean time to repair and annual forced outage rate –Both matrices can be derived from GADS data Avista 2011 Electric Integrated Resource Plan 251 Historical Monthly AECO Natural Gas Prices Historical prices have been volatile Will volatility continue, or will shale gas flatten volatility? Will there still be boom/bust in natural gas prices? Avista 2011 Electric Integrated Resource Plan 252 Natural Gas Prices Mean natural gas prices are yet to be finalized. Prices will be finalized by end of 2010 to take into account best available information for the plan To model the variability of prices will use a new method for this IRP. –Randomize the percent change between month to month prices based on a lognormal distribution –This method provides high month to month correlations as history demonstrates (90%+) Avista 2011 Electric Integrated Resource Plan 253 Natural Gas Forecast (individual draws) Avista 2011 Electric Integrated Resource Plan 254 Natural Gas Forecast (Statistics 500 draws) Avista 2011 Electric Integrated Resource Plan 255 Load (Weather) Weather variation will be modeled in AURORA with monthly load variances for 2005 through 2009 Weather is assumed to be normally distributed with standard deviation for each load area and a correlation to the Northwest area based on FERC Form 714 hourly load profiles Further detail on this methodology can be found in prior IRPs Avista 2011 Electric Integrated Resource Plan 256 Load (Economic & Conservation) Weather is not the only driver in future loads, economic growth, electric cars, and conservation will affect energy demand Historical load growth is highly volatile (see chart below) Avista 2011 Electric Integrated Resource Plan 257 Load (Economic & Conservation)…. continued Expected load growth will assume Wood Mackenzie forecast Standard deviation is assumed to be 50% (same as last plan) 100 105 110 115 120 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 Lo a d I n d e x NW Regional Load Growth 100 draws Avista 2011 Electric Integrated Resource Plan 258 Carbon Legislation No national carbon legislation has been passed Many western states/provinces have passed some type of carbon reduction scheme For this plan.. –5 scenarios are developed based on potential outcomes. –Each scenario is assigned a weighting –The weighted average of the scenarios will be the base forecast –Natural gas prices and carbon prices will be correlated for national policy scenarios Avista 2011 Electric Integrated Resource Plan 259 Carbon Legislation Scenarios 1.Western Climate Initiative “WCI” (20% probability) –No federal legislation, carbon reduction in CA, OR, WA, NM only –15% below 2005 levels by 2020 –Begins in 2012, regional trading allowed 2.Regional Greenhouse Gas Initiative “RGGI” (20% probability) –No federal legislation, carbon reduction in CA, OR, WA, NM only –187 million tons per year through 2014, then 10% reduction by 2018 –Begins in 2012, within state trading only 3.National Climate Policy (20% probability) –Federal legislation only applies –17% below 2005 levels by 2020, 42% below 2005 levels by 2030 –Begins in 2015, national trading allowed 4.National Carbon Tax (15% probability) –Federal legislation only applies –$33 per short ton, than 5% per year escalation –Begins in 2015 5.No Carbon Reductions (5% probability) –No carbon reduction scheme –State level emission performance standards apply and no new coal in US West Avista 2011 Electric Integrated Resource Plan 260 Next Meeting 1.Finalize mean key driver assumptions 2.Implement stochastic modeling methodologies with AURORA 3.Simulate the market future 500 times between 2012-2031 4.Present results for electric market prices and other key results 5.Evaluate the potential of modeling capital costs stochastically Avista 2011 Electric Integrated Resource Plan 261 Avista’s 2011 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 4 Agenda Avista Headquarters – Spokane, Washington Thursday, February 3, 2011 Avista Conference Room 130 Topic Time Staff 1. Introduction 9:30 Storro 2. Natural Gas Price Forecast 9:35 Rahn 3. Electric Price Forecast 10:30 Gall 4. Lunch 12:00 5. Resource Requirement Projections 1:00 Kalich 6. Portfolio and Market Scenario Planning 2:30 Lyons 7. Adjourn 3:00 Conference Call Instructions: 1. Please join my meeting. https://www2.gotomeeting.com/join/717354547 2. Join the conference call: Dial +1 (714) 551-0020 Access Code: 717-354-547 Audio PIN: Shown after joining the meeting Meeting ID: 717-354-547 GoToMeeting® Online Meetings Made Easy™ Avista 2011 Electric Integrated Resource Plan 262 Avista Electric IRP Natural Gas Price Forecast Technical Advisory Committee Meeting February 4, 2011 Avista 2011 Electric Integrated Resource Plan 263 Henry Hub Historical Price Trend ??? Average price: $6.19Average price: $2.29 Average price: $4.500 2 4 6 8 10 12 14 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 US Dollars per MMBtu End of the Gas Bubble Unconventional Inadequacy The Shale Gale Source: Platts. Avista 2011 Electric Integrated Resource Plan 264 Brief History of Forecasts $0.00 $2.00 $4.00 $6.00 $8.00 $10.00 $12.00 $14.00 $/ D t h Various Henry Hub Forecasts Nominal $ Oct-06 Feb-07 Aug-08 Dec-08 Dec-09 Dec-10 NPCC 6th Avista 2011 Electric Integrated Resource Plan 265 $- $2.00 $4.00 $6.00 $8.00 $10.00 $12.00 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 $/ D t h Nymex Forward Prices Annual Strips 12/1/2006 12/3/2007 12/1/2008 12/1/2009 12/1/2010 Avista 2011 Electric Integrated Resource Plan 266 Long Term Natural Gas Price Drivers DEMAND Economy –Industrial –Power Generation SUPPLY US Natural Gas Production Imports from Canada OTHER FACTORS Oil and Coal Prices Carbon Legislation/Renewable Portfolio Standards Global Dynamics; LNG Imports (Exports?) Avista 2011 Electric Integrated Resource Plan 267 US Natural Gas Demand ForecastAvista 2011 Electric Integrated Resource Plan 268 Avista 2011 Electric Integrated Resource Plan 269 0 20 40 60 80 100 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 U.S. Conventional Canada Conventional U.S. Unconventional Canada Unconventional Actual Projection North American Natural Gas Production Bcf/d Source: EIA & NEB historic data; Encana forecasts Avista 2011 Electric Integrated Resource Plan 270 Shale Gas Economics 101 Bigger Costs. Bigger Volumes. Conventional Vertical Drilling Unconventional Horizontal Drilling and Hydraulic Fracturing 9 Avista 2011 Electric Integrated Resource Plan 271 The Shale Drilling ProcessAvista 2011 Electric Integrated Resource Plan 272 BC SHALES ROCKIES GULF STATES MARCELLUS Avista 2011 Electric Integrated Resource Plan 273 Growth in U.S. Shale Gas Production Source: MIT Study The Future of Natural Gas Avista 2011 Electric Integrated Resource Plan 274 Costs and Volumes –Selected Gas PlaysAvista 2011 Electric Integrated Resource Plan 275 1.Drilling Days - depending on vertical depth and lateral length, a typical 90- 100 day turnaround has been reduced down to 18–45 days 2.Lateral Length - commonly going to about 4,000+ feet horizontal, pushing beyond 10,000 feet in some wells 3.Wells per Pad/Simultaneous Operations - each pad has up to 8 wells; simultaneous well work on multiple wellbores 4.Number of Fracturing Stages –1 or 2 stage jobs in the past; now 8-10 stages or more 5.Simultaneous Fracturing –fracturing simultaneous wellbores to achieve acute stresses and more effective fracs The Gas Factory Technology and Efficiency Avista 2011 Electric Integrated Resource Plan 276 Shale Gas and US Production Avista 2011 Electric Integrated Resource Plan 277 Natural Gas Liquids (NGLs) What are they? Natural gas liquids (NGLs) are hydrocarbons often found resident with natural gas. They are recovered as liquids through a purification process at processing plants. They include ethane, propane, and butane and condensate (natural gasoline). Avista 2011 Electric Integrated Resource Plan 278 Canada Exports Recent Trends Imports declining slower than anticipated BC Shale larger and faster than anticipated Alberta royalties renegotiated Lower oil prices have slowed demand for oil sands production Historical Trend –Declining Exports Avista 2011 Electric Integrated Resource Plan 279 Oil vs. Natural Gas Relationship •Strong long term price correlation historically •Long term ratio of approx. 8 to 1 (1994-2008) •Since Jan 2009 ratio has doubled to approx 17 to 1 •Shale gas could fundamentally and permanently change historic ratio •Alternatively, increased demand from low prices could cure low prices $0 $2 $4 $6 $8 $10 $12 $14 $16 $0 $20 $40 $60 $80 $100 $120 $140 $160 Ja n -19 9 4 Ja n -19 9 5 Ja n -19 9 6 Ja n -19 9 7 Ja n -19 9 8 Ja n -19 9 9 Ja n -20 0 0 Ja n -20 0 1 Ja n -20 0 2 Ja n -20 0 3 Ja n -20 0 4 Ja n -20 0 5 Ja n -20 0 6 Ja n -20 0 7 Ja n -20 0 8 Ja n -20 0 9 Ja n -20 1 0 $/ D t h $/ B a r r e l Historical Oil and Gas Prices -Nymex Oil Natural Gas 0 5 10 15 20 25 30 Ja n -19 9 4 Ja n -19 9 5 Ja n -19 9 6 Ja n -19 9 7 Ja n -19 9 8 Ja n -19 9 9 Ja n -20 0 0 Ja n -20 0 1 Ja n -20 0 2 Ja n -20 0 3 Ja n -20 0 4 Ja n -20 0 5 Ja n -20 0 6 Ja n -20 0 7 Ja n -20 0 8 Ja n -20 0 9 Ja n -20 1 0 Oil to Natural Gas Price Ratio Avista 2011 Electric Integrated Resource Plan 280 Avista 2011 Electric Integrated Resource Plan 281 Carbon Policy/Renewable Portfolio Standards Natural Gas has a critical yet complex role in carbon policy creation and implementation. •Numerous complex issues and uncertainties •Need to balance economic challenges with policy objectives •Complex issues within cap and trade vs. simpler carbon tax •Long term role or interim bridge? Natural Gas also has an important backup role for intermittent renewable generation sources Avista 2011 Electric Integrated Resource Plan 282 Global Natural Gas Estimates Source: MIT Study The Future of Natural Gas Avista 2011 Electric Integrated Resource Plan 283 LNG Imports…or Exports? Source: Federal Energy Regulatory Commission Source: Geology.com LNG traditionally flows to North America after other higher-priced markets receive their share Source: Apache LNG Avista 2011 Electric Integrated Resource Plan 284 IRP Price Forecast Methodology 1.Two fundamental forecasts (Consultant #1 & Consultant #2) 2.Forward prices 3.50/50 weighting fundamental and forwards year 1 4.Reduce forwards weighting 10% each year thereafter 5.By year 6, forecast is 50% Consultant #1, 50% Consultant #2 Avista 2011 Electric Integrated Resource Plan 285 IRP Price Forecast Components $0.00 $2.00 $4.00 $6.00 $8.00 $10.00 $12.00 $14.00 $/ D t h Price Forecasts Henry Hub Nominal $ Consult 1 Consult 2 Forwards Avista 2011 Electric Integrated Resource Plan 286 IRP Price Forecast –Selected Hubs Nominal $ $0.00 $2.00 $4.00 $6.00 $8.00 $10.00 $12.00 $/ D t h HENRY HUB MALIN STANFIELD AECO Avista 2011 Electric Integrated Resource Plan 287 Electric Market Forecast (Preliminary Draft) James Gall Technical Advisory Committee Meeting #4 2011 Electric Integrated Resource Plan February 3, 2011 Avista 2011 Electric Integrated Resource Plan 288 2011 Integrated Resource Plan Modeling Process Preferred Resource Strategy AURORA “Wholesale Electric Market” 500 Simulations PRiSM “Avista Portfolio” Efficient Frontier Fuel Prices Fuel Availability Resource Availability Demand Emission Pricing Existing Resources Resource Options Transmission Resource & Portfolio Margins Conservation Trends Existing Resources Avista Load Forecast Energy, Capacity, & RPS Balances New Resource Options & Costs Cost Effective T&D Projects/Costs Cost Effective Conservation Measures/Costs Mid-Columbia Prices Stochastic Inputs Deterministic Inputs Capacity Value Avoided Costs Avista 2011 Electric Integrated Resource Plan 289 Historical Monthly Flat Mid-Columbia Prices Avista 2011 Electric Integrated Resource Plan 290 Historical Monthly Implied Market Heat Rates (Mid-Columbia/Stanfield x 1,000) Avista 2011 Electric Integrated Resource Plan 291 Western Interconnect Load Growth Regional Load Growth Source: Wood Mackenzie 1.8% 2.1% 1.4% 0.9% 1.4% 1.6% Growth Rate Avista 2011 Electric Integrated Resource Plan 292 New Western Interconnect (WECC) Conservation New conservation meets 21% of Load Growth Regional Load Growth/Conservation Source: Wood Mackenzie Avista 2011 Electric Integrated Resource Plan 293 Western Interconnect Plug-in Electric Hybrid Vehicles Assumption Electric Cars are assumed to be adopted at the Northwest Power & Conservation Council estimate per the “Case 2” of the 6th Power Plan –18% of cars by 2020 and 28% by 2030 95% of cars will charge at night and 5% during on-peak hours PHEV are not assumed to meet electric capacity needs Avista 2011 Electric Integrated Resource Plan 294 Natural Gas Price Re-Cap $7.28- Henry Hub 2012-2031 Nominal Levelized Price $6.71- Stanfield $6.39- AECO Avista 2011 Electric Integrated Resource Plan 295 Western Interconnect Transmission Additions Additional regional transmission additions are assumed to take place in the future, these are the additions assumed in the Base Case market analysis (MW) –Idaho - NW: 1,500 (2019) –Canada -NW - California: 3,000 (2018) –Wyoming - Utah: 3,000 (2015) –Wyoming - Idaho: 1,500 (2016) –Wyoming - Colorado: 900 (2013) –Idaho - Utah: 1,320 (2016) –N. Nevada - S. Nevada: 1,600 (2015) –New Mexico - Arizona: 3,000 (2016) Avista 2011 Electric Integrated Resource Plan 296 New Resource Alternatives Western Interconnect Resource alternatives to meet Renewable Portfolio Standards –Wind –Solar –Biomass –Geothermal –Hydro Upgrades Resource alternatives to meet regional capacity requirements –Combined Cycle –Simple Cycle (Aero, Frame, Hybrid) –Solar –Wind (non RPS states) –Nuclear –Coal Pulverized –Coal IGCC –Coal IGCC with Sequestration Avista 2011 Electric Integrated Resource Plan 297 State Renewable Energy Requirements Western Interconnect Avista 2011 Electric Integrated Resource Plan 298 New Renewable Resources Added for RPS by Type Western Interconnect Avista 2011 Electric Integrated Resource Plan 299 Location of New Renewable Resources Western Interconnect 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 En e r g y ( a M W ) California Arizona Colorado Idaho Montana New Mexico Nevada Oregon Utah Washington Wyoming British Columbia Avista 2011 Electric Integrated Resource Plan 300 Generation Greenhouse (CO2) Gas Emissions by State in the Western Interconnect AZ CA CO IDMT NM NVOR UT WA WY - 50 100 150 200 250 300 350 400 450 500 19 9 0 19 9 1 19 9 2 19 9 3 19 9 4 19 9 5 19 9 6 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 Mi l l i o n s o f S h o r t T o n s Source: EPA Avista 2011 Electric Integrated Resource Plan 301 Greenhouse Gas (CO2) Reduction Schemes Stochastic Case 1.Regional Greenhouse Gas Policies (30% probability) –State carbon reduction in CA, OR, WA, NM between 2014 and 2019 –~10% reduction below 2005 levels by 2020 –Beginning in 2020 shift to National Climate Policy with 15% below 2005 levels by 2030 2.National Climate Policy (30% probability) –Federal legislation only applies beginning in 2015 –~15% below 2005 levels by 2020, ~35% below 2005 levels by 2030 3.National Carbon Tax (30% probability) –Federal legislation only applies –$33 per short ton, than 5% per year escalation –Begins in 2015 4.No Carbon Reductions (10% probability) –No carbon reduction scheme –State level emission performance standards apply and no new coal in US West Deterministic Case –Emissions reduced to the weighted average of four cases above Avista 2011 Electric Integrated Resource Plan 302 Resulting Greenhouse Gas (CO2) Reduction Prices $59.36 2015-2031 Levelized Price per Short Ton $28.02 $46.48 $00.00 $40.20 Avista 2011 Electric Integrated Resource Plan 303 New Resource Selected to Meet Capacity Requirements in Western Interconnect Avista 2011 Electric Integrated Resource Plan 304 Northwest New Resources (RPS, Export, & Capacity) - 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 Na m e p l a t e M W Natural Gas-Peaker Natural Gas-CCCT Geothermal Biomass Solar Hydro Wind Avista 2011 Electric Integrated Resource Plan 305 Deterministic Mid-Columbia Annual Average Price Forecast Avista 2011 Electric Integrated Resource Plan 306 Deterministic Mid-C Annual Avg Price Forecast Levelized Nominal Prices Scheme Levelized Price $/MWh 2012-31 2009 IRP Expected Case (Adjusted)97.60 2011 IRP Expected Case 71.22 Scenarios Regional Greenhouse Gas Policies 66.91 National Climate Policy 78.94 National Carbon Tax 73.98 No Carbon Reductions 53.70 Weighted Average 71.32 Avista 2011 Electric Integrated Resource Plan 307 Deterministic Implied Market Heat Rates (Mid-Columbia / Stanfield x 1,000) Actual Forecast Fo r w a r d s Avista 2011 Electric Integrated Resource Plan 308 Deterministic Greenhouse Gas (CO2) Levels (US Western Interconnect) Avista 2011 Electric Integrated Resource Plan 309 Total Generation Fuel Costs US Western Interconnect Avista 2011 Electric Integrated Resource Plan 310 “Expected Case” Resource Energy Mix US Western Interconnect Avista 2011 Electric Integrated Resource Plan 311 Stochastic Modeling Changes From Last TAC Meeting Assumptions based on methodologies discussed in last TAC meeting, with some exceptions. Wind model randomly draws from 15 wind years for each study year, previous TAC discussed drawing from 50 wind years for the entire 20 years of each iteration. Oil and wood price escalation will use lognormal distributions. Natural gas price methodology is the same but will use historical month-to-month standard deviation. Adjustment developed for linking carbon prices to natural gas prices, no carbon reduction case will have ~10% reduction to natural gas prices Avista 2011 Electric Integrated Resource Plan 312 Stochastic Electric Market Prices Compared to Deterministic Levelized Prices ($/MWh) Deter.: $71.22 Mean: $74.48 Median: $73.16 Avista 2011 Electric Integrated Resource Plan 313 Range in Market Prices Annual Flat Mid-Columbia $0 $25 $50 $75 $100 $125 $150 $175 $200 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 $ p e r M W h Average Price Minus One Stdev Plus One Stdev Tail Var 90 Avista 2011 Electric Integrated Resource Plan 314 Range in US-Western Interconnect Carbon Emissions Avista 2011 Electric Integrated Resource Plan 315 Resource Valuations Deterministic vs Stochastic Example Combined Cycle 2012 Operating Margin Simple Cycle 2012 Operating Margin Avista 2011 Electric Integrated Resource Plan 316 Next Steps 1.Finalize “Expected Case” study 2.Portfolio Analysis –Preferred Resource Strategy –Efficient Frontier –Resource cost/availability sensitivities 3.Deterministic Market Scenario Studies –Resource portfolio scenario analysis 4.Stochastic Market Scenario Studies – Alternative “risk” markets; i.e. no carbon case, gas volatility –Alternative Efficient Frontier results Avista 2011 Electric Integrated Resource Plan 317 Resource Requirement Projections Clint Kalich Technical Advisory Committee Meeting #4 2011 Electric Integrated Resource Plan February 3, 2011 Avista 2011 Electric Integrated Resource Plan 318 Agenda Reliability Modeling Update Avista Reliance on Wholesale Marketplace Shift from 1-Hour to 18-Hour Peaking Period Regional Capacity Position Avista Reliance on Wholesale Marketplace Avista Resource Positions Conclusions Avista 2011 Electric Integrated Resource Plan 319 Reliability Modeling Update Completed Advanced Model Late 2010 Sophisticated hydro logic Weather-dependent thermal logic Robust representation of hourly loads Time-series representation of data Numerous Runs of Reliability Model Results Indicate Key Assumption is Market Availability More important than hydro, load, thermal resources Yet Don’t Really Know What The Broader Market Looks Like Negates Most Benefits (at least for IRP) of Reliability Model Therefore a Simpler Approach Was Followed Avista 2011 Electric Integrated Resource Plan 320 One-Hour vs. 18-Hour Sustained Peak Historically Region (and Avista) Has Planned on One-Hour Peak Demand Scenarios Similar to Other Regions in WECC & NERC Works Great for Thermal Systems Without Fuel Limits Doesn’t Work As Well for Hydro Systems with a Limited Fuel Source Region Has Shifted from a One-Hour Peak to a 3-Day, 6 Hours Per Day Sustained Demand Event AKA 18-Hour Sustained Peak Event Avista 2011 Electric Integrated Resource Plan 321 One-Hour vs. 18-Hour Sustained Peak Affects (Lowers) Hydro Resource and Load Capabilities No Assumed Impact on Thermal Operations Except output is affected by assumed peak condition ambient temperatures Avista’s Method Relies Substantially on Northwest Power and Conservation Council’s (“NWPP”) Work 24% Winter and 23% Summer Planning Margin Compares to 15% assumption in 2009 IRP Essentially the same as 2009 IRP assumption but operating reserves are added Avista 2011 Electric Integrated Resource Plan 322 Hydro 18-Hour Sustained Capacity Impacts Avista’s System 116 2 4 122 7 3 3 13 0 20 40 60 80 100 120 140 Clark Fork Spokane Mid-C Total me g a w a t t s 18-Hour Capacity Reduction Summary Winter Summer Avista 2011 Electric Integrated Resource Plan 323 Regional Capacity Position NPCC Winter Assessment -10% 0% 10% 20% 30% 40% 50% 60% 70% 20 1 0 20 1 2 20 1 4 20 1 6 20 1 8 20 2 0 20 2 2 20 2 4 20 2 6 20 2 8 20 3 0 Su s t a i n e d P e a k R e s e r v e M a r g i n With Plan Resources Hydro Flex In-region IPP SW Market Adequacy Reserve Margin Firm Resource Reserve Margin Threshold Avista 2011 Electric Integrated Resource Plan 324 Regional Capacity Position NPCC Summer Assessment -10% -5% 0% 5% 10% 15% 20% 25% 30% 35% 40% 20 1 0 20 1 2 20 1 4 20 1 6 20 1 8 20 2 0 20 2 2 20 2 4 20 2 6 20 2 8 20 3 0 Su s t a i n e d P e a k R e s e r v e M a r g i n Plan Resources Hydro Flex In-region IPP With Plan Resources Firm Resource Reserve Margin Adequacy RM Threshold Avista 2011 Electric Integrated Resource Plan 325 Avista Reliance On Wholesale Market Avista Relies on a “Modified” NWPP Load and Resource Balance Ignore aggressive conservation assumption use Wood-Mac forecast of 0.9% regional load growth No capacity contribution for wind (-250 MW) 10% wind capacity reserves (-500 MW) Do not plan to interrupt wind at peak 5.5% of Regional Surplus is Available to Avista Phased out over 10 years 10% reduction per year Avista 2011 Electric Integrated Resource Plan 326 Regional Capacity Position Comparison (8,000) (6,000) (4,000) (2,000) - 2,000 4,000 6,000 8,000 10,000 12,000 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Regional Sustained Capacity Forecast Comparison NPCC to Avista 2011 IRP Winter - NPCC Case Winter - Avista Mod Summer - NPCC Case Summer - Avista Mod Avista 2011 Electric Integrated Resource Plan 327 Regional Capacity Position Winter - 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 me g a w a t t s Regional Sustained Capacity Forecast -Winter Resources Avista Share Load Load w/Contingency Avista 2011 Electric Integrated Resource Plan 328 Regional Sustained Capacity Position Summer - 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 me g a w a t t s Regional Sustained Capacity Forecast -Summer Resources Avista Share Load Load w/Contingency Avista 2011 Electric Integrated Resource Plan 329 Avista Energy Position 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 av e r a g e m e g a w a t t s Loads & Resources (Average Annual Energy) Hydro Resources Base/Intermediate Resources Net Firm Contracts Peaking Resources Load Load + Contingency Planning Avista 2011 Electric Integrated Resource Plan 330 Avista Energy Position 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 REQUIREMENTS 1 Native Load -1,109 -1,131 -1,148 -1,165 -1,186 -1,209 -1,228 -1,244 -1,260 -1,277 -1,293 -1,310 -1,333 -1,357 -1,386 -1,406 -1,429 -1,452 -1,477 -1,502 2 Firm Power Sales -138 -124 -107 -57 -57 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 3 Total Requirements -1,247 -1,256 -1,255 -1,222 -1,243 -1,214 -1,233 -1,249 -1,266 -1,282 -1,298 -1,316 -1,338 -1,362 -1,391 -1,411 -1,434 -1,457 -1,482 -1,508 RESOURCES 4 Firm Power Purchases 160 160 160 160 160 109 108 88 62 62 61 61 61 61 61 61 61 61 61 61 5 Hydro 519 525 528 496 496 496 492 481 481 481 481 481 481 481 481 481 481 481 481 481 6 Baseload/Intermediate Resources 755 714 751 744 746 741 724 758 721 721 758 721 721 758 684 515 541 515 515 541 7 Wind Resources 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 Total Resources 1,435 1,399 1,439 1,401 1,402 1,346 1,324 1,327 1,264 1,264 1,301 1,263 1,263 1,300 1,226 1,057 1,083 1,057 1,057 1,083 9 POSITION 188 144 184 179 159 131 91 78 -2 -18 2 -53 -75 -62 -165 -354 -351 -400 -425 -425 CONTINGENCY PLANNING 10 Peaking Resources 153 153 153 138 153 154 153 147 146 145 147 146 145 147 146 145 147 146 145 147 11 Contingency -227 -228 -228 -229 -230 -231 -232 -214 -195 -196 -197 -198 -199 -200 -201 -202 -203 -203 -204 -199 12 CONTINGENCY NET POSITION 113 69 109 88 82 54 12 11 -51 -69 -48 -105 -128 -115 -221 -411 -407 -458 -484 -476 Energy Margin 15%11%15%15%13%11%7%6%0%-1%0%-4%-6%-5%-12%-25%-24%-27%-29%-28% Avista 2011 Electric Integrated Resource Plan 331 Avista Winter Capacity Positions 0 500 1,000 1,500 2,000 2,500 3,000 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 me g a w a t t s 18-Hour Loads & Resources (January Peak) Hydro Resources Base/Intermediate Resources Net Firm Contracts Peaking Resources Regional Market Load Load + Contingency Planning Avista 2011 Electric Integrated Resource Plan 332 Avista Winter Capacity Positions 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 REQUIREMENTS 1 Native Load -1,661 -1,688 -1,704 -1,718 -1,751 -1,784 -1,814 -1,839 -1,866 -1,892 -1,919 -1,946 -1,982 -2,020 -2,062 -2,094 -2,131 -2,168 -2,208 -2,249 2 Firm Power Sales -238 -237 -207 -157 -157 -7 -7 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 3 Total Requirements -1,899 -1,925 -1,911 -1,874 -1,908 -1,790 -1,821 -1,846 -1,873 -1,899 -1,925 -1,953 -1,988 -2,027 -2,068 -2,101 -2,138 -2,174 -2,214 -2,256 RESOURCES 4 Firm Power Purchases 175 175 175 175 175 175 175 173 173 173 90 90 90 90 90 90 90 90 90 90 5 Hydro Resources 882 957 973 861 861 872 868 896 887 896 896 887 896 896 887 896 896 887 896 896 6 Base Load Thermals 895 895 895 895 895 895 895 895 895 895 895 895 895 895 895 606 606 606 606 606 7 Wind Resources 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 Peaking Units 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 9 Total Resources 2,194 2,269 2,285 2,173 2,173 2,185 2,180 2,206 2,197 2,206 2,124 2,114 2,123 2,123 2,114 1,833 1,833 1,825 1,833 1,833 10 PEAK POSITION 295 344 374 299 266 394 360 360 325 307 199 162 135 96 46 -267 -304 -350 -381 -422 RESERVE PLANNING 11 Required Operating Reserves -162 -164 -163 -162 -165 -158 -160 -163 -164 -167 -173 -176 -179 -182 -186 -170 -171 -171 -172 -173 12 Available Operating Reserves 23 42 42 8 8 8 8 34 34 34 34 34 34 34 34 34 34 34 34 34 13 Planning Margin -233 -236 -239 -240 -245 -250 -254 -258 -261 -265 -269 -272 -277 -283 -289 -293 -298 -304 -309 -315 14 Total Reserve Planning -372 -358 -360 -394 -402 -399 -406 -387 -391 -398 -408 -414 -422 -431 -441 -429 -435 -441 -447 -454 15 Peak Position -76 -14 14 -95 -136 -5 -46 -26 -67 -91 -209 -253 -288 -335 -395 -697 -739 -790 -828 -876 16 Planning Margin 16%18%20%16%14%22%20%20%17%16%10%8%7%5%2%-13%-14%-16%-17%-19% 17 Avista Share of Excess NW Capacity 737 656 565 477 400 326 255 186 115 56 0 0 0 0 0 0 0 0 0 0 18 Peak Position Net Market 661 642 579 382 264 321 209 159 48 (35)(209)(253)(288)(335)(395)(697)(739)(790)(828)(876) Avista 2011 Electric Integrated Resource Plan 333 Avista Summer Capacity Positions 0 500 1,000 1,500 2,000 2,500 3,000 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 me g a w a t t s 18-Hour Loads & Resources (August Peak) Hydro Resources Base/Intermediate Resources Net Firm Contracts Peaking Resources Regional Market Load Load + Contingency Planning Avista 2011 Electric Integrated Resource Plan 334 Avista Summer Capacity Positions 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 REQUIREMENTS 1 Native Load -1,514 -1,556 -1,597 -1,644 -1,673 -1,701 -1,727 -1,748 -1,771 -1,793 -1,815 -1,838 -1,868 -1,900 -1,937 -1,964 -1,995 -2,026 -2,059 -2,094 2 Contracts Obligations -239 -214 -208 -158 -158 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 3 Total Requirements -1,753 -1,770 -1,805 -1,802 -1,831 -1,709 -1,735 -1,756 -1,778 -1,800 -1,822 -1,846 -1,876 -1,908 -1,944 -1,972 -2,002 -2,033 -2,067 -2,102 RESOURCES 4 Contracts Rights 86 86 86 86 86 86 86 82 82 82 82 82 82 82 82 82 82 82 82 82 5 Hydro Resources 904 823 907 864 871 866 887 837 845 864 837 845 864 837 845 864 837 845 864 837 6 Base Load Thermals 799 799 799 799 799 799 799 799 799 799 799 799 799 799 799 551 551 551 551 551 7 Wind Resources 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 Peaking Units 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 9 Total Resources 1,964 1,884 1,968 1,925 1,932 1,927 1,948 1,895 1,903 1,922 1,895 1,902 1,921 1,894 1,902 1,673 1,646 1,653 1,673 1,646 10 PEAK POSITION 212 114 163 123 101 218 213 139 124 121 72 56 46 -14 -42 -299 -357 -380 -394 -456 RESERVE PLANNING 11 Required Operating Reserves -153 -156 -159 -160 -162 -155 -157 -160 -161 -163 -165 -167 -169 -172 -173 -157 -156 -157 -159 -158 12 Available Operating Reserves 155 66 171 159 159 159 161 158 158 161 158 158 161 158 158 161 158 158 161 158 13 Planning Margin -227 -233 -240 -247 -251 -255 -259 -262 -266 -269 -272 -276 -280 -285 -290 -295 -299 -304 -309 -314 14 Total Reserve Planning -227 -324 -240 -248 -255 -255 -259 -264 -269 -271 -279 -285 -289 -298 -305 -295 -299 -304 -309 -314 15 Peak Position -16 -211 -77 -125 -154 -38 -46 -125 -144 -150 -207 -228 -244 -312 -348 -593 -656 -684 -703 -770 16 Planning Margin 12%6%9%7%6%13%12%8%7%7%4%3%2%-1%-2%-15%-18%-19%-19%-22% 17 Avista Share of Excess NW Capacity 275 221 178 141 107 78 52 31 10 3 0 0 0 0 0 0 0 0 0 0 18 Peak Position Net Market 259 10 102 16 (47)40 6 (94)(134)(147)(207)(228)(244)(312)(348)(593)(656)(684)(703)(770) Avista 2011 Electric Integrated Resource Plan 335 Avista I-937 (Renewable Energy) Position 0 20 40 60 80 100 120 140 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 av e r a g e m e g a w a t t s RPS Compliance Position (Average Annual RECs) Qualifying Resources Budgeted Resources Purchased RECs REC Bank Requirment Requirement & Contingency Avista 2011 Electric Integrated Resource Plan 336 Deficits Summary -1,000 -800 -600 -400 -200 0 200 400 600 800 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 Energy (aMW) Winter Capacity (MW) Summer Capacity (MW) RPS (aMW) RP S - 20 1 6 En e r g y - 20 2 0 Su m m e r C a p a c i t y 20 1 9 Wi n t e r C a p a c i t y 20 2 1 Avista 2011 IRP Positions Summary 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Energy (aMW)113 69 109 88 82 54 12 11 (51) (69) Winter Capacity (MW)661 642 579 382 264 321 209 159 48 (35) Summer Capacity (MW)259 10 102 16 (47) 40 6 (94) (134) (147) RPS (aMW)17 25 30 32 (16) (46) (47) (47) (92) (93) Avista 2011 Electric Integrated Resource Plan 337 Impact of Resource Positions Positions Determine Future Resource Needs Targets are 2016 RECs and 2019 summer capacity PRiSM Model Selects Resources Necessary to Fill Gaps That Meet Various Criteria Each New Resource Option Has Unique Capacity and Energy Characteristics e.g., wind “consumes” 10% of nameplate Gas-fired plants generate monthly based on ambient temperatures during peak weather events High and Low Cases Indicate Impacts of Varying Load Conditions Avista 2011 Electric Integrated Resource Plan 338 Portfolio and Market Scenario Planning John Lyons Technical Advisory Committee Meeting #4 2011 Electric Integrated Resource Plan February 3, 2011 Avista 2011 Electric Integrated Resource Plan 339 Use of Scenarios in the IRP Scenarios provide details about the impacts of different planning assumptions Avista’s current load and resource portfolio Preferred Resource Strategy Wholesale electric market Different resource options Avista 2011 Electric Integrated Resource Plan 340 Scenario Types for the 2011 IRP 1.Deterministic Market Scenarios 2.Stochastic Market Scenarios 3.Portfolio Scenarios Avista 2011 Electric Integrated Resource Plan 341 2011 IRP Deterministic Market Scenarios Deterministic scenarios test the Preferred Resource Strategy (PRS) across several different futures Low and High Gas Scenarios High Wind Penetration Scenarios Carbon Scenarios Western Coal Plant Phase Out Scenario Avista 2011 Electric Integrated Resource Plan 342 2011 IRP Stochastic Market Scenarios Expected Case –assumes average hydro, load, gas prices, wind, emissions prices and forced outages Volatile Fuel Scenario –test higher gas price volatility Unconstrained Carbon Scenario –determines the cost of different greenhouse gas emissions programs Mandatory Coal Retirement Scenario –Western coal plants automatically retired after 40 years of service Avista 2011 Electric Integrated Resource Plan 343 Portfolio Scenarios Market Reliance Only Capacity Only All CCCT and Wind All SCCT and Wind CO2 Credit Allocations Nuclear Availability (2025) 2009 PRS National Renewable Energy Standard CT& CCCT Tipping Point Wind & Solar Tipping Point Nuclear Tipping Point Analysis Carbon Sequestration Colstrip Scenarios: Different O&M charges; Early Retirement; Incremental Pollution Control, (sequestration); and Railed coal Others? Avista 2011 Electric Integrated Resource Plan 344 Avista’s 2011 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 5 Agenda Avista Headquarters – Spokane, Washington Tuesday, April 12, 2011 Avista Conference Room 130 Topic Time Staff 1. Introduction 9:30 Storro 2. Conservation Avoided Cost Methodology 9:35 Gall 3. Conservation 9:45 Hermanson/ Global Energy Partners 4. Draft Preferred Resource Strategy 11:15 Gall Portfolio Alternatives & Scenarios 5. Lunch 12:15 6. Draft Preferred Resource Strategy 1:00 Gall Portfolio Alternatives & Scenarios 7. Smart Grid 2:30 Kirkeby 8. Adjourn 3:30 Avista 2011 Electric Integrated Resource Plan 345 Conservation Avoided Costs James Gall Technical Advisory Committee Meeting #5 2011 Electric Integrated Resource Plan April 12, 2011 Avista 2011 Electric Integrated Resource Plan 346 2011 Integrated Resource Plan Modeling Process Preferred Resource Strategy AURORA “Wholesale Electric Market” 500 Simulations PRiSM “Avista Portfolio” Efficient Frontier Fuel Prices Fuel Availability Resource Availability Demand Emission Pricing Existing Resources Resource Options Transmission Resource & Portfolio Margins Conservation Trends Existing Resources Avista Load Forecast Energy, Capacity, & RPS Balances New Resource Options & Costs Cost Effective T&D Projects/Costs Cost Effective Conservation Measures/Costs Mid-Columbia Prices Stochastic Inputs Deterministic Inputs Capacity Value Avoided Costs Avista 2011 Electric Integrated Resource Plan 347 How to Value Conservation {(E + PC + R) * (1 + P)} * (1 + L) + DC * (1 + L) Where: E = market energy price (calculated by Aurora, including forecasted CO2 mitigation) PC = new resource capacity savings (calculated by PRISM) R = Risk premium to account for RPS and rate volatility reduction (calculated by PRISM) P = Power Act preference premium (10% assumption) DC = distribution capacity savings (~$10/kW-year based on Heritage Project calculation) L = transmission and distribution losses (6.1% assumption based on Avista’s system average losses) Avista 2011 Electric Integrated Resource Plan 348 Efficient Frontier Approach Assumes no additional Conservation Resources Portfolio Cost Po r t f o l i o R i s k Market $70.50/ MWh Capacity $130/ kW-Yr RPS + Risk 7.38/ MWh Market Only Capacity Only Capacity + RPS PRS Mix Efficient Frontier Avista 2011 Electric Integrated Resource Plan 349 Avoided Cost Calculation For 1 MW Measure With Flat Delivery Item $/MWh Energy Price 70.50 Capacity Savings 10.51 Risk Premium 7.38 Subtotal 88.39 Item $/MWh 10% Preference 8.84 Distribution Capacity Savings 1.14 T&D losses 6.02 Subtotal 16.00 Avoided Cost: $104.39 per MWh Avista 2011 Electric Integrated Resource Plan 350 1 Avista Conservation Potential Assessment Electricity Prepared for Avista Utilities Technical Advisory Committee by Global Energy Partners April 12, 2011 Avista 2011 Electric Integrated Resource Plan 351 Topics Background and objectives Study approach Energy efficiency analysis results (electricity) Demand response analysis 2 Avista 2011 Electric Integrated Resource Plan 352 Background and general objectives Assess and analyze 20-year cost-effective energy efficiency (EE) potentials Support Avista IRP development Meet Washington I-937 Conservation Potential Assessment requirements EE Potential assessment considers Impacts of existing programs Naturally occurring energy savings Impacts of codes and standards Technology developments and innovation The economy and energy prices Assess and analyze DR potentials 3 Avista 2011 Electric Integrated Resource Plan 353 Overview of EE analysis approach 4 Avista 2011 Electric Integrated Resource Plan 354 Base-year Energy Consumption Base year is 2009 Most recent year with complete sales and customer data when study began 2009 also base year for Avista load research study Market segmentation, based on rate classes Residential (rate class 001), segmented by housing type and income Single Family Multi Family Mobile Home Limited Income Commercial and Industrial General Service (rate classes 011, 012) Large General Service (rate classes 021, 022) Extra Large Commercial GS (rate class 025C) Extra Large Industrial GS (rate class 025C) Pumping (rate classes 031, 032) 5 Avista 2011 Electric Integrated Resource Plan 355 Base-year Energy Consumption 2009 % of sales, Washington and Idaho 6 Avista 2011 Electric Integrated Resource Plan 356 Energy Market Profiles Characterize energy use by sector, segment, end use, and technology Existing, replacement, and new construction Accounts for Naturally occurring conservation Codes and standards Previous DSM results Equipment saturation and fuel shares 7 Residential Energy Use by End Use, 2009 Avista 2011 Electric Integrated Resource Plan 357 Baseline Forecast Incorporates Customer / market growth Income growth Avista retail rates forecast Trends in end-use/technology saturations Equipment purchase decisions Elasticities for retail rates, income, persons per household Accounts for Naturally occurring conservation Codes and standards Previous DSM 8 Avista 2011 Electric Integrated Resource Plan 358 Baseline Forecast 9 Residential, total Residential, per household Avista 2011 Electric Integrated Resource Plan 359 Baseline Forecast 10 Commercial & Industrial Avista 2011 Electric Integrated Resource Plan 360 Baseline Forecast 11 Overall 48% growth in electricity use. Average annual growth rate of 1.7% Comparable with Avista 2009 IRP Avista 2011 Electric Integrated Resource Plan 361 Energy Efficiency Potential Energy Efficient Equipment and Measures 2,808 equipment options and 1,524 other measures Avista existing DSM programs NEEA RTF Sixth Power Plan database Other utility programs Measure characterization Life Energy and demand savings Cost Year off market (Standards) Saturation Applicability / Feasibility 12 Efficiency Level Useful Life Equipment Cost Energy Usage (kWh/yr) On Market Off Market SEER 13 15 $3,794 $1,619 2009 2014 SEER 14 (ENERGY STAR)15 $4,072 $1,485 2009 2032 SEER 15 (CEE Tier 2)15 $4,350 $1,435 2009 2032 SEER 16 (CEE Tier 3)15 $4,628 $1,393 2009 2032 Ductless Mini-split System 20 $8,193 $1,214 2009 2032 Avista 2011 Electric Integrated Resource Plan 362 Consistency with Sixth Plan End-use model —bottom-up approach to understanding savings Measure life Stock accounting Measure saturation and applicability Accounts for Naturally occurring conservation Codes and standards Measures include those in Sixth Plan (other measures also) Considers both lost opportunity and non-lost opportunity Economic potential, based on Total Resource Cost (TRC) test Achievable potential considers realistic rate at which technologies can be deployed Maximum potential in 20 years is 85% of economic potential 13 Avista 2011 Electric Integrated Resource Plan 363 Energy Efficiency Potential Savings could be acquired through a variety of means Market transformation, including NEEA Utility programs 14 Avista 2011 Electric Integrated Resource Plan 364 Summary of EE results Baseline forecast ― 48% growth (2032 vs. 2009) Achievable potential ― 24% growth (2032 vs. 2009) Energy efficiency offsets 50% of growth 15 Avista 2011 Electric Integrated Resource Plan 365 Summary of EE results (continued) 16 2012 2017 2022 2027 2032 Baseline Forecast (MWh) 8,799,079 9,464,078 10,417,644 11,537,369 12,852,394 Cumulative Energy Savings (MWh) Achievable 49,428 393,796 931,744 1,514,569 2,105,572 Economic 219,482 1,371,691 2,289,256 2,802,046 3,228,731 Technical 301,070 1,967,390 3,327,203 4,116,738 4,697,328 Cumulative Energy Savings (% of Baseline) Achievable 0.6% 4.2% 8.9% 13.1% 16.4% Economic 2.5% 14.5% 22.0% 24.3% 25.1% Technical 3.4% 20.8% 31.9% 35.7% 36.5% Summary of Energy Savings from Energy Efficiency Avista 2011 Electric Integrated Resource Plan 366 Summary of EE results (continued) 17 Summary of Peak Demand Savings from Energy Efficiency 2012 2017 2022 2027 2032 Baseline Forecast (MW) 1,780 1,881 2,080 2,306 2,567 Peak Savings (MWh) Achievable 14 80 180 303 424 Economic 53 271 459 563 638 Technical 70 391 654 810 923 Peak Savings (% of Baseline) Achievable 0.8% 4.3% 8.7% 13.1% 16.5% Economic 3.0% 14.4% 22.1% 24.4% 24.8% Technical 3.9% 20.8% 31.5% 35.1% 35.9% Avista 2011 Electric Integrated Resource Plan 367 Savings by Sector 18 2012 2017 2022 2027 2032 Cumulative Energy Savings (MWh) Residential 25,651 127,984 331,874 606,994 896,296 C&I Total 23,777 265,812 599,870 907,575 1,209,276 Cumulative Energy Savings (% of total) Residential 52% 33% 36% 40% 43% General Service 9% 12% 10% 10% 9% Large General Service 30% 42% 36% 32% 30% Extra Large GS Commercial 7% 8% 8% 7% 7% Extra Large GS Industrial 3% 5% 10% 11% 11% C&I Total 48% 67% 64% 60% 57% Avista 2011 Electric Integrated Resource Plan 368 Residential EE Results 19 2012 2017 2022 2027 2032 Baseline Forecast (MWh) 3,626,735 3,871,491 4,356,537 4,919,347 5,601,421 Cumulative Energy Savings (MWh) Achievable 25,651 127,984 331,874 606,994 896,296 Economic 89,611 516,797 955,211 1,193,716 1,373,565 Technical 135,783 857,178 1,468,391 1,831,465 2,114,488 Cumulative Energy Savings (% of Baseline) Achievable 0.7% 3.3% 7.6% 12.3% 16.0% Economic 2.5% 13.3% 21.9% 24.3% 24.5% Technical 3.7% 22.1% 33.7% 37.2% 37.7% Savings by housing type, 2022 Avista 2011 Electric Integrated Resource Plan 369 Residential EE Results 20 Cumulative Energy Savings by End Use (MWh), Selected Years Avista 2011 Electric Integrated Resource Plan 370 C&I EE Results 21 Savings by rate class, 2022 2012 2017 2022 2027 2032 Baseline Forecast (MWh) 5,172,344 5,592,586 6,061,107 6,618,022 7,250,973 Cumulative Energy Savings (MWh) Achievable 23,777 265,812 599,870 907,575 1,209,276 Economic 129,871 854,893 1,334,045 1,608,330 1,855,166 Technical 165,288 1,110,212 1,858,812 2,285,273 2,582,839 Cumulative Energy Savings (% of Baseline) Achievable 0.5% 4.8% 9.9% 13.7% 16.7% Economic 2.5% 15.3% 22.0% 24.3% 25.6% Technical 3.2% 19.9% 30.7% 34.5% 35.6% Avista 2011 Electric Integrated Resource Plan 371 C&I EE Results 22 Cumulative Energy Savings by End Use (MWh), Selected Years Avista 2011 Electric Integrated Resource Plan 372 Avoided Cost Scenarios 23 Economic Potential, Cumulative Savings (MWh) Economic potential is 69% of tech. potential Avista 2011 Electric Integrated Resource Plan 373 Avoided Cost Scenarios 24 Economic Potential Case, Cumulative Savings (MWh) 55% 69% 76% 80% of technical potential Avista 2011 Electric Integrated Resource Plan 374 Demand Response Analysis Define the types of DR programs most suitable for Avista Determine DR potential 25 Demand Response Program Residential General Service Large General Service Extra Large General Service Pumping Direct Load Control Mass Market Direct Load Control x x Direct Load Control x x x Other Programs Demand Bidding / Buyback x x Curtailable/Interruptible x x Auto DR / Fast DR x x x x Avista 2011 Electric Integrated Resource Plan 375 Deliverables from CPA analysis Final report electricity EE approach and results DR approach and results Appendices LoadMAP models Gas potential study 26 Avista 2011 Electric Integrated Resource Plan 376 Contact Information Ingrid Rohmund irohmund@gepllc.com 760-943-1532 Jan Borstein jborstein@gepllc.com 303-530-5195 27 Avista 2011 Electric Integrated Resource Plan 377 Preferred Resource Strategy & Scenario Analysis (Preliminary Draft) James Gall Technical Advisory Committee Meeting #5 2011 Electric Integrated Resource Plan April 12, 2011 Avista 2011 Electric Integrated Resource Plan 378 DRAFT 2011 Integrated Resource Plan Modeling Process Preferred Resource Strategy AURORA “Wholesale Electric Market” 500 Simulations PRiSM “Avista Portfolio” Efficient Frontier Fuel Prices Fuel Availability Resource Availability Demand Emission Pricing Existing Resources Resource Options Transmission Resource & Portfolio Margins Conservation Trends Existing Resources Avista Load Forecast Energy, Capacity, & RPS Balances New Resource Options & Costs Cost Effective T&D Projects/Costs Cost Effective Conservation Measures/Costs Mid-Columbia Prices Stochastic Inputs Deterministic Inputs Capacity Value Avoided Costs Avista 2011 Electric Integrated Resource Plan 379 DRAFT PRiSM Objective Function Linear program solving for the optimal resource strategy to meet resource deficits over planning horizon. Model selects its resources to reduce cost, risk, or both. Minimize:Total Power Supply Cost on NPV basis (2012-2052 with emphasis on first 11 years of the plan) Subject to: •Risk Level •Capacity Need +/- deviation •Energy Need +/- deviation •Renewable Portfolio Standards •Resource Limitations and Timing Avista 2011 Electric Integrated Resource Plan 380 DRAFT Efficient Frontier Demonstrates the trade off of cost and risk Avoided Cost Calculation Ri s k Least Cost Portfolio Least Risk Portfolio Find least cost portfolio at a given level of risk Short-Term Market Market + Capacity + RPS = Avoided Cost Capacity Need + Risk Cost Avista 2011 Electric Integrated Resource Plan 381 DRAFT 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 av e r a g e m e g a w a t t s Loads & Resources (Average Annual Energy) Hydro Resources Base/Intermediate Resources Net Firm Contracts Peaking Resources Load Load + Contingency Planning Energy Load & Resource Balance (Includes Conservation) 19 aMW 54 aMW 345 aMW 406 aMW Avista 2011 Electric Integrated Resource Plan 382 DRAFT 0 500 1,000 1,500 2,000 2,500 3,000 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 me g a w a t t s 18-Hour Loads & Resources (January Peak) Hydro Resources Base/Intermediate Resources Net Firm Contracts Peaking Resources Regional Market Load Load + Contingency Planning Winter 18 Hr Peak Load & Resource Balance (Includes Conservation) 148 MW 608 MW 779 MW249 MW Avista 2011 Electric Integrated Resource Plan 383 DRAFT 0 500 1,000 1,500 2,000 2,500 3,000 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 me g a w a t t s 18-Hour Loads & Resources (August Peak) Hydro Resources Base/Intermediate Resources Net Firm Contracts Peaking Resources Regional Market Load Load + Contingency Planning Summer 18 hr Peak Load & Resource Balance (Includes Conservation) 56 MW32MW 150 MW 500MW 667 MW Avista 2011 Electric Integrated Resource Plan 384 DRAFT REC Contingency & Banking Reserve requirement-Must hold REC reserves in “REC Bank” each year. –Sales uncertainty (5%) –Hydro uncertainty (26%) –Wind uncertainty (30%) –Currently 8 aMW Roll over rights- RECs can be used for prior year or future year. Plan is to use 2011 REC for 2012, then excess 2012 RECs can be used for 2013. Avista 2011 Electric Integrated Resource Plan 385 DRAFT WA State Renewable Portfolio Standard Compliance (Does Not Include Contingency) 0 20 40 60 80 100 120 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 av e r a g e m e g a w a t t s RPS Compliance Position (Average Annual RECs) Qualifying Resources Budgeted Resources Purchased RECs Used Bank Requirment 38 aMW 82 aMW 88 aMW Avista 2011 Electric Integrated Resource Plan 386 DRAFT Actual Efficient Frontier Results $60 $65 $70 $75 $80 $85 $90 $95 $100 $450 $500 $550 $600 $650 $700 20 Y r L e v e l i z e d A n n u a l Po w e r S u p p l y S t d e v 20 Yr Levelized Annual Power Supply Rev. Req. Capacity Only Least Cost Least Risk PRS Market Only Avista 2011 Electric Integrated Resource Plan 387 DRAFT Actual Efficient Frontier Results As a Percent of Market Only Portfolio -30% -25% -20% -15% -10% -5% 0% 0%5%10%15%20%25%30% 20 Y r L e v e l i z e d A n n u a l Po w e r S u p p l y S t d e v P e r c e n t C h a n g e C o m p a r e d t o Ma r k e t O n l y 20 Yr Levelized Annual Power Supply Rev. Req. Percent Change Compared to Market Only Capacity Only Least Cost Least Risk PRS Market Only Avista 2011 Electric Integrated Resource Plan 388 DRAFT 2009 Draft Preferred Resource Strategy Year Ending Resource 2012 150 MW NW Wind (48 aMW) 2013-2015 Little Falls Unit Upgrades (0.9 aMW) 2019 150 MW NW Wind (50 aMW) 2019 Combined Cycle CT (250 MW) 2020 Upper Falls Upgrade (1 aMW) 2022 50 MW NW Wind (17 aMW) 2024 Combined Cycle CT (250 MW) 2026/27 Combined Cycle CT (250 MW) 2010+Distribution Feeder Upgrades (2.7 aMW by 2029) 2010+Conservation (226 aMW by 2029) Avista 2011 Electric Integrated Resource Plan 389 DRAFT 2011 Draft Preferred Resource Strategy Year Ending Resource 2012 Wind (~42 aMW REC) 2018 Simple Cycle CT(~83 MW) 2020 Simple Cycle CT (~83 MW) 2018-2019 Thermal Upgrades (~ 7 MW) 2018-2019 Wind (~43 aMW REC) 2023 Combined Cycle CT (~ 270 MW) 2026/27 Combined Cycle CT (~270 MW) 2029 Simple Cycle CT (~46 MW) 2012+Distribution Feeder Upgrades (13 aMW by 2031) 2012+Conservation (310 aMW by 2031) Avista 2011 Electric Integrated Resource Plan 390 DRAFT 2011 IRP Comparison to 2009 IRP 2019: CCCT Replaced With Two CTs Over 3 Years 2012: Less Wind (42 aMW vs. 48 aMW) 2024/2027: CCCT Need Remains 2020: Less Wind (43 aMW vs. 50 aMW) 2022: Wind Need Eliminated (-17 aMW) 2030: Additional 46 MW CT 84 aMW Increased Conservation Over 20 Years 10 aMW Increased Distribution Losses Savings over 20 years Changes in Hydro Upgrade Assumptions –Little Falls in-kind replacement instead of upgrade –Upper Falls upgrade removed pending further study Upper Falls upgrade deferred to next IRP Avista 2011 Electric Integrated Resource Plan 391 DRAFT Winter Capacity Load and Resources 0 500 1,000 1,500 2,000 2,500 3,000 3,500 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 me g a w a t t s Market New Simple Cycle CC New Combined Cycle CC New Wind Other Distribution Efficiency Existing Resources Load w/o DSM+PM Load w/ DSM+PM Avista 2011 Electric Integrated Resource Plan 392 DRAFT Summer Capacity Load and Resources UPDATE 0 500 1,000 1,500 2,000 2,500 3,000 3,500 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 me g a w a t t s Market New Simple Cycle CC New Combined Cycle CC New Wind Other Distribution Efficiency Existing Resources Load w/o DSM+PM Load w/ DSM+PM Avista 2011 Electric Integrated Resource Plan 393 DRAFT Annual Average Energy Load and Resources 0 500 1,000 1,500 2,000 2,500 3,000 3,500 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 av e r a g e m e g a w a t t s New Simple Cycle CC New Combined Cycle CC New Wind Other Distribution Efficiency Existing Resources Load w/o DSM+Cont. Load w/ DSM+Cont. Avista 2011 Electric Integrated Resource Plan 394 DRAFT I-937 Table (aMW REC) 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Beginning Bank 17 7 19 19 42 47 51 55 59 36 Requirement 0 (19)(19)(19)(19)(59)(59)(60)(60)(101)(102) Current Available 17 23 26 28 28 22 22 22 22 22 22 New Qualifying RECs 0 0 42 42 42 42 42 42 42 57 85 Sold Qualifying RECs 0 (14)(37)(50)(28)0 0 0 0 0 (5) End Bank 17 7 19 19 42 47 51 55 59 36 36 Contingency Bank 0 7 8 8 8 23 23 23 23 36 36 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 Beginning Bank 36 36 36 36 39 42 43 44 43 42 Requirement (103)(103)(103)(104)(105)(106)(107)(108)(109)(110) Current Available 22 22 22 22 22 22 22 22 22 22 New Qualifying RECs 85 85 85 85 85 85 85 85 85 85 Sold Qualifying RECs (5)(4)(4)(0)0 0 0 0 0 0 End Bank 36 36 36 39 42 43 44 43 42 39 Contingency Bank 36 36 36 36 37 38 38 38 39 39 Avista 2011 Electric Integrated Resource Plan 395 DRAFT Preferred Resource Strategy Annual Costs per MWh Expected Market Conditions (80% Credit Allocation) (Includes all Power Supply Costs except Capital Plant in Rate Base) $0 $20 $40 $60 $80 $100 $120 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 $ p e r M W h Avista 2011 Electric Integrated Resource Plan 396 DRAFT Preferred Resource Strategy Annual Costs per MWh No Carbon Legislation (Includes Power Supply Costs except Capital Plant in Rate Base) $0 $20 $40 $60 $80 $100 $120 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 $ p e r M W h Avista 2011 Electric Integrated Resource Plan 397 DRAFT Greenhouse Gas Emissions (millions of short tons) - 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 To n s p e r M W h Mi l l i o n s Greenhouse Gas Emissions New Resources Existing Resources Tons per MWh of Load Avista 2011 Electric Integrated Resource Plan 398 DRAFT Greenhouse Gas Cost UPDATE $0 $50 $100 $150 $200 $250 $300 $350 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 In c r e m e n t a l A n n u a l C o s t o f C a r b o n Le g i s l a t i o n 0% Allocation 25% Allocation 50% Allocation Base Case (Declining 80%) 100% Allocation Avista 2011 Electric Integrated Resource Plan 399 DRAFT PRS Capital Requirements (millions $) - 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 - 50 100 150 200 250 300 350 400 450 500 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 Cu m u l a t i v e A d d i t i o n t o R a t e B a s e An n u a l A d d i t i o n t o R a t e B a s e Avista 2011 Electric Integrated Resource Plan 400 DRAFT Alternative Strategies Comparison -20% -15% -10% -5% 0% 5% 10% 15% 20% -15%-10%-5%0%5%10%15% An n u a l L e v e l i z e d 2 0 y r S t d e v a s P e r c e n t Ch a n g e c o m p a r e d t o P R S Annual 20 yr Levelized Cost Percent Change as Compared to PRS National RES 125% of AC for DSM CCCT/Wind/Solar post '20 150%of AC for DSM No DSM PRS "like" PRS-but no Wind Pay 75%of AC for DSM PRS No Appr. RECPRS Efficient Frontier Avista 2011 Electric Integrated Resource Plan 401 DRAFT Capital Expenditures (Alternative Portfolios) 0 500 1,000 1,500 2,000 2,500 3,000 3,500 Capacity Only PRS No Wind Least Cost Very High DSM PRS Low DSM High DSM PRS No Apprentice … Mid-High risk Mid Risk Colstrip Retire 2025 CCCT/Wind Mid-Low Risk CCCT-Wind-Solar National RES No DSM Low Risk Least Risk Nominal Capital Cost (Millions) First 10 Years Last 10 Years Avista 2011 Electric Integrated Resource Plan 402 DRAFT Base Case Efficient Frontier Compared to No Carbon Costs Efficient Frontier $50 $55 $60 $65 $70 $75 $80 $85 $90 $95 $100 $450 $500 $550 $600 $650 $700 20 Y r L e v e l i z e d A n n u a l Po w e r S u p p l y S t d e v 20 Yr Levelized Annual Power Supply Rev. Req. Capacity Only Least Cost Least Risk PRS Market Only Least Cost Least Risk PRS Avista 2011 Electric Integrated Resource Plan 403 DRAFT Power Supply Cost Expected and Historical Growth Index 0 20 40 60 80 100 120 140 160 180 200 20 0 0 20 0 2 20 0 4 20 0 6 20 0 8 20 1 0 20 1 2 20 1 4 20 1 6 20 1 8 20 2 0 20 2 2 20 2 4 20 2 6 20 2 8 20 3 0 Po w e r S u p p l y C o s t I n d e x Re a l $ ( 2 0 1 2 = 1 0 0 ) Historical Energy Crisis Expected Case Forecast Unconstrained Carbon Forecast Linear (Historical) Avista 2011 Electric Integrated Resource Plan 404 DRAFT Resource Cost Tipping Point Analysis Target Resource Capital Cost ($/kW) Required Cost to be Selected ($/kW) Percent Reduction CCCT to replace SCCT to be least cost (2024) $1,609 $1,255 -22% Wind shift to Solar (2020) (2x REC included) $4,371 $2,052 -53% Avista 2011 Electric Integrated Resource Plan 405 Market Scenario Analysis Update Avista 2011 Electric Integrated Resource Plan 406 DRAFT Mid-Columbia Electric Price Forecast $0 $20 $40 $60 $80 $100 $120 $140 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 $ p e r M W h Expected Case Stochastic Expected Case Deterministic National Cap & Trade National Carbon Tax Regional Carbon Policy No Carbon Policy Low Natural Gas Prices High Natural Gas Prices Coal Plant Retirement Avista 2011 Electric Integrated Resource Plan 407 DRAFT US WECC GHG Emissions 0 50 100 150 200 250 300 350 400 450 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 Mi l l i o n s o f G H G T o n s Expected Case Deterministic National Cap & Trade National Carbon Tax Regional Carbon Policy No Carbon Policy Low Natural Gas Prices High Natural Gas Prices Coal Plant Retirement Avista 2011 Electric Integrated Resource Plan 408 DRAFT Next Steps Obtain internal feedback and approvals of Preferred Resource Strategy Compare alternative resource portfolios using alternative market conditions Compare efficient frontier analysis with additional stochastic market analysis (i.e. coal plant retirement/Volatile NG) Further investigate Demand Response cost/benefits Avista 2011 Electric Integrated Resource Plan 409 Smart Grid Project Overview TAC Meeting –April 12, 2011 Curtis Kirkeby, P.E. Sr. Electrical Engineer –SGDP Principal Investigator Avista 2011 Electric Integrated Resource Plan 410 Avista Smart Grid Grants 4 Smart Grid Investment Grant (SGIG) •Automated switching devices •Larger wire •Energy saving electronic devices Spokane, WA Smart Grid Demonstration Project (SGDP) Pullman, WA Smart Grid Workforce Training Grant Jack Stewart Training Center - Spokane, WA Avista 2011 Electric Integrated Resource Plan 411 Five state partnership:Industry, Education, Labor Benefits to Our Region – Local facility to train on new technology Leverage training needs of other Avista grants; build new curriculum Federal dollars to update existing training and facilities to up-skill current and future workers Award:$5.0 m over 3 years Avista portion of award:$1.3 m over 3 years Grant Partner match $6.8 m over 3 years 16 Smart Grid Workforce Training GrantAvista 2011 Electric Integrated Resource Plan 412 Smart Grid Training Delivery Smart Grid Training Portal Share Best Practices on Smart Grid Training “Create an effective and efficient electric power workforce proficient in smart grid competencies” 18 Grant ObjectivesAvista 2011 Electric Integrated Resource Plan 413 Construct a training substation for training on smart grid technology Update training programs to incorporate smart grid technology On-line curriculum to be shared by utilities and colleges 19 Avista ObjectivesAvista 2011 Electric Integrated Resource Plan 414 •Target •59 Distribution Circuits •110,000 Electric Customers •14 Substations Loss Reduction –42,000 Mega watt hours/Year Green House Gas Reduction: 14,000 Tons 2500 Homes/Year 5 SGIG –Spokane, WAAvista 2011 Electric Integrated Resource Plan 415 4,385 34,839 2,827 Capacitors Conservation Voltage Reduction Reconductor Carbon Reduction: 14,360 Tons a year. •$50/Ton to Sequester •$718,000/year. SGIG –Benefits Savings (MWh) Avista 2011 Electric Integrated Resource Plan 416 Communication: •Wireless to Field Devices •Fiber to Substations Field Equipment •Switches and Reclosers •Capacitor Banks •Voltage Regulators Distribution Management System (DMS) •Remotely Control and Operate Distribution Equipment •Continually Analyzing the System for Optimization •Automated Fault Detection Isolation and Restoration 6 SGIG –Enabling TechnologiesAvista 2011 Electric Integrated Resource Plan 417 15.59 10 50 2716.56 52 141 94 0 20 40 60 80 100 120 140 160 180 200 Reconductor (miles) Viper Scadamate Caps Distribution Construction To Be Completed Completed 1 129 18 120 125 10 13 27 115 0 20 40 60 80 100 120 140 Substation Complete To Be Completed 8 SGIG –ConstructionAvista 2011 Electric Integrated Resource Plan 418 $- $50.0 $100.0 $150.0 $200.0 NWSG SGDP $89.0 $18.9 $89.0 $14.9 $4.0 Partners AVA NWSG DOE 9 SGDP –Demonstration ProjectAvista 2011 Electric Integrated Resource Plan 419 Battelle NW Bonneville Power Administration 3 Tier Areva IBM Netezza Quality LogicUtility Partners Avista Benton PUD City of Ellensburg Flathead Electric Idaho Falls Power Lower Valley Energy Milton-Freewater Northwestern Energy Peninsula Light PGE Seattle City Light (UW) Smart Grid National Energy Technology Laboratory 10 SGDP –Regional PlayersAvista 2011 Electric Integrated Resource Plan 420 3 substations Regulator controls Reclosers/relays 13 circuits 45 automated line switches & reclosers 20 switched and fixed capacitor Fault Indicators Low loss transformers w/ communications Wireless & fiber communications 11 SGDP –System ElementsAvista 2011 Electric Integrated Resource Plan 421 ≈ 14,000 Residential / Commercial Electric Meters ≈ 6000 Residential / Commercial Gas Meter Registers Wireless Communication w/ Fiber Backhaul Remote Service Switch Back Office Software Systems 12 SGDP –Itron Open Way AMIAvista 2011 Electric Integrated Resource Plan 422 Customer Web Portals 13 Avista 2011 Electric Integrated Resource Plan 423 In-Home Displays 14 Avista 2011 Electric Integrated Resource Plan 424 Transactional Signal Engine Value Wind/Solar Forecasting Regional Generation Responsive Assets Pullman Area Load Value Signal Response SignalInternet 15 SGDP –Transactional Signal •WSU Air Handlers •WSU Chillers •WSU Generators •Residential Set back Thermostat Avista 2011 Electric Integrated Resource Plan 425 15 SGDP –Construction 0% 25% 50% 75% 100% 14% 0%0% 25% 82% 0% 67% 0%0% % Complete Avista 2011 Electric Integrated Resource Plan 426 15 Smart Grid Energy Impacts SGIG (MWh)SGDP (MWh) Year Cumulative I-937 Cumulative I-937 2010 1500 1500 0 0 2011 7212 5712 286 286 2012 42051 34839 286 0 2013 42051 0 6763 6477 Avista 2011 Electric Integrated Resource Plan 427 15 Future Programs FEEDERREBUILDS Avista 2011 Electric Integrated Resource Plan 428 Primary Goals Reconductor Approximately 4 miles of 3 phase trunk Approximately 5 miles of lateral Transformer replacement ~320 OH transformers w. Wildlife Guards ~12 Submersibles Wood pole management follow up Vegetation Management Open Wire Secondary 9th and Central 12F4 (9CE12F4) -2009Avista 2011 Electric Integrated Resource Plan 429 9CE12F4 ReconductorAvista 2011 Electric Integrated Resource Plan 430 Good opportunity to move facilities where it makes sense for reliability and future maintenance and access 9CE12F4 RealignmentAvista 2011 Electric Integrated Resource Plan 431 •All pre-2004 OH transformers replaced with new high efficiency units •Lower core losses account for ~31 ave. kW 9CE12F4 Transformer ReplacementAvista 2011 Electric Integrated Resource Plan 432 54 total transformers with Open Wire secondary 9CE12F4 Open Wire SecondaryAvista 2011 Electric Integrated Resource Plan 433 •Clear understanding of the state of facility •Understanding of work & resource staging •Understanding of volt/var and voltage reduction opportunity •Baseline for savings validation •Future rebuilds are warranted 9CE12F4 OutcomeAvista 2011 Electric Integrated Resource Plan 434 15 Future Programs FEEDERREBUILDS Avista 2011 Electric Integrated Resource Plan 435 15 Feeder Rebuilds •Detailed analysis has been completed for six feeders •Results extrapolated to the remaining feeders •The top 60 feeders targeted for energy savings in IRP •Schedule is being developed based on resource availability •Rebuilds to begin in 2013 Avista 2011 Electric Integrated Resource Plan 436 Questions? Avista 2011 Electric Integrated Resource Plan 437 Avista’s 2011 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 6 Agenda Avista Headquarters – Spokane, Washington Thursday, June 23, 2011 Avista Conference Room 130 Topic Time Staff 1. Introduction 9:30 Storro 2. High Wind Market Analysis 9:35 Kalich 3. PRS & Scenario Analysis 10:15 Gall 4. IRP Action Items 11:15 Lyons 5. IRP Section Highlights 11:45 Kalich 6. Lunch 12:15 7. Adjourn Avista 2011 Electric Integrated Resource Plan 438 High Wind Market Analysis James Gall Technical Advisory Committee Meeting #6 2011 Electric Integrated Resource Plan June 23, 2011 Avista 2011 Electric Integrated Resource Plan 439 Pacific Northwest wind fleet by balancing authority (~5,200 MW) 2/3 of NW wind fleet is on BPA system –10,500 MW peak load –80% exported to other utilities –BPA balance authority forecast •5,250 MW in 2012 •8,700 MW in 2020 Wind Turbines Are Getting Bigger 17 m 47 m 80 m 100 m 115 m 19 8 5 19 9 9 20 0 3 20 1 0 St a t e -of - Ar t Wind Turbine Rotor Diameter Bonneville ~3,500 MW PacifiCorp ~1,400 MW Puget Sound Energy *275 MW Avista 35 MW * PSE has 430 MW of wind, 155 MW is in Bonneville’s balancing area Northwest Wind Facts Avista 2011 Electric Integrated Resource Plan 440 NW Wind Exports (MW) NW Wind Fleet Locations 0 200 400 600 800 1,000 WA OR ID MT 1,876 MW 37%of Fleet Northwest Wind Resource Locations & Exports Avista 2011 Electric Integrated Resource Plan 441 Source: RNP.org Northwest Wind Fleet Locations Avista 2011 Electric Integrated Resource Plan 442 Northwest Wind Capacity Past and Future Historical data provided by RNP website 0 2,000 4,000 6,000 8,000 10,000 12,000 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 Me g a w a t t s 2011 IRP Forecast MT ID OR WA Avista 2011 Electric Integrated Resource Plan 443 Understand impact to the power system with more than forecasted amount of wind generation Uses IRP Expected Case for 2015 Adjust model to allow for negative pricing using -$40/MWh for Northwest hydro projects and -$10 to -$30/MWh for wind projects Run 100 iterations for each of these scenarios –Add 2,000 MW of wind –Add 5,000 MW of wind –Add 10,000 MW of wind Study Scope Avista 2011 Electric Integrated Resource Plan 444 Negative Price Impact to IRP Expected Case Market Forecast $40 $45 $50 $55 $60 $65 $70 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec $ p e r M W h IRP Expected Case Expected Case w/ Negative Prices Annual price change is -0.3%, Q2 would be 2.2% lower Avista 2011 Electric Integrated Resource Plan 445 -45% -40% -35% -30% -25% -20% -15% -10% -5% 0% Ja n Fe b Ma r Ap r Ma y Ju n Ju l Au g Se p Oc t No v De c An n u a l Pe r c e n t C h a n g e + 2,000 MW + 5,000 MW + 10,000 MW Wind Scenarios: Change to Monthly Average Mid- Columbia Electric Prices Avista 2011 Electric Integrated Resource Plan 446 - 200 400 600 800 1,000 1,200 1,400 1,600 Expected Case + 2,000 MW + 5,000 MW + 10,000 MW nu m b e r o f h o u r s 10th percentile Avg Median 90th percentile Wind Scenarios: Change to Occurrences of Negative Prices Avista 2011 Electric Integrated Resource Plan 447 Wind Scenarios: Negative Price Duration Curve -40 -35 -30 -25 -20 -15 -10 -5 0 0. 0 % 0. 5 % 1. 0 % 1. 5 % 2. 0 % 2. 5 % 3. 0 % 3. 5 % Percent of Hours in Year Expected Case + 2,000 MW + 5,000 MW + 10,000 MW Avista 2011 Electric Integrated Resource Plan 448 -40% -20% 0% 20% 40% 60% 80% 100% 120% Hydro Portfolio Colstrip Coyote Springs 2 Boulder Park Rathdrum CT Pe r c e n t C h a n g e + 2,000 MW + 5,000 MW + 10,000 MW Wind Scenarios: Change to Avista Plant Operating Margins Avista 2011 Electric Integrated Resource Plan 449 Preferred Resource Strategy & Scenario Analysis James Gall Technical Advisory Committee Meeting #6 2011 Electric Integrated Resource Plan June 23, 2011 Avista 2011 Electric Integrated Resource Plan 450 Natural Gas Price Forecast (Henry Hub) $0.00 $2.00 $4.00 $6.00 $8.00 $10.00 $12.00 $14.00 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 Do l l a r s p e r D e c a t h e r m Expected Case Consultant 1 Consultant 2 Market $7.30 $8.87 $5.93 Nominal Levelized Costs Avista 2011 Electric Integrated Resource Plan 451 Expected Case: Mid-Columbia Electric Price Forecast $0 $20 $40 $60 $80 $100 $120 $140 $160 $180 $200 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 20 1 2 -31 $ p e r M W h 90th Percentile 10th Percentile TailVar 90 Mean 20 Year Levelized Price of $70.50 ($54 to $87) per MWh Avista 2011 Electric Integrated Resource Plan 452 Mid-Columbia Electric Price Forecast Nominal 20 year Levelized Prices $70.50 $77.94 $72.34 $65.37 $50.18 $0.00 $20.00 $40.00 $60.00 $80.00 $100.00 Expected Case National Cap & Trade National Carbon Tax Regional Carbon Policy No Carbon Policy $ p e r M W h Scenarios are deterministic study results Avista 2011 Electric Integrated Resource Plan 453 Western Interconnect Greenhouse Gas Forecast 0 50 100 150 200 250 300 350 400 450 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 Mi l l i o n s o f S h o r t T o n s National Cap & Trade National Carbon Tax Regional Carbon Policy No Carbon Policy Expected Case Avista 2011 Electric Integrated Resource Plan 454 Mandatory Coal Retirement Scenario Coal plants are to be phased out after 40 years of life. No greenhouse gas penalties Uses Expected Case’s natural gas forecast Modeled stochastically using 500 iterations Avista 2011 Electric Integrated Resource Plan 455 Mid-Columbia Electric Price Forecast $0 $20 $40 $60 $80 $100 $120 $140 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 $ p e r M W h Coal Mandaotory Retirement Expected Case National Cap & Trade Unconstrained Carbon Case $77.94 $70.50 $57.01 $52.86 Levelized Cost Avista 2011 Electric Integrated Resource Plan 456 Greenhouse Gas and Costs of Carbon Mitigation Scenarios Market Scenario Change to GHG Emissions From 2012 by 2031 Added Levelized Cost per Year (Billions) Unconstrained GHG Gas Case 14%0.0 Expected Case -18%3.5 Coal Mandatory Retirement -22%8.1 National Cap & Trade -29%4.9 Avista 2011 Electric Integrated Resource Plan 457 Mid-Columbia Price Forecast with Natural Gas Price Sensitivities $0 $20 $40 $60 $80 $100 $120 $140 $160 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 $ p e r M W h High Natural Gas Prices Expected Case Low Natural Gas Prices $70.50 $82.17 $57.00 Nominal Levelized Costs All cases have the same greenhouse reduction goal, but have different prices Avista 2011 Electric Integrated Resource Plan 458 2011 Draft Preferred Resource Strategy Year Ending Resource 2012 Wind (~42 aMW REC) 2018 Simple Cycle CT(~83 MW) 2020 Simple Cycle CT (~83 MW) 2018-2019 Thermal Upgrades (~ 7 MW) 2018-2019 Wind (~43 aMW REC) 2023 Combined Cycle CT (~ 270 MW) 2026/27 Combined Cycle CT (~270 MW) 2029 Simple Cycle CT (~46 MW) 2012+Distribution Feeder Upgrades (13 aMW by 2031) 2012+Conservation (310 aMW by 2031) Avista 2011 Electric Integrated Resource Plan 459 Conservation Projection 0 88 175 263 350 0 5 10 15 20 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 Av e r a g e M e g a w a t t s Av e r a e g M e g a w a t t s Avista Regional (NEEA) Cumulative Avista 2011 Electric Integrated Resource Plan 460 Avista Resource’s Greenhouse Gas Emissions - 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 Sh o r t T o n s p e r M W h Sh o r t M i l l i o n s GHG Reduction due to Legislation New Resources Existing Resources Tons per MWh of Load Avista 2011 Electric Integrated Resource Plan 461 Efficient Frontier $60 $65 $70 $75 $80 $85 $90 $95 $100 $450 $500 $550 $600 $650 $700 20 Y r L e v e l i z e d A n n u a l Po w e r S u p p l y S t d e v 20 Yr Levelized Annual Power Supply Rev. Req. Capacity Only Least Cost Least Risk PRS Market Only Avista 2011 Electric Integrated Resource Plan 462 Efficient Frontier with Alternative Greenhouse Gas Methodologies $50 $55 $60 $65 $70 $75 $80 $85 $90 $95 $100 $450 $500 $550 $600 $650 $700 20 Y r L e v e l i z e d A n n u a l Po w e r S u p p l y R e v . R e q . S t d e v 20 Yr Levelized Annual Power Supply Rev. Req. Expected Case Unconstrained CO2 Case Mandatory Coal Retirement Future Avista 2011 Electric Integrated Resource Plan 463 Greenhouse Gas Methodologies Summary Expected Case Unconstrained Carbon Coal Retirement 2012-2022 Cost NPV 3,094 2,886 2,937 2012-2031 Cost NPV 5,735 5,168 5,458 2022 Expected Cost 636 564 576 2022 Stdev 91 68 71 2022 Stdev/Cost 14%12%12% 2022 CO2 Emissions (000’s)2,894 3,498 3,752 2031 CO2 Emissions (000’s)2,972 4,177 3,560 Avista 2011 Electric Integrated Resource Plan 464 Power Supply Cost/MWh Index 0 20 40 60 80 100 120 140 160 180 200 20 0 0 20 0 2 20 0 4 20 0 6 20 0 8 20 1 0 20 1 2 20 1 4 20 1 6 20 1 8 20 2 0 20 2 2 20 2 4 20 2 6 20 2 8 20 3 0 Po w e r S u p p l y C o s t I n d e x Re a l $ ( 2 0 1 2 = 1 0 0 ) Historical Energy Crisis Expected Case Forecast Unconstrained Carbon Forecast Linear (Historical) 4.1% + Inflation 3.8% + Inflation 2.6% + Inflation Avista 2011 Electric Integrated Resource Plan 465 Power Supply Costs with Alternative Natural Gas Prices (Preferred Resource Strategy) -$400 -$300 -$200 -$100 $0 $100 $200 $300 $400 20 1 2 20 1 3 20 1 4 20 1 5 20 1 6 20 1 7 20 1 8 20 1 9 20 2 0 20 2 1 20 2 2 20 2 3 20 2 4 20 2 5 20 2 6 20 2 7 20 2 8 20 2 9 20 3 0 20 3 1 Mi l l i o n s 5th Percentile 95th Percentile High Gas Price Scenario Low Gas Price Scenario Avista 2011 Electric Integrated Resource Plan 466 Efficient Frontier vs Alternative Portfolios -20% -15% -10% -5% 0% 5% 10% 15% 20% -15%-10%-5%0%5%10%15% An n u a l L e v e l i z e d 2 0 y r S t d e v a s P e r c e n t Ch a n g e c o m p a r e d t o P R S Annual 20 yr Levelized Cost Percent Change as Compared to PRS National RES 125% of AC for DSM CCCT/Wind/Solar post '20 150%of AC for DSM No DSM PRS "like" PRS-but no Wind Pay75%of AC for DSM PRS No Appr. RECPRS Efficient Frontier Avista 2011 Electric Integrated Resource Plan 467 Load Growth Sensitivities Base Case Low Load Growth High Load Growth Levelized Cost $/MWh 49.75 44.11 54.86 1 Sigma Lower 42.67 36.99 47.80 1 Sigma Higher 56.83 51.23 61.92 $0 $10 $20 $30 $40 $50 $60 $70 $/ M W h 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% Low Load Forecast Expected Case High Load Forecast an n u a l a v e r a g e g r o w t h r a t e No Conservation Existing Conservation Trends Includes New & Existing Conservation Avista 2011 Electric Integrated Resource Plan 468 Portfolio Resources (MW) Portfolio SC C T (N a m e p l a t e ) CC C T (N a m e p l a t e ) Th e r m a l Up g r a d e s Wi n d ( E n e r g y ) So l a r ( E n e r g y ) Co n s e r v a t i o n (E n e r g y ) Di s t . F e e d e r s (E n e r g y ) Preferred Resource Strategy 212 540 4 71 0 310 13 Least Cost 747 0 0 71 0 310 13 Least Risk 187 540 17 98 64 310 13 50% Cost/50% Risk 177 540 4 93 9 310 13 75% Cost/ 25% Risk 332 540 0 82 0 310 13 25% Cost/ 75% Risk 83 810 4 95 5 310 13 PRS without Apprentice Credits 212 540 4 96 0 310 13 2009 IRP "Like"0 810 0 102 0 310 13 PRS Without Wind 212 540 4 0 0 310 13 CCCT with Solar after 2015 0 810 10 36 33 310 13 PRS + Wind to meet National RES 212 540 4 177 1 310 13 PRS if no Conservation 475 815 10 94 0 0 13 PRS Conservation A/C 25% Lower 249 540 4 82 0 266 13 PRS Conservation A/C 25% Higher 415 270 7 70 0 334 13 PRS Conservation A/C 50% Higher 129 540 4 70 0 350 13 Low Load Growth 212 0 4 71 0 247 13 High Load Growth 510 810 10 93 1 443 13 Avista 2011 Electric Integrated Resource Plan 469 2011 IRP Action Items John Lyons Technical Advisory Committee Meeting #6 2011 Electric Integrated Resource Plan June 23, 2011 Avista 2011 Electric Integrated Resource Plan 470 2009 IRP Action Item Review Avista 2011 Electric Integrated Resource Plan 471 2009 IRP Action Items Resource Additions and Analysis Energy Efficiency Environmental Policy Modeling and Forecasting Enhancements Transmission Planning Avista 2011 Electric Integrated Resource Plan 472 2009 Action Items –Resource Additions & Analysis Continue to explore the potential for wind and non-wind renewable resources. Issue an RFP for turbines at Reardan and up to 100 MW of wind or other renewables in 2009. Finish studies on the costs and environmental benefits of hydro upgrades at Cabinet Gorge, Long Lake, Post Falls, and Monroe Street. Study potential locations for the natural gas-fired resource identified to be online between 2015 and 2020 Continue participation in the regional IRP processes and where agreeable find resource opportunities to meet resource requirements on a collaborative basis. Avista 2011 Electric Integrated Resource Plan 473 2009 Action Items –Energy Efficiency Pursue American Reinvestment and Recovery Act of 2009 (ARRA) funding for low income weatherization. Analyze and report on the results of the July 2007 through December 2009 demand response pilot in Moscow and Sandpoint. Have an external party perform a study on technical, economic, and achievable potential for energy efficiency in Avista’s entire service territory. Study and quantify transmission and distribution efficiency concepts as they apply to meeting Washington’s RPS goals. Update processes and protocols for conservation measurement, evaluation and verification. Determine the potential impacts and costs of load management options. Avista 2011 Electric Integrated Resource Plan 474 2009 Action Items –Environmental Policy Continue to study the potential impact of state and federal climate change legislation. Continue and report on the work of Avista’s Climate Change Council. Avista 2011 Electric Integrated Resource Plan 475 2009 Action Items –Modeling & Forecasting Refine stochastic model cost driver relationships. Continue PRiSM refinements by developing a resource retirement capability to solve for other risk measurements and by adding more resource options. Continue developing Loss of Load Probability and Sustained Peaking analysis for inclusion in the IRP process, and confirm appropriateness of the 15% capacity planning margin assumed for this IRP. Continue studying the impacts of climate change on the load forecast. Study load growth trends and their correlation to weather patterns. Avista 2011 Electric Integrated Resource Plan 476 2009 Action Items –Transmission Planning Work to maintain/retain existing transmission rights on the Company’s transmission system, under applicable FERC policies, for transmission service to bundled retail native load. Continue to participate in BPA transmission practice processes and rate proceedings to minimize the costs of integrating existing resources outside of the Company’s service area. Continue to participate in regional and sub-regional efforts to establish new regional transmission structures (ColumbiaGrid and other forums) to facilitate long-term expansion of the regional transmission system. Evaluate costs to integrate new resources across Avista’s service territory and from regions outside of the Northwest. Study and implement distribution feeder rebuild projects to reduce system losses. Study transmission reconfigurations to economically reduce system losses. Avista 2011 Electric Integrated Resource Plan 477 2011 IRP Action Items Avista 2011 Electric Integrated Resource Plan 478 2011 Action Items Resource Additions & Analysis Continue to explore and follow potential new resources opportunities. Continue studies on the costs, energy, capacity and environmental benefits of hydro upgrades at Cabinet Gorge, Long Lake, Post Falls, and Monroe Street. Study potential locations for the natural gas-fired resource identified to be online in 2019. Continue participation in regional IRP processes and, where agreeable, find opportunities to meet resource requirements on a collaborative basis with other utilities. Provide an update on the Little Falls and Nine Mile hydroelectric project upgrades. Avista 2011 Electric Integrated Resource Plan 479 2011 Action Items –Energy Efficiency Study and quantify transmission and distribution efficiency projects as they apply to Washington RPS goals. Update processes and protocols for conservation measurement, evaluation and verification. Continue to determine the potential impacts and costs of load management options. Avista 2011 Electric Integrated Resource Plan 480 2011 Action Items –Environmental Policy Continue studies of state and federal climate change policies. Continue and report on the work of Avista’s Climate Change Council. Avista 2011 Electric Integrated Resource Plan 481 2011 Action Items –Modeling & Forecasting Continue following regional reliability processes and develop Avista-centric modeling for possible inclusion in the 2013 IRP. Continue studying the impacts of climate change on retail loads. Refine the stochastic model for cost driver relationships, including further analyzing year-to-year hydro correlation and the correlation between wind, load, and hydro. Avista 2011 Electric Integrated Resource Plan 482 2011 Action Items –Transmission and Distribution Planning Work to maintain existing transmission rights, under applicable FERC policies, for transmission service to bundled retail native load. Continue to participate in BPA transmission processes and rate proceedings to minimize costs of integrating existing resources outside of Avista’s service area. Continue to participate in efforts to establish new regional transmission structures to facilitate long-term expansion of the regional transmission system. Evaluate the costs to integrate new resources across Avista’s service territory and from regions outside of the Northwest. Study and implement distribution feeder rebuild projects to reduce system losses. Study transmission reconfigurations to economically reduce system losses. Avista 2011 Electric Integrated Resource Plan 483 2011 IRP Section Highlights John Lyons Technical Advisory Committee Meeting #6 2011 Electric Integrated Resource Plan June 23, 2011 Avista 2011 Electric Integrated Resource Plan 484 Loads & Resources Highlights Historic conservation acquisitions are included in the load forecast; higher acquisition levels anticipated in the IRP reduce the load forecast further. Annual electricity sales growth from 2012 to 2031 averages 1.6%. Expected energy deficits begin in 2020, growing to 475 aMW by 2031. Expected capacity deficits begin in 2019, growing to 883 MW by 2031. Conservation pushes the need for resources out by one year for energy and six years for capacity. Renewable portfolio standard deficiencies drive near-term resource needs. Avista 2011 Electric Integrated Resource Plan 485 Energy Efficiency Highlights Conservation reduces load by 47 percent through the IRP timeframe. Avista began offering conservation programs in 1978. Company-sponsored conservation reduces retail loads by approximately 10 percent, or 120 aMW. More than 2,800 equipment options and over 1,500 measure options covering all major end-use equipment, as well as devices and actions to reduce energy consumption were evaluated for this IRP. This IRP includes a Conservation Potential Assessment of the Company’s Idaho and Washington service territories. Avista 2011 Electric Integrated Resource Plan 486 Policy Considerations Highlights Avista supports national greenhouse gas legislation that is workable, cost effective and fair. Avista supports national greenhouse gas legislation that protects the economy, supports technological innovation, and addresses emissions from developing nations. The Company is a member of the Clean Energy Group Avista’s Climate Change Council monitors greenhouse gas legislation and environmental regulation issues. Avista 2011 Electric Integrated Resource Plan 487 Transmission & Distribution Highlights Avista has received a total of 43 requests for non-Avista resource integration. Projected costs of transmission upgrades are included in the 2011 Preferred Resource Strategy. The Company has received matching federal grants and is investing in three Smart Grid programs projected to reduce load by 5.57 aMW by 2013. Sixty distribution feeders were found to be preliminarily economic during the IRP timeframe, reducing system losses by 6.1 aMW. The Company participates in various regional transmission planning forums. Various upgrades to our transmission system are planned over the next five years. Avista 2011 Electric Integrated Resource Plan 488 Generation Resource Options Highlights Only resources with well-defined costs and operating histories were considered in the PRS analysis. Wind and solar resources were evaluated as the renewable options available to the Company; other technologies will be considered in renewable RFP efforts. Renewable resource costs assume present state and federal incentive levels, but no extensions. For the first time, thermal generation upgrades were considered as resource options. Avista 2011 Electric Integrated Resource Plan 489 Market Analysis Highlights Gas and wind resources are expected to dominate new generation additions in the West for the foreseeable future. The massive growth in unconventional natural gas has lowered gas price forecasts and expected future electricity market prices. Expansion of the Northwest wind fleet is reducing the value of springtime hydroelectric generation and driving short-term market prices below zero. Federal greenhouse gas policy is uncertain; the IRP quantifies this uncertainty by modeling four different mitigation regimes. The Expected Case reduces greenhouse gas emissions by 18 percent and increases overall Western Interconnect costs by $3.5 billion per year. Absent mitigation, overall emissions are forecast to increase by 14 percent over the next 20 years. Avista 2011 Electric Integrated Resource Plan 490 Preferred Resource Strategy Highlights Avista’s first load –driven acquisition is a natural gas-fired peaking plant in 2019; total gas-fired acquisition is 752 MW over the IRP timeframe. The 2011 plan splits natural gas-fired generation between simple- and combined-cycle plants in anticipation of a growing need for system flexibility to integrate variable resources. Efficiency improvements, both on the customer and utility sides of the meter, are at the highest expected level in our planning history. Total capital needs for generation resources in the PRS are $1.6 billion. Conservation and system efficiency spending will increase over time; a total of $1.5 billion will acquire 323 aMW. Avista 2011 Electric Integrated Resource Plan 491 Remaining 2011 IRP Schedule July 1, 2011 Management review of Internal Draft 2011 IRP complete July 8, 2011 distribution of Draft 2011 IRP to TAC participants August 1, 2011: External review by TAC complete August 8, 2011: Final 2011 IRP sent to print August 30, 2011: 2011 IRP documents sent to the Idaho and Washington Commissions August 31, 2011: 2011 IRP available to public, including publication on the Company’s web site Avista 2011 Electric Integrated Resource Plan 492 2011 Electric Integrated Resource Plan Appendix B – Work Plan Avista 2011 Electric Integrated Resource Plan 493 Work Plan for Avista’s 2011 Electric Integrated Resource Plan For the Washington Utilities and Transportation Commission August 31, 2010 Avista 2011 Electric Integrated Resource Plan 494 2011 Integrated Resource Planning Work Plan This Work Plan is submitted in compliance with the Washington Utilities and Transportation Commission’s Integrated Resource Planning (IRP) rules (WAC 480-100-238). This work plan outlines the process Avista will follow to develop its 2011 Integrated Resource Plan to be filed with Washington and Idaho Commissions by August 31, 2011. Avista uses a public process to obtain technical expertise and guidance throughout the planning period through a series of public Technical Advisory Committee (TAC) meetings. The first of these meetings for the 2011 IRP was held on May 27, 2010. The 2011 IRP process will be similar to those used to produce the previous three published plans. AURORAxmp will be used for electric market forecasting, resource valuation, and for conducting Monte-Carlo style risk analyses. Results from AURORAxmp will be used to select the Preferred Resource Strategy (PRS) using the proprietary PRiSM 3.0 model. This tool fills future capacity and energy (physical/renewable) deficits using an efficient frontier approach to evaluate quantitative portfolio risk versus portfolio cost while accounting for environmental legislation. Qualitative risk will be evaluated in a separate analysis. The process timeline is shown in Exhibit 1 and the process to identify the PRS is shown in Exhibit 2. Avista intends to use both detailed site-specific and generic resource assumptions in this plan. These assumptions will be determined by using the 6th Power Plan for generic resources and site-specific assumptions developed by Avista will be used for existing resource upgrades. This plan will study renewable portfolio standards, environmental costs, sustained peaking requirements, and energy efficiency programs. This IRP will develop a strategy that meets or exceeds both the renewable portfolio standards and greenhouse gas emissions regulations. Avista intends to test the PRS against several scenarios and stochastic futures. The TAC meetings will be an important factor to determine the underlying assumptions used in the scenarios and futures. The IRP process is very technical and data intensive; public comments are welcome and will require input in a timely manner for appropriate inclusion into the process so the plan can be submitted according to the tentative schedule. Topics and meeting times may be changed depending on the availability of and requests for additional topics from the TAC members. The tentative timeline for public Technical Advisory Committee meetings:  May 27, 2010 – Load & resource balance, climate change, loss of load probability analysis, work plan, and analytical process changes  September 8, 2010 – Plant tours for TAC members  September 9, 2010 – Generic resource assumptions, reliability planning, combined heat & power, sustainability, and energy efficiency  November 4, 2010 – Load forecast, stochastic assumptions, resource upgrade costs, and transmission cost studies Avista 2011 Electric Integrated Resource Plan 495  January 20, 2011 – Electric and gas price forecasts, load & resource forecast  March 10, 2011 – Draft PRS, review of scenarios and futures, and portfolio analysis  April 28, 2011 – Review of final PRS and action items  June 23, 2011 – Review of the 2011 IRP 2011 Electric IRP Draft Outline This section provides a draft outline of the major sections in the 2011 Electric IRP. This outline will be updated as IRP studies are completed and input from the Technical Advisory Committee has been received. 1. Executive Summary 2. Introduction and Stakeholder Involvement 3. Loads and Resources a. Economic Conditions b. Avista Load Forecast c. Load Forecast Scenarios d. Supply Side Resources e. Reserve Margins f. Resource Requirements 4. Energy Efficiency and Demand Response 5. Environmental Policy Issues 6. Transmission Planning 7. Modeling Approach a. Assumptions and Inputs b. Risk Modeling c. Resource Alternatives d. The PRiSM Model 8. Market Modeling Approach a. Futures b. Scenarios c. Avoided Costs 9. Preferred Resource Strategy & Stress Analysis 10. Action Items Avista 2011 Electric Integrated Resource Plan 496 Exhibit 1: 2011 Electric IRP Timeline Task Target Date Preferred Resource Strategy (PRS) Finalize load forecast July 2010 Identify regional resource options for electric market price forecast September 2010 Identify Avista’s supply & conservation resource options September 2010 Update AURORAxmp database for electric market price forecast October 2010 Finalize datasets/statistics variables for risk studies October 2010 Draft transmission study due October 2010 Energy efficiency load shapes input into AURORAxmp October 2010 Final transmission study due November 2010 Select natural gas price forecast December 2010 Finalize deterministic base case December 2010 Base case stochastic study complete January 2011 Finalize PRiSM 3.0 model January 2011 Develop efficient frontier and PRS January 2011 Simulation of risk studies “futures” complete February 2011 Simulate market scenarios in AURORAxmp February 2011 Evaluate resource strategies against market futures and scenarios March 2011 Present preliminary study and PRS to TAC March 2011 Writing Tasks File 2011 IRP work plan August 2010 Prepare report and appendix outline September 2010 Prepare text drafts April 2011 Prepare charts and tables April 2011 Internal draft released at Avista May 2011 External draft released to the TAC June 2011 Final editing and printing August 2011 Final IRP submission to Commissions and distribution to TAC August 31, 2011 Avista 2011 Electric Integrated Resource Plan 497 Exhibit 2: 2011 Electric IRP Modeling Process Fuel Prices Fuel Availability Resource Availability Demand Emission Pricing Stochastic Inputs Existing Resources Resource Options Transmission Avoided Costs Preferred Resource Strategy Energy, Capacity & RPS Balances AURORA “Wholesale Electric Market” 300 Simulations PRiSM “Avista Portfolio” Efficient Frontier Deterministic Inputs Resource & Portfolio Margins Mid-Columbia Prices Capacity Value Conservation Trends Avista Load Forecast Existing Resources Cost Effective T&D Projects/Costs New Resource Options & Costs Cost Effective Conservation Measures/Costs Avista 2011 Electric Integrated Resource Plan 498 2011 Electric Integrated Resource Plan Appendix C – Comprehensive Energy Efficiency Equipment List and Measure Options Avista 2011 Electric Integrated Resource Plan 499 Global Energy Partners C-1 An EnerNOC Company APPENDIX C RESIDENTIAL ENERGY EFFICIENCY EQUIPMENT AND MEASURE DATA This appendix presents detailed information for all residential energy efficiency equipment and measures that were evaluated in LoadMAP. Several sets of tables are provided. Table C-1 provides brief descriptions for all equipment and measures that were assessed for potenital. Tables C-2 through C-9 list the detailed unit-level data for the equipment measures for each of the housing type segments — single family, multi-family, mobile home, and limited income — and for existing and new construction, respectively. Savings are in kWh/yr/household, and incremental costs are in $/household, unless noted otherwise. The B/C ratio is zero if the measure represents the baseline technology or if the technology is not available in the first year of the forecast (2012). The B/C ratio is calculated within LoadMAP for each year of the forecast and is available once the technology or measure becomes available. Tables C-10 through C-17 list the detailed unit-level data for the non-equipment energy efficiency measures for each of the housing type segments and for existing and new construction, respectively. Because these measures can produce energy-use savings for multiple end-use loads (e.g., insulation affects heating and cooling energy use) savings are expressed as a percentage of the end-use loads. Base saturation indicates the percentage of homes in which the measure is already installed. Applicability/Feasibility is the product of two factors that account for whether the measure is applicable to the building. Cost is expressed in $/household. The detailed measure-level tables present the results of the benefit/cost (B/C) analysis for the first year of the forecast. The B/C ratio is zero if the measure represents the baseline technology or if the measure is not available in the first year of the forecast (2012). The B/C ratio is calculated within LoadMAP for each year of the forecast and is available once the technology or measure becomes available. Note that Tables C-2 through C-17 present information for Washington. For Idaho, savings and B/C ratios may be slightly different due to weather-related usage, differences in the states’ market profiles, and different retail electricity prices. Although Idaho-specific values are not presented here, they are available within the LoadMAP files. Avista 2011 Electric Integrated Resource Plan 500 Residential Energy Efficiency Equipment and Measure Data C-2 www.gepllc.com Table C–1 Residential Energy Efficiency Equipment/Measure Descriptions End‐Use  Equipment/  Measure Description  Cooling Air Conditioner —  Central (CAC)  Central air conditioners consist of a refrigeration system using a direct  expansion cycle. Equipment includes a compressor, an air‐cooled condenser  (located outdoors), an expansion valve, and an evaporator coil. A supply fan  near the evaporator coil distributes supply air through air ducts to the building.  Cooling efficiencies vary based on materials used, equipment size, condenser  type, and system configuration. CACs may be unitary (all components housed  in a factory‐built assembly) or split system (an outdoor condenser section and  an indoor evaporator section connected by refrigerant lines and with the  compressor either indoors or outdoors). Energy efficiency is rated according to  the size of the unit using the Seasonal Energy Efficiency Rating (SEER). Systems  with Variable Refrigerant Flow further improve the operating efficiency. A  high‐efficiency option for a ductless mini‐split system was also analyzed.   Cooling Central Air  Conditioner, Early  Replacement  CAC systems currently on the market are significantly more efficient that older  units, due to technology improvement and stricter appliance standards. This  measure incents homeowners to replace an aging but still working unit with a  new, higher‐efficiency one.  Cooling Central Air  Conditioner  Maintenance and  Tune Up  An air conditioner's filters, coils, and fins require regular cleaning and  maintenance for the unit to function effectively and efficiently throughout its  life. Neglecting necessary maintenance leads to a steady decline in  performance, requiring the AC unit to use more energy for the same cooling  load.   Cooling Air Conditioner ‐  Room, ENERGY STAR  or better  Room air conditioners are designed to cool a single room or space. They  incorporate a complete air‐cooled refrigeration and air‐handling system in an  individual package. Room air conditioners come in several forms, including  window, split‐type, and packaged terminal units. Energy efficiency is rated  according to the size of the unit using the Energy Efficiency Rating (EER).   Cooling Room AC — Removal  of Second Unit  Homeowners may have a second room AC unit that is extremely inefficient.  This measure incents homeowners to recycle the second unit and thus also  eliminates associated electricity use.  Cooling Attic Fan    Attic Fan,  Photovoltaic  Attic fans can reduce the need for AC by reducing heat transfer from the attic  through the ceiling of the house. A well‐ventilated attic can be several degrees  cooler than a comparable, unventilated attic. An option for an attic fan  equipped with a small solar photovoltaic generator was also modeled.  Cooling Ceiling Fan Ceiling fans can reduce the need for air conditioning. However, the house  occupants must also select a ceiling fan with a high‐efficiency motor and either  shutoff the AC system or setup the thermostat temperature of the air  conditioning system to realize the potential energy savings. Some ceiling fans  also come with lamps. In this analysis, it is assumed that there are no lamps,  and installing a ceiling fan will allow occupants to increase the thermostat  cooling setpoint up by 2°F.  Cooling Whole‐House Fan Whole‐house fans can reduce the need for AC on moderate‐weather days or  on cool evenings. The fan facilitates a quick air change throughout the entire  house. Several windows must be open to achieve the best results. The fan is  mounted on the top floor of the house, usually in a hallway ceiling.  Avista 2011 Electric Integrated Resource Plan 501 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-3 An EnerNOC Company End‐Use  Equipment/  Measure Description  Space Heating Convert to Gas This fuel‐switching measure is the replacement of an electric furnace with a  gas‐fired furnace. This measure will eliminate all electricity consumption and  demand due to electric space heating. In this study, it is assumed that this  measure can be implemented only in homes within 500 feet of a gas main.  Heat/Cool Air Source Heat  Pump  A central heat pump consists of components similar to a CAC system, but is  usually designed to function both as a heat pump and an air conditioner. It  consists of a refrigeration system using a direct expansion (DX) cycle.  Equipment includes a compressor, an air‐cooled condenser (located outdoors),  an expansion valve, and an evaporator coil (located in the supply air duct near  the supply fan) and a reversing valve to change the DX cycle from cooling to  heating when required. The cooling and heating efficiencies vary based on the  materials used, equipment size, condenser type, and system configuration.  Heat pumps may be unitary (all components housed in a factory‐built  assembly) or a split system (an outdoor condenser section and an indoor  evaporator section connected by refrigerant lines, with either outdoors or  indoors. A high‐efficiency option for a ductless mini‐split system was also  analyzed.  Heat / Cool Geothermal Heat  Pump  Geothermal heat pumps are similar to air‐source heat pumps, but use the  ground or groundwater instead of outside air to provide a heat source/sink. A  geothermal heat pump system generally consists of three major subsystems or  parts: a geothermal heat pump to move heat between the building and the  fluid in the earth connection, an earth connection for transferring heat  between the fluid and the earth, and a distribution subsystem for delivering  heating or cooling to the building. The system may also have a desuperheater  to supplement the building's water heater, or a full‐demand water heater to  meet all of the building's hot water needs.   Heat / Cool Air Source Heat  Pump Maintenance  A heat pump's filters, coils, and fins require regular cleaning and maintenance  for the unit to function effectively and efficiently throughout its life. Neglecting  necessary maintenance ensures a steady decline in performance while energy  use steadily increases.   HVAC (all) Insulation – Ducting Air distribution ducts can be insulated to reduce heating or cooling losses. Best  results can be achieved by covering the entire surface area with insulation.  Several types of ducts and duct insulation are available, including flexible duct,  pre‐insulated duct, duct board, duct wrap, tacked, or glued rigid insulation, and  waterproof hard shell materials for exterior ducts.  This analysis assumes that  installing duct insulation can reduce the temperature drop/gain in ducts by  50%.  HVAC (all) Repair and Sealing – Ducting  An ideal duct system would be free of leaks. Leakage in unsealed ducts varies  considerably because of differences in fabricating machinery used, methods  for assembly, installation workmanship, and age of the ductwork. Air leaks  from the system to the outdoors result in a direct loss proportional to the  amount of leakage and the difference in enthalpy between the outdoor air and  the conditioned air. This analysis assumes that over time air loss from ducts  has doubled, and conducting repair and sealing of the ducts will restore  leakage from ducts to the original baseline level.  Avista 2011 Electric Integrated Resource Plan 502 Residential Energy Efficiency Equipment and Measure Data C-4 www.gepllc.com End‐Use  Equipment/  Measure Description  HVAC (all) Thermostat —  Clock/Programmable    A programmable thermostat can be added to most heating/cooling systems.   They are typically used during winter to lower temperatures at night and in  summer to increase temperatures during the afternoon. The energy savings  from this type of thermostat are identical to those of a "setback" strategy with  standard thermostats, but the convenience of a programmable thermostat  makes it a much more attractive option.  In this analysis, the baseline is  assumed to have no thermostat setback.  HVAC (all) Doors — Storm and  Thermal  Like other components of the shell, doors are subject to several types of heat  loss: conduction, infiltration, and radiant losses. Similar to a storm window, a  storm door creates an insulating air space between the storm and primary  doors. A tight fitting storm door can also help reduce air leakage or infiltration.   Thermal doors have exceptional thermal insulation properties and also are  provided with weather‐stripping on the doorframe to reduce air leakage.  HVAC (all) Insulation —  Infiltration Control    Lowering the air infiltration rate by caulking small leaks and weather‐stripping  around window frames, doorframes, power outlets, plumbing, and wall  corners can provide significant energy savings. Weather‐stripping doors and  windows will create a tight seal and further reduce air infiltration.   HVAC (all) Insulation —Ceiling Thermal insulation is material or combinations of materials that are used to  inhibit the flow of heat energy by conductive, convective, and radiative  transfer modes. Thus, thermal insulation above ceilings can conserve energy by  reducing the heat loss or gain into attics and/or through roofs. The type of  building construction defines insulating possibilities. Typical insulating  materials include:  loose‐fill (blown) cellulose, loose‐fill (blown) fiberglass, and  rigid polystyrene.  HVAC (all) Insulation — Radiant  Barrier  Radiant barriers are materials installed to reduce the heat gain in buildings.  Radiant barriers are made from materials that are highly reflective and have  low emissivity like aluminum. The closer the emissivity is to 0 the better they  will perform.  Radiant barriers can be placed above the insulation or on the  roof rafters.    HVAC (all) Insulation —  Foundation   Insulation  — Wall  Cavity  Insulation  — Wall  Sheathing  Thermal insulation is material or combinations of materials that are used to  inhibit the flow of heat energy by conductive, convective, and radiative  transfer modes. Thus, thermal insulation can conserve energy by reducing heat  loss or gain from a building. The type of building construction defines insulating  possibilities. Typical insulating materials include:  loose‐fill (blown) cellulose,  loose‐fill (blown) fiberglass, and rigid polystyrene. Foundation, insulation, wall  cavity insulation, and wall sheathing were modeled for new construction /  major retrofits only.  Cooling Roof — High  Reflectivity  The color and material of a building structure surface determine the amount of  solar radiation absorbed by that surface and subsequently transferred into a  building. This is called solar absorptance. Using a roofing material with low  solar absorptance or painting the roof a light color reduces the cooling load.   This analysis assumes that implementing high reflectivity roofs will decrease  the roof’s absorptance of solar radiation by 45%.  Cooling Windows —  Reflective Film  Reflective films applied to the window interior help reduce solar gain into the  space and thus lower cooling energy use.  Avista 2011 Electric Integrated Resource Plan 503 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-5 An EnerNOC Company End‐Use  Equipment/  Measure Description  HVAC (all) Windows — High  Efficiency / ENERGY  STAR  High‐efficiency windows, such as those labeled under the ENERGY STAR  Program, are designed to reduce energy use and increase occupant comfort.   High‐efficiency windows reduce the amount of heat transfer through the  glazing surface. For example, some windows have a low‐E coating, a thin film  of metallic oxide coating on the glass surface that allows passage of short‐wave  solar energy through glass and prevents long‐wave energy from escaping.  Another example is double‐pane glass that reduces conductive and convective  heat transfer.  Some double‐pane windows are gas‐filled (usually argon) to  further increase the insulating properties of the window.  Water Heating Water Heater ‐  Electric, High  Efficiency  For electric hot water heating, the most common type is a storage heater,  which incorporates an electric heating element, storage tank, outer jacket,  insulation, and controls in a single unit. Efficient units are characterized by a  high recovery or thermal efficiency and low standby losses (the ratio of heat  lost per hour to the content of the stored water). Electric instantaneous water  heaters are available, but are excluded from this study due to potentially high  instantaneous demand concerns.  Water Heating Water Heater, Heat  Pump  An electric heat pump water heater (HPWH) uses a vapor‐compression  thermodynamic cycle similar to that found in an air‐conditioner or refrigerator.  Electrical work input allows a heat pump water heater to extract heat from an  available source (e.g., air) and reject that heat to a higher temperature sink, in  this case, the water in the water heater. Because a HPWH makes use of  available ambient heat, the coefficient of performance is greater than one — typically in the range of 2 to 3. These devices are available as an alternative to  conventional tank water heaters of 55 gallons or larger. By utilizing the earth as  a thermal reservoir, ground source HPWH systems can reach even higher levels  of efficiency. The heat pump can be integrated with a traditional water storage  tank or installed remote to the storage tank.   Water Heating Water Heating, Solar Solar water heating systems can be used in residential buildings that have an  appropriate near‐south‐facing roof or nearby unshaded grounds for installing a  collector. Although system types vary, in general these systems use a solar  absorber surface within a solar collector or an actual storage tank. Either a  heat‐transfer fluid or the actual potable water flows through tubes attached to  the absorber and transfers heat from it. (Systems with a separate heat‐ transfer‐fluid loop include a heat exchanger that then heats the potable  water.) The heated water is stored in a separate preheat tank or a  conventional water heater tank. If additional heat is needed, it is provided by a  conventional water‐heating system.  Water Heating Convert to Gas This fuel‐switching measure is the replacement of an electric water heater with  a gas‐fired water heater. This measure will eliminate all electricity consumption  and demand due to electric water heating.  In this study, it is assumed that this  measure can be implemented only in home within 500 feet of a gas main.  Water Heating Faucet Aerators Water faucet aerators are threaded screens that attach to existing faucets.  They reduce the volume of water coming out of faucets while introducing air  into the water stream. This measure provides energy saving by reducing hot  water use, as well as water conservation for both hot and cold water.  Avista 2011 Electric Integrated Resource Plan 504 Residential Energy Efficiency Equipment and Measure Data C-6 www.gepllc.com End‐Use  Equipment/  Measure Description  Water Heating Pipe Insulation Insulating hot water pipes decreases energy losses from piping that distributes  hot water throughout the building. I also results in quicker delivery of hot  water and may allow lower the hot water set point, which saves energy. The  most common insulation materials for this purpose are polyethylene and  neoprene.        Water Heating Low‐Flow  Showerheads  Similar to faucet aerators, low‐flow showerheads reduce the consumption of  hot water, which in turn decreases water heating energy use.    Water Heating Tank Blanket Insulating hot water tanks decreases standby energy losses from the tank. Pre‐ fitted insulating blankets are readily available.  Water Heating Thermostat Setback  / Timer  These measures use either a programmable thermostat or a timer to adjust the  water heater setpoint at times of low usage, typically when a home is  unoccupied.  Water Heating Hot Water Saver A hot water saver is a plumbing device that attaches to the showerhead and  that pauses the flow of water until the water is hot enough for use. The water  is re‐started by the flip of a switch.  Interior Lighting  / Exterior  Lighting   Infrared Halogen  Lamps  Infrared halogen lamps are designed to be a replacement for standards  incandescent lamps. Also referred to as advanced incandescent lamps, these  products meet the Energy Independence and Security Act (EISA) lighting  standards and are phased in as the baseline technology screw‐in lamp  technology to reflect the timeline over which the EISA lighting standards take  effect.  Interior Lighting  / Exterior  Lighting  Compact Fluorescent  Lamps  Compact fluorescent lamps are designed to be a replacement for standard  incandescent lamps and use about 25% of the energy used by standard  incandescent lamps to produce the same lumen output. The can use either  electronic or magnetic ballasts. Integral compact fluorescent lamps have the  ballast integrated into the base of the lamp and have a standard screw‐in base  that permits installation into existing incandescent fixtures.  Interior Lighting  / Exterior  Lighting  Solid State Lighting,  LEDs (Screw‐in and  linear)  Light‐emitting diode (LED) lighting has seen recent penetration in specific  applications such as traffic lights and exit signs. With the potential for  extremely high efficiency, LEDs show promise to provide general‐use lighting  for interior spaces. Current models commercially available have efficacies  comparable to CFLs. However, theoretical efficiencies are significantly higher.  LED models under development are expected to provide improved efficacies.  Interior Lighting Fluorescent, T8,  Super T8, and T5  Lamps and Electronic  Ballasts  T8 fluorescent lamps are smaller in diameter than standard T12 lamps,  resulting in greater light output per watt. T8 lamps also operate at a lower  current and wattage, which increases the efficiency of the ballast but requires  the lamps to be compatible with the ballast. Fluorescent lamp fixtures can  include a reflector that increases the light output from the fixture, and thus  make it possible to use a fewer number of lamps in each fixture. T5 lamps  further increase efficiency by reducing the lamp diameter to 5/8”.  Exterior Lighting Metal Halide and  High Pressure  Sodium  These lamps technologies can provide slightly higher efficiencies than CFLs in  exterior applications.  Interior Lighting Occupancy Sensors Occupancy sensors turn lights off when a space is unoccupied. They are  appropriate for areas with intermittent use, such as bathrooms or storage  areas.   Avista 2011 Electric Integrated Resource Plan 505 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-7 An EnerNOC Company End‐Use  Equipment/  Measure Description  Exterior Lighting Photovoltaic  Installation  Solar photovoltaic generation may be used to power exterior lighting and thus  eliminate all or part of the electrical energy use.   Exterior Lighting Photosensor Control Photosensor controls turn exterior lighting on or off based on ambient lighting  levels. Compared with manual operation, this can reduce the operation of  exterior lighting during daylight hours.   Exterior Lighting Timeclock  Installation  Lighting timers turn exterior lighting on or off based on a preset schedule.  Compared with manual operation, this can reduce the operation of exterior  lighting during daylight hours.  Appliances Refrigerator/Freezer,  ENERGY STAR or  better  Energy‐efficient refrigerators/freezers incorporate features such as improved  cabinet insulation, more efficient compressors and evaporator fans, defrost  controls, mullion heaters, oversized condenser coils, and improved door seals.   Further efficiency increases can be obtained by reducing the volume of  refrigerated space, or adding multiple compartments to reduce losses from  opening doors.  Appliances Refrigerator/Freezer  —   Early Replacement   Refrigerators/freezers currently on the market are significantly more efficient  that older units, due to technology improvement and stricter appliance  standards. This measure incents homeowners to replace an aging but still  working unit with a new, higher‐efficiency one.  Appliances Refrigerator/Freezer  —   Remove Second Unit  Homeowners may have a second refrigerator or freezer that is not used to full  capacity and that, because of its age, is extremely inefficient. This measure  incents homeowners to recycle the second unit and thus also eliminates  associated electricity use.  Appliances Dishwasher, ENERGY  STAR or better  ENERGY STAR labeled dishwashers save by using both improved technology for  the primary wash cycle, and by using less hot water. Construction includes  more effective washing action, energy‐efficient motors, and other advanced  technology such as sensors that determine the length of the wash cycle and  the temperature of the water necessary to clean the dishes.   Appliances Clothes Washer,  ENERGY STAR or  better  ENERGY STAR labeled clothes washers use superior designs that require less  water. Sensors match the hot water needs to the size and soil level of the load,  preventing energy waste. Further energy and water savings can be achieved  through advanced technologies such as inverter‐drive or combination washer‐ dryer units.  Appliances Clothes Dryer –  Electric, High  Efficiency  An energy‐efficient clothes dryer has a moisture‐sensing device to terminate  the drying cycle rather than using a timer, and an energy‐efficient motor is  used for spinning the dryer tub. Application of a heat pump cycle for extracting  the moisture from clothes leads to additional energy savings.  Appliances Range and Oven –  Electric, High  Efficiency  These products have additional insulation in the oven compartment and  tighter‐fitting oven door gaskets and hinges to save energy. Conventional  ovens must first heat up about 35 pounds of steel and a large amount of air  before they heat up the food. Tests indicate that only 6% of the energy output  of a typical oven is actually absorbed by the food.   Electronics Color TVs and Home  Electronics, ENERGY  STAR or better  In the average home, electronic products consumed significant energy, even  when they are turn off, to maintain features like clocks, remote control, and  channel/station memory. ENERGY STAR labeled consumer electronics can  drastically reduce consumption during standby mode, in addition to saving  energy through advanced power management during normal use.   Avista 2011 Electric Integrated Resource Plan 506 Residential Energy Efficiency Equipment and Measure Data C-8 www.gepllc.com End‐Use  Equipment/  Measure Description  Electronics Personal Computers,  ENERGY STAR or  better  Improved power management can significantly reduce the annual energy  consumption of PCs and monitors in both standby and normal operation.  ENERGY STAR and Climate Savers labeled products provide increasing level of  energy efficiency.  Electronics Reduce Standby  Wattage  Representing a growing portion of home electricity consumption, plug‐in  electronics such as set‐top boxes, DVD players, gaming systems, digital video  recorders, and even battery chargers for mobile phones and laptop computers  are often designed to supply a set voltage. When the units are not in use, this  voltage could be dropped significantly (~1 W) and thereby generate a  significant energy savings, assumed for this analysis to be between 4‐5% on  average. These savings are in excess of the measures already discussed for  computers and televisions.   Misc. Furnace Fans,  Electronically  Commutating Motor  In homes heated by a furnace, there is still substantial energy use by the fan  responsible for moving the hot air throughout the ductwork.  Application of an  Electronically Commutating Motor (ECM) ensures that motor speed matches  the heating requirements of the system and saves energy when compared to a  continuously operating standard motor.  Miscellaneous Pool Pump  High‐efficiency motors and two‐speed pumps provide improved energy  efficiency for this load.   Miscellaneous Pool Pump Timer A pool pump timer allows the pump to turn off automatically, eliminating the  wasted energy associated with unnecessary pumping.    Miscellaneous Trees for Shading Planting of shade trees, suitable to the local climate, can reduce the need for  air conditioning and provide non‐energy benefits as well.   Cooling / Space  Heating /  Interior Lighting  Home Energy  Management System  A centralized home energy management system can be used to control and  schedule cooling, space heating, lighting, and possibly appliances as well. Some  designs also allow the homeowner to remotely control loads via the Internet.  Cooling / Space  Heating   Solar Photovoltaic Adding a solar photovoltaic (PV) system to the home can meet a portion of the  home’s electric load and in some cases nearly the entire load, depending on  the PV system size, orientation, solar resource, and other factors. For this  analysis, we assume a grid‐connected system and apply the electricity savings  to the home’s cooling and space heating loads.  Cooling / Space  Heating /  Interior Lighting  Advanced New  Construction Designs  Advanced new construction designs use an integrated approach to the design  of new buildings to account for the interaction of building systems. Typically,  designs specify the building orientation, building shell, building mechanical  systems, and controls strategies with the goal of optimizing building energy  efficiency and comfort. Options that may be evaluated and incorporated  include passive solar strategies, increased thermal mass, natural ventilation,  daylighting strategies, and shading strategies, This measure was modeled for  new construction only.  Cooling / Space  Heating /  Interior Lighting  ENERGY STAR Homes    This measure was modeled for new construction only.  Cooling / Space  Heating /  Interior Lighting  Energy‐Efficient  Manufactured  Homes  This measure was modeled for new construction only.  Avista 2011 Electric Integrated Resource Plan 507 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-9 An EnerNOC Company Table C-2 Energy Efficiency Equipment Data — Single Family, Existing Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                  $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)134               $278 15 0.41           Cooling Central AC SEER 15 (CEE Tier 2)184               $556 15 0.28           Cooling Central AC SEER 16 (CEE Tier 3)226               $834 15 0.23           Cooling Central AC Ductless Mini‐Split System 405               $4,399 20 0.14           Cooling Room AC EER 9.8 ‐                  $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)62                  $104 10 0.33           Cooling Room AC EER 11 73                  $282 10 0.15           Cooling Room AC EER 11.5 99                  $626 10 0.09           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                  $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star) 492               $1,000 15 0.43           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2) 675               $2,318 15 0.26           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3) 829               $3,505 15 0.21           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 1,486            $5,655 20 0.45           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                  $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 516               $1,500 14 0.28           Space Heating Electric Resistance Electric Resistance ‐                  $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                  $0 15 ‐             Space Heating Supplemental Supplemental ‐                  $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                  $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 173               $41 15 5.79           Water Heating Water Heater Geothermal Heat Pump 2,269            $6,586 15 0.47           Water Heating Water Heater Solar 2,493            $5,653 15 0.60           Interior Lighting* Screw‐in Incandescent  ‐                  $0 4 ‐             Interior Lighting* Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting* Screw‐in CFL 38                  $2 6 14.44        Interior Lighting* Screw‐in LED 40                  $80 12 0.90           Interior Lighting* Linear Fluorescent T12 ‐                  $0 6 ‐             Interior Lighting* Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting* Linear Fluorescent Super T8 6                    $7 6 1.16           Interior Lighting* Linear Fluorescent T5 10                  $10 6 0.71           Interior Lighting* Linear Fluorescent LED 18                  $55 10 0.14           Interior Lighting* Pin‐based Halogen ‐                  $0 4 ‐             Interior Lighting* Pin‐based CFL 13                  $4 6 1.00           Interior Lighting* Pin‐based LED 14                  $17 10 0.77           Exterior Lighting* Screw‐in Incandescent  ‐                  $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 22.43        Exterior Lighting* Screw‐in LED 37                  $79 12 0.89           Exterior Lighting* High Intensity/Flood Incandescent ‐                  $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 7.40           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 4.03           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 9.14           Exterior Lighting* High Intensity/Flood LED 66                  $79 10 0.82           Appliances Clothes Washer Baseline ‐                  $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)45                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 88                  $487 10 0.16           Appliances Clothes Dryer Baseline ‐                  $0 13 ‐             Appliances Clothes Dryer Moisture Detection 98                  $48 13 2.39           Appliances Dishwasher Baseline ‐                  $0 9 ‐             Appliances Dishwasher Energy Star 41                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)53                  $1 9 31.05        Appliances Refrigerator Baseline ‐                  $0 13 ‐             Appliances Refrigerator Energy Star 108               $89 13 1.28           Appliances Refrigerator Baseline (2014)144               $0 13 ‐             Appliances Refrigerator Energy Star (2014)230               $89 13 ‐             * Savings and costs are per unit, e.g., per lamp. Avista 2011 Electric Integrated Resource Plan 508 Residential Energy Efficiency Equipment and Measure Data C-10 www.gepllc.com Table C-2 Energy Efficiency Equipment Data — Single Family, Existing Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Freezer Baseline ‐                  $0 11 ‐             Appliances Freezer Energy Star 114               $32 11 3.03           Appliances Freezer Baseline (2014)152               $0 11 ‐             Appliances Freezer Energy Star (2014)243               $32 11 ‐             Appliances Second Refrigerator Baseline ‐                  $0 13 ‐             Appliances Second Refrigerator Energy Star 111               $89 13 1.31           Appliances Second Refrigerator Baseline (2014)148               $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)237               $89 13 ‐             Appliances Stove Baseline ‐                  $0 13 ‐             Appliances Stove Convection Oven 9                    $2 13 7.00           Appliances Stove Induction (High Efficiency) 46                  $1,432 13 0.05           Appliances Microwave Baseline ‐                  $0 9 ‐             Electronics Personal Computers Baseline ‐                  $0 5 ‐             Electronics Personal Computers Energy Star 108               $1 5 35.63        Electronics Personal Computers Climate Savers 154               $175 5 0.35           Electronics TVs Baseline ‐                  $0 11 ‐             Electronics TVs Energy Star 87                  $1 11 133.21      Electronics Devices and Gadgets Devices and Gadgets ‐                  $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                  $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump 138               $85 15 1.96           Miscellaneous Pool Pump Two‐Speed Pump 551               $579 15 1.15           Miscellaneous Furnace Fan Baseline ‐                  $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 127               $1 18 281.65      Miscellaneous Miscellaneous Miscellaneous ‐                  $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 509 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-11 An EnerNOC Company Table C-3 Energy Efficiency Equipment Data — Multi Family, Existing Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost (/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                   $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)67                  $93 15 0.62           Cooling Central AC SEER 15 (CEE Tier 2)133                $185 15 0.61           Cooling Central AC SEER 16 (CEE Tier 3)187                $278 15 0.57           Cooling Central AC Ductless Mini‐Split System 245                $2,012 20 0.19           Cooling Room AC EER 9.8 ‐                   $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)32                  $52 10 0.35           Cooling Room AC EER 11 38                  $141 10 0.15           Cooling Room AC EER 11.5 52                  $313 10 0.09           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                   $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star)238                $1,246 15 0.17           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2)467                $2,315 15 0.18           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3)659                $3,277 15 0.18           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 862                $5,022 20 0.27           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                   $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 248                $1,500 14 0.14           Space Heating Electric Resistance Electric Resistance ‐                   $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                   $0 15 ‐             Space Heating Supplemental Supplemental ‐                   $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                   $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 107                $41 15 3.61           Water Heating Water Heater Solar 1,539            $5,653 15 0.38           Interior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Interior Lighting* Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting* Screw‐in CFL 38                  $2 6 10.47        Interior Lighting* Screw‐in LED 40                  $80 12 0.65           Interior Lighting* Linear Fluorescent T12 ‐                   $0 6 ‐             Interior Lighting* Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting* Linear Fluorescent Super T8 6                    $7 6 1.16           Interior Lighting* Linear Fluorescent T5 10                  $10 6 0.71           Interior Lighting* Linear Fluorescent LED 18                  $55 10 0.14           Interior Lighting* Pin‐based Halogen ‐                   $0 4 ‐             Interior Lighting* Pin‐based CFL 13                  $4 6 1.00           Interior Lighting* Pin‐based LED 14                  $17 10 0.77           Exterior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 32.52        Exterior Lighting* Screw‐in LED 37                  $79 12 1.29           Exterior Lighting* High Intensity/Flood Incandescent ‐                   $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 7.40           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 4.03           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 9.14           Exterior Lighting* High Intensity/Flood LED 66                  $79 10 0.82           Appliances Clothes Washer Baseline ‐                   $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)23                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 44                  $487 10 0.08           Appliances Clothes Dryer Baseline ‐                   $0 13 ‐             Appliances Clothes Dryer Moisture Detection 93                  $48 13 2.28           Appliances Dishwasher Baseline ‐                   $0 9 ‐             Appliances Dishwasher Energy Star 15                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)19                  $1 9 11.14        Appliances Refrigerator Baseline ‐                   $0 13 ‐             Appliances Refrigerator Energy Star 92                  $89 13 1.09           Appliances Refrigerator Baseline (2014)123                $0 13 ‐             Appliances Refrigerator Energy Star (2014)196                $89 13 ‐             * Savings and costs are per unit, e.g., per lamp. Avista 2011 Electric Integrated Resource Plan 510 Residential Energy Efficiency Equipment and Measure Data C-12 www.gepllc.com Table C-3 Energy Efficiency Equipment Data—Multi Family, Existing Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Freezer Baseline ‐                   $0 11 ‐             Appliances Freezer Energy Star 108                $32 11 2.88           Appliances Freezer Baseline (2014)145                $0 11 ‐             Appliances Freezer Energy Star (2014)231                $32 11 ‐             Appliances Second Refrigerator Baseline ‐                   $0 13 ‐             Appliances Second Refrigerator Energy Star 93                  $89 13 1.11           Appliances Second Refrigerator Baseline (2014)124                $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)199                $89 13 ‐             Appliances Stove Baseline ‐                   $0 13 ‐             Appliances Stove Convection Oven 4                    $2 13 2.99           Appliances Stove Induction (High Efficiency) 20                  $1,432 13 0.02           Appliances Microwave Baseline ‐                   $0 9 ‐             Electronics Personal Computers Baseline ‐                   $0 5 ‐             Electronics Personal Computers Energy Star 86                  $1 5 29.28        Electronics Personal Computers Climate Savers 123                $175 5 0.29           Electronics TVs Baseline ‐                   $0 11 ‐             Electronics TVs Energy Star 43                  $1 11 67.65        Electronics Devices and Gadgets Devices and Gadgets ‐                   $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                   $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump ‐                   $85 15 ‐             Miscellaneous Pool Pump Two‐Speed Pump ‐                   $579 15 ‐             Miscellaneous Furnace Fan Baseline ‐                   $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 10                  $1 18 21.87        Miscellaneous Miscellaneous Miscellaneous ‐                   $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 511 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-13 An EnerNOC Company Table C-4 Energy Efficiency Equipment Data — Mobile Home, Existing Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost (/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                   $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)80                  $278 15 0.24           Cooling Central AC SEER 15 (CEE Tier 2)110                $556 15 0.17           Cooling Central AC SEER 16 (CEE Tier 3)134                $834 15 0.14           Cooling Central AC Ductless Mini‐Split System 241                $4,399 20 0.08           Cooling Room AC EER 9.8 ‐                   $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)37                  $52 10 0.40           Cooling Room AC EER 11 44                  $141 10 0.17           Cooling Room AC EER 11.5 59                  $313 10 0.11           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                   $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star)282                $1,246 15 0.20           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2)387                $2,315 15 0.15           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3)475                $3,277 15 0.13           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 852                $5,022 20 0.27           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                   $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 295                $1,500 14 0.16           Space Heating Electric Resistance Electric Resistance ‐                   $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                   $0 15 ‐             Space Heating Supplemental Supplemental ‐                   $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                   $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95)88                  $41 15 2.95           Water Heating Water Heater Solar 1,271            $5,653 15 0.31           Interior Lighting*Screw‐in Incandescent  ‐                   $0 4 ‐             Interior Lighting*Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting*Screw‐in CFL 38                  $2 6 13.00        Interior Lighting*Screw‐in LED 40                  $80 12 0.81           Interior Lighting*Linear Fluorescent T12 ‐                   $0 6 ‐             Interior Lighting*Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting*Linear Fluorescent Super T8 6                    $7 6 1.04           Interior Lighting*Linear Fluorescent T5 10                  $10 6 0.64           Interior Lighting*Linear Fluorescent LED 18                  $55 10 0.13           Interior Lighting*Pin‐based Halogen ‐                   $0 4 ‐             Interior Lighting*Pin‐based CFL 13                  $4 6 1.00           Interior Lighting*Pin‐based LED 14                  $17 10 0.70           Exterior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 20.19        Exterior Lighting* Screw‐in LED 37                  $79 12 0.80           Exterior Lighting* High Intensity/Flood Incandescent ‐                   $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 6.66           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 3.63           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 8.23           Exterior Lighting* High Intensity/Flood LED 66                  $79 10 0.74           Appliances Clothes Washer Baseline ‐                   $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)46                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 89                  $487 10 0.16           Appliances Clothes Dryer Baseline ‐                   $0 13 ‐             Appliances Clothes Dryer Moisture Detection 99                  $48 13 2.43           Appliances Dishwasher Baseline ‐                   $0 9 ‐             Appliances Dishwasher Energy Star 41                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)54                  $1 9 31.57        Appliances Refrigerator Baseline ‐                   $0 13 ‐             Appliances Refrigerator Energy Star 110                $89 13 1.30           Appliances Refrigerator Baseline (2014)146                $0 13 ‐             Appliances Refrigerator Energy Star (2014)234                $89 13 ‐             * Savings and costs are per unit, e.g., per lamp Avista 2011 Electric Integrated Resource Plan 512 Residential Energy Efficiency Equipment and Measure Data C-14 www.gepllc.com Table C-4 Energy Efficiency Equipment Data — Mobile Home, Existing Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Freezer Baseline ‐                   $0 11 ‐             Appliances Freezer Energy Star 116                $32 11 3.08           Appliances Freezer Baseline (2014)155                $0 11 ‐             Appliances Freezer Energy Star (2014)248                $32 11 ‐             Appliances Second Refrigerator Baseline ‐                   $0 13 ‐             Appliances Second Refrigerator Energy Star 113                $89 13 1.34           Appliances Second Refrigerator Baseline (2014)150                $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)241                $89 13 ‐             Appliances Stove Baseline ‐                   $0 13 ‐             Appliances Stove Convection Oven 8                    $2 13 6.30           Appliances Stove Induction (High Efficiency) 41                  $1,432 13 0.04           Appliances Microwave Baseline ‐                   $0 9 ‐             Electronics Personal Computers Baseline ‐                   $0 5 ‐             Electronics Personal Computers Energy Star 101                $1 5 33.39        Electronics Personal Computers Climate Savers 144                $175 5 0.33           Electronics TVs Baseline ‐                   $0 11 ‐             Electronics TVs Energy Star 87                  $1 11 133.21      Electronics Devices and Gadgets Devices and Gadgets ‐                   $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                   $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump 138                $85 15 1.96           Miscellaneous Pool Pump Two‐Speed Pump 551                $579 15 1.15           Miscellaneous Furnace Fan Baseline ‐                   $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 127                $1 18 281.65      Miscellaneous Miscellaneous Miscellaneous ‐                   $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 513 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-15 An EnerNOC Company Table C-5 Energy Efficiency Equipment Data — Limited Income, Existing Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost (/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                   $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)76                  $185 15 0.35           Cooling Central AC SEER 15 (CEE Tier 2)104                $370 15 0.24           Cooling Central AC SEER 16 (CEE Tier 3)127                $556 15 0.19           Cooling Central AC Ductless Mini‐Split System 229                $2,394 20 0.15           Cooling Room AC EER 9.8 ‐                   $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)65                  $104 10 0.35           Cooling Room AC EER 11 77                  $282 10 0.15           Cooling Room AC EER 11.5 104                $626 10 0.09           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                   $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star)192                $1,246 15 0.13           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2)263                $2,315 15 0.10           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3)323                $3,277 15 0.09           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 579                $5,022 20 0.18           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                   $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 201                $1,500 14 0.11           Space Heating Electric Resistance Electric Resistance ‐                   $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                   $0 15 ‐             Space Heating Supplemental Supplemental ‐                   $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                   $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 116                $41 15 3.94           Water Heating Water Heater Solar 1,679            $5,653 15 0.41           Interior Lighting*Screw‐in Incandescent  ‐                   $0 4 ‐             Interior Lighting*Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting*Screw‐in CFL 38                  $2 6 13.85        Interior Lighting*Screw‐in LED 40                  $80 12 0.86           Interior Lighting*Linear Fluorescent T12 ‐                   $0 6 ‐             Interior Lighting*Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting*Linear Fluorescent Super T8 6                    $7 6 1.16           Interior Lighting*Linear Fluorescent T5 10                  $10 6 0.71           Interior Lighting*Linear Fluorescent LED 18                  $55 10 0.14           Interior Lighting*Pin‐based Halogen ‐                   $0 4 ‐             Interior Lighting*Pin‐based CFL 13                  $4 6 1.00           Interior Lighting*Pin‐based LED 14                  $17 10 0.77           Exterior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 32.52        Exterior Lighting* Screw‐in LED 37                  $79 12 1.29           Exterior Lighting* High Intensity/Flood Incandescent ‐                   $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 7.40           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 4.03           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 9.14           Exterior Lighting* High Intensity/Flood LED 66                  $79 10 0.82           Appliances Clothes Washer Baseline ‐                   $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)20                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 38                  $487 10 0.07           Appliances Clothes Dryer Baseline ‐                   $0 13 ‐             Appliances Clothes Dryer Moisture Detection 104                $48 13 2.56           Appliances Dishwasher Baseline ‐                   $0 9 ‐             Appliances Dishwasher Energy Star 12                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)15                  $1 9 9.07           Appliances Refrigerator Baseline ‐                   $0 13 ‐             Appliances Refrigerator Energy Star 92                  $89 13 1.09           Appliances Refrigerator Baseline (2014)123                $0 13 ‐             Appliances Refrigerator Energy Star (2014)196                $89 13 ‐             * Savings and costs are per unit, e.g., per lamp Avista 2011 Electric Integrated Resource Plan 514 Residential Energy Efficiency Equipment and Measure Data C-16 www.gepllc.com Table C-5 Energy Efficiency Equipment Data — Limited Income, Existing Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Freezer Baseline ‐                   $0 11 ‐             Appliances Freezer Energy Star 108                $32 11 2.88           Appliances Freezer Baseline (2014)145                $0 11 ‐             Appliances Freezer Energy Star (2014)231                $32 11 ‐             Appliances Second Refrigerator Baseline ‐                   $0 13 ‐             Appliances Second Refrigerator Energy Star 93                  $89 13 1.11           Appliances Second Refrigerator Baseline (2014)124                $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)199                $89 13 ‐             Appliances Stove Baseline ‐                   $0 13 ‐             Appliances Stove Convection Oven 5                    $2 13 3.59           Appliances Stove Induction (High Efficiency) 24                  $1,432 13 0.02           Appliances Microwave Baseline ‐                   $0 9 ‐             Electronics Personal Computers Baseline ‐                   $0 5 ‐             Electronics Personal Computers Energy Star 89                  $1 5 30.10        Electronics Personal Computers Climate Savers 127                $175 5 0.29           Electronics TVs Baseline ‐                   $0 11 ‐             Electronics TVs Energy Star 49                  $1 11 77.80        Electronics Devices and Gadgets Devices and Gadgets ‐                   $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                   $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump 57                  $85 15 0.83           Miscellaneous Pool Pump Two‐Speed Pump 226                $579 15 0.49           Miscellaneous Furnace Fan Baseline ‐                   $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 54                  $1 18 123.18      Miscellaneous Miscellaneous Miscellaneous ‐                   $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 515 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-17 An EnerNOC Company Table C-6 Energy Efficiency Equipment Data —Single Family, New Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost (/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                   $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)180                $278 15 0.55           Cooling Central AC SEER 15 (CEE Tier 2)240                $556 15 0.36           Cooling Central AC SEER 16 (CEE Tier 3)290                $834 15 0.29           Cooling Central AC Ductless Mini‐Split System 543                $4,399 20 0.19           Cooling Room AC EER 9.8 ‐                   $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)76                  $104 10 0.41           Cooling Room AC EER 11 90                  $282 10 0.18           Cooling Room AC EER 11.5 122                $626 10 0.11           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                   $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star)588                $1,000 15 0.51           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2)783                $2,318 15 0.30           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3)946                $3,505 15 0.24           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 1,775            $5,655 20 0.54           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                   $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 630                $1,500 14 0.35           Space Heating Electric Resistance Electric Resistance ‐                   $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                   $0 15 ‐             Space Heating Supplemental Supplemental ‐                   $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                   $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 219                $41 15 7.35           Water Heating Water Heater Geothermal Heat Pump 2,878            $6,586 15 0.60           Interior Lighting*Water Heater Solar 3,163            $5,653 15 0.77           Interior Lighting*Screw‐in Incandescent  ‐                   $0 4 ‐             Interior Lighting*Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting*Screw‐in CFL 38                  $2 6 14.05        Interior Lighting*Screw‐in LED 40                  $80 12 0.87           Interior Lighting*Linear Fluorescent T12 ‐                   $0 6 ‐             Interior Lighting*Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting*Linear Fluorescent Super T8 6                    $7 6 1.16           Interior Lighting*Linear Fluorescent T5 10                  $10 6 0.71           Interior Lighting*Linear Fluorescent LED 18                  $55 10 0.14           Interior Lighting*Pin‐based Halogen ‐                   $0 4 ‐             Interior Lighting*Pin‐based CFL 13                  $4 6 1.00           Exterior Lighting* Pin‐based LED 14                  $17 10 0.77           Exterior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 21.82        Exterior Lighting* Screw‐in LED 37                  $79 12 0.87           Exterior Lighting* High Intensity/Flood Incandescent ‐                   $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 7.40           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 4.03           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 9.14           Exterior Lighting High Intensity/Flood LED 66                  $79 10 0.82           Appliances Clothes Washer Baseline ‐                   $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)58                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 112                $487 10 0.21           Appliances Clothes Dryer Baseline ‐                   $0 13 ‐             Appliances Clothes Dryer Moisture Detection 117                $48 13 2.86           Appliances Dishwasher Baseline ‐                   $0 9 ‐             Appliances Dishwasher Energy Star 47                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)62                  $1 9 36.25        Appliances Refrigerator Baseline ‐                   $0 13 ‐             Appliances Refrigerator Energy Star 102                $89 13 1.20           Appliances Refrigerator Baseline (2014)135                $0 13 ‐             * Savings and costs are per unit, e.g., per lamp Avista 2011 Electric Integrated Resource Plan 516 Residential Energy Efficiency Equipment and Measure Data C-18 www.gepllc.com Table C-6 Energy Efficiency Equipment Data —Single Family, New Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Refrigerator Energy Star (2014)217                $89 13 ‐             Appliances Freezer Baseline ‐                   $0 11 ‐             Appliances Freezer Energy Star 116                $32 11 3.08           Appliances Freezer Baseline (2014)155                $0 11 ‐             Appliances Freezer Energy Star (2014)248                $32 11 ‐             Appliances Second Refrigerator Baseline ‐                   $0 13 ‐             Appliances Second Refrigerator Energy Star 116                $89 13 1.37           Appliances Second Refrigerator Baseline (2014)154                $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)247                $89 13 ‐             Appliances Stove Baseline ‐                   $0 13 ‐             Appliances Stove Convection Oven 11                  $2 13 8.51           Appliances Stove Induction (High Efficiency) 56                  $1,432 13 0.06           Appliances Microwave Baseline ‐                   $0 9 ‐             Electronics Personal Computers Baseline ‐                   $0 5 ‐             Electronics Personal Computers Energy Star 111                $1 5 36.63        Electronics Personal Computers Climate Savers 158                $175 5 0.36           Electronics TVs Baseline ‐                   $0 11 ‐             Electronics TVs Energy Star 96                  $1 11 148.53      Electronics Devices and Gadgets Devices and Gadgets ‐                   $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                   $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump 156                $85 15 2.22           Miscellaneous Pool Pump Two‐Speed Pump 623                $579 15 1.30           Miscellaneous Furnace Fan Baseline ‐                   $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 155                $1 18 345.87      Miscellaneous Miscellaneous Miscellaneous ‐                   $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 517 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-19 An EnerNOC Company Table C-7 Energy Efficiency Equipment Data — Multi Family, New Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost (/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                   $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)85                  $93 15 0.78           Cooling Central AC SEER 15 (CEE Tier 2)166                $185 15 0.76           Cooling Central AC SEER 16 (CEE Tier 3)234                $278 15 0.71           Cooling Central AC Ductless Mini‐Split System 308                $2,012 20 0.24           Cooling Room AC EER 9.8 ‐                   $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)37                  $52 10 0.39           Cooling Room AC EER 11 43                  $141 10 0.17           Cooling Room AC EER 11.5 59                  $313 10 0.10           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                   $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star)292                $1,246 15 0.21           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2)571                $2,315 15 0.22           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3)804                $3,277 15 0.21           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 1,058            $5,022 20 0.33           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                   $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 282                $1,500 14 0.15           Space Heating Electric Resistance Electric Resistance ‐                   $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                   $0 15 ‐             Space Heating Supplemental Supplemental ‐                   $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                   $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 124                $41 15 4.19           Water Heating Water Heater Solar 1,786            $5,653 15 0.44           Interior Lighting*Screw‐in Incandescent  ‐                   $0 4 ‐             Interior Lighting*Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting*Screw‐in CFL 38                  $2 6 10.18        Interior Lighting*Screw‐in LED 40                  $80 12 0.63           Interior Lighting*Linear Fluorescent T12 ‐                   $0 6 ‐             Interior Lighting*Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting*Linear Fluorescent Super T8 6                    $7 6 1.16           Interior Lighting*Linear Fluorescent T5 10                  $10 6 0.71           Interior Lighting*Linear Fluorescent LED 18                  $55 10 0.14           Interior Lighting*Pin‐based Halogen ‐                   $0 4 ‐             Interior Lighting*Pin‐based CFL 13                  $4 6 1.00           Interior Lighting*Pin‐based LED 14                  $17 10 0.77           Exterior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 31.63        Exterior Lighting* Screw‐in LED 37                  $79 12 1.26           Exterior Lighting* High Intensity/Flood Incandescent ‐                   $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 7.40           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 4.03           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 9.14           Exterior Lighting* High Intensity/Flood LED 66                  $79 10 0.82           Appliances Clothes Washer Baseline ‐                   $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)26                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 51                  $487 10 0.09           Appliances Clothes Dryer Baseline ‐                   $0 13 ‐             Appliances Clothes Dryer Moisture Detection 105                $48 13 2.56           Appliances Dishwasher Baseline ‐                   $0 9 ‐             Appliances Dishwasher Energy Star 16                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)21                  $1 9 12.38        Appliances Refrigerator Baseline ‐                   $0 13 ‐             Appliances Refrigerator Energy Star 108                $89 13 1.28           Appliances Refrigerator Baseline (2014)144                $0 13 ‐             Appliances Refrigerator Energy Star (2014)230                $89 13 ‐             * Savings and costs are per unit, e.g., per lamp Avista 2011 Electric Integrated Resource Plan 518 Residential Energy Efficiency Equipment and Measure Data C-20 www.gepllc.com Table C-7 Energy Efficiency Equipment Data — Multi Family, New Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Freezer Baseline ‐                   $0 11 ‐             Appliances Freezer Energy Star 115                $32 11 3.06           Appliances Freezer Baseline (2014)154                $0 11 ‐             Appliances Freezer Energy Star (2014)246                $32 11 ‐             Appliances Second Refrigerator Baseline ‐                   $0 13 ‐             Appliances Second Refrigerator Energy Star 103                $89 13 1.21           Appliances Second Refrigerator Baseline (2014)137                $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)219                $89 13 ‐             Appliances Stove Baseline ‐                   $0 13 ‐             Appliances Stove Convection Oven 4                    $2 13 3.31           Appliances Stove Induction (High Efficiency) 22                  $1,432 13 0.02           Appliances Microwave Baseline ‐                   $0 9 ‐             Electronics Personal Computers Baseline ‐                   $0 5 ‐             Electronics Personal Computers Energy Star 88                  $1 5 29.69        Electronics Personal Computers Climate Savers 125                $175 5 0.29           Electronics TVs Baseline ‐                   $0 11 ‐             Electronics TVs Energy Star 45                  $1 11 71.54        Electronics Devices and Gadgets Devices and Gadgets ‐                   $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                   $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump ‐                   $85 15 ‐             Miscellaneous Pool Pump Two‐Speed Pump ‐                   $579 15 ‐             Miscellaneous Furnace Fan Baseline ‐                   $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 11                  $1 18 24.36        Miscellaneous Miscellaneous Miscellaneous ‐                   $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 519 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-21 An EnerNOC Company Table C-8 Energy Efficiency Equipment Data — Mobile Home, New Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost (/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                   $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)100                $278 15 0.30           Cooling Central AC SEER 15 (CEE Tier 2)133                $556 15 0.20           Cooling Central AC SEER 16 (CEE Tier 3)161                $834 15 0.16           Cooling Central AC Ductless Mini‐Split System 301                $4,399 20 0.11           Cooling Room AC EER 9.8 ‐                   $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)42                  $52 10 0.45           Cooling Room AC EER 11 50                  $141 10 0.20           Cooling Room AC EER 11.5 67                  $313 10 0.12           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                   $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star)313                $1,246 15 0.22           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2)417                $2,315 15 0.16           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3)505                $3,277 15 0.13           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 946                $5,022 20 0.30           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                   $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 336                $1,500 14 0.18           Space Heating Electric Resistance Electric Resistance ‐                   $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                   $0 15 ‐             Space Heating Supplemental Supplemental ‐                   $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                   $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 102                $41 15 3.42           Water Heating Water Heater Solar 1,474            $5,653 15 0.36           Interior Lighting*Screw‐in Incandescent  ‐                   $0 4 ‐             Interior Lighting*Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting*Screw‐in CFL 38                  $2 6 12.64        Interior Lighting*Screw‐in LED 40                  $80 12 0.79           Interior Lighting*Linear Fluorescent T12 ‐                   $0 6 ‐             Interior Lighting*Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting*Linear Fluorescent Super T8 6                    $7 6 1.04           Interior Lighting*Linear Fluorescent T5 10                  $10 6 0.64           Interior Lighting*Linear Fluorescent LED 18                  $55 10 0.13           Interior Lighting*Pin‐based Halogen ‐                   $0 4 ‐             Interior Lighting*Pin‐based CFL 13                  $4 6 1.00           Interior Lighting*Pin‐based LED 14                  $17 10 0.70           Exterior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 19.63        Exterior Lighting* Screw‐in LED 37                  $79 12 0.78           Exterior Lighting* High Intensity/Flood Incandescent ‐                   $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 6.66           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 3.63           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 8.23           Exterior Lighting* High Intensity/Flood LED 66                  $79 10 0.74           Appliances Clothes Washer Baseline ‐                   $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)54                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 104                $487 10 0.19           Appliances Clothes Dryer Baseline ‐                   $0 13 ‐             Appliances Clothes Dryer Moisture Detection 111                $48 13 2.73           Appliances Dishwasher Baseline ‐                   $0 9 ‐             Appliances Dishwasher Energy Star 46                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)60                  $1 9 35.11        Appliances Refrigerator Baseline ‐                   $0 13 ‐             Appliances Refrigerator Energy Star 129                $89 13 1.52           Appliances Refrigerator Baseline (2014)172                $0 13 ‐             Appliances Refrigerator Energy Star (2014)275                $89 13 ‐             * Savings and costs are per unit, e.g., per lamp Avista 2011 Electric Integrated Resource Plan 520 Residential Energy Efficiency Equipment and Measure Data C-22 www.gepllc.com Table C-8 Energy Efficiency Equipment Data — Mobile Home, New Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Freezer Baseline ‐                   $0 11 ‐             Appliances Freezer Energy Star 124                $32 11 3.28           Appliances Freezer Baseline (2014)165                $0 11 ‐             Appliances Freezer Energy Star (2014)263                $32 11 ‐             Appliances Second Refrigerator Baseline ‐                   $0 13 ‐             Appliances Second Refrigerator Energy Star 124                $89 13 1.47           Appliances Second Refrigerator Baseline (2014)165                $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)264                $89 13 ‐             Appliances Stove Baseline ‐                   $0 13 ‐             Appliances Stove Convection Oven 9                    $2 13 6.98           Appliances Stove Induction (High Efficiency) 46                  $1,432 13 0.05           Appliances Microwave Baseline ‐                   $0 9 ‐             Electronics Personal Computers Baseline ‐                   $0 5 ‐             Electronics Personal Computers Energy Star 103                $1 5 33.86        Electronics Personal Computers Climate Savers 146                $175 5 0.33           Electronics TVs Baseline ‐                   $0 11 ‐             Electronics TVs Energy Star 91                  $1 11 140.87      Electronics Devices and Gadgets Devices and Gadgets ‐                   $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                   $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump 154                $85 15 2.20           Miscellaneous Pool Pump Two‐Speed Pump 617                $579 15 1.29           Miscellaneous Furnace Fan Baseline ‐                   $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 141                $1 18 313.76      Miscellaneous Miscellaneous Miscellaneous ‐                   $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 521 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-23 An EnerNOC Company Table C-9 Energy Efficiency Equipment Data — Limited Income, New Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost (/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                   $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)95                  $185 15 0.43           Cooling Central AC SEER 15 (CEE Tier 2)126                $370 15 0.29           Cooling Central AC SEER 16 (CEE Tier 3)152                $556 15 0.23           Cooling Central AC Ductless Mini‐Split System 286                $2,394 20 0.18           Cooling Room AC EER 9.8 ‐                   $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)74                  $104 10 0.40           Cooling Room AC EER 11 87                  $282 10 0.17           Cooling Room AC EER 11.5 118                $626 10 0.11           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                   $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star)213                $1,246 15 0.15           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2)284                $2,315 15 0.11           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3)343                $3,277 15 0.09           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 643                $5,022 20 0.20           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                   $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 228                $1,500 14 0.13           Space Heating Electric Resistance Electric Resistance ‐                   $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                   $0 15 ‐             Space Heating Supplemental Supplemental ‐                   $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                   $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 135                $41 15 4.57           Water Heating Water Heater Solar 1,949            $5,653 15 0.48           Interior Lighting*Screw‐in Incandescent  ‐                   $0 4 ‐             Interior Lighting*Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting*Screw‐in CFL 38                  $2 6 13.47        Interior Lighting*Screw‐in LED 40                  $80 12 0.84           Interior Lighting*Linear Fluorescent T12 ‐                   $0 6 ‐             Interior Lighting*Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting*Linear Fluorescent Super T8 6                    $7 6 1.16           Interior Lighting*Linear Fluorescent T5 10                  $10 6 0.71           Interior Lighting*Linear Fluorescent LED 18                  $55 10 0.14           Interior Lighting*Pin‐based Halogen ‐                   $0 4 ‐             Interior Lighting*Pin‐based CFL 13                  $4 6 1.00           Interior Lighting*Pin‐based LED 14                  $17 10 0.77           Exterior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 31.63        Exterior Lighting* Screw‐in LED 37                  $79 12 1.26           Exterior Lighting* High Intensity/Flood Incandescent ‐                   $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 7.40           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 4.03           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 9.14           Exterior Lighting* High Intensity/Flood LED 66                  $79 10 0.82           Appliances Clothes Washer Baseline ‐                   $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)23                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 44                  $487 10 0.08           Appliances Clothes Dryer Baseline ‐                   $0 13 ‐             Appliances Clothes Dryer Moisture Detection 117                $48 13 2.87           Appliances Dishwasher Baseline ‐                   $0 9 ‐             Appliances Dishwasher Energy Star 13                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)17                  $1 9 10.08        Appliances Refrigerator Baseline ‐                   $0 13 ‐             Appliances Refrigerator Energy Star 108                $89 13 1.28           Appliances Refrigerator Baseline (2014)144                $0 13 ‐             Appliances Refrigerator Energy Star (2014)230                $89 13 ‐             * Savings and costs are per unit, e.g., per lamp Avista 2011 Electric Integrated Resource Plan 522 Residential Energy Efficiency Equipment and Measure Data C-24 www.gepllc.com Table C-9 Energy Efficiency Equipment Data — Limited Income, New Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Freezer Baseline ‐                   $0 11 ‐             Appliances Freezer Energy Star 115                $32 11 3.06           Appliances Freezer Baseline (2014)154                $0 11 ‐             Appliances Freezer Energy Star (2014)246                $32 11 ‐             Appliances Second Refrigerator Baseline ‐                   $0 13 ‐             Appliances Second Refrigerator Energy Star 103                $89 13 1.21           Appliances Second Refrigerator Baseline (2014)137                $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)219                $89 13 ‐             Appliances Stove Baseline ‐                   $0 13 ‐             Appliances Stove Convection Oven 5                    $2 13 3.98           Appliances Stove Induction (High Efficiency) 26                  $1,432 13 0.03           Appliances Microwave Baseline ‐                   $0 9 ‐             Electronics Personal Computers Baseline ‐                   $0 5 ‐             Electronics Personal Computers Energy Star 90                  $1 5 30.52        Electronics Personal Computers Climate Savers 129                $175 5 0.30           Electronics TVs Baseline ‐                   $0 11 ‐             Electronics TVs Energy Star 52                  $1 11 82.28        Electronics Devices and Gadgets Devices and Gadgets ‐                   $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                   $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump 63                  $85 15 0.93           Miscellaneous Pool Pump Two‐Speed Pump 254                $579 15 0.54           Miscellaneous Furnace Fan Baseline ‐                   $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 60                  $1 18 137.23      Miscellaneous Miscellaneous Miscellaneous ‐                   $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 523 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-25 An EnerNOC Company Table C-10 Energy-Efficiency Measure Data—Single Family, Existing Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Early Replacement Cooling 10% 0% 0% 8% $2,895 15 0.05 Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 41% 100% $125 4 0.70 Room AC ‐ Removal of Second Unit Cooling 100% 0% 0% 25% $75 5 2.45 Attic Fan ‐ Installation Cooling 1% 0% 12% 23% $116 18 0.08 Attic Fan ‐ Photovoltaic ‐ Installation Cooling 1% 0% 13% 45% $350 19 0.06 Ceiling Fan ‐ Installation Cooling 11% 0% 51% 75% $160 15 0.81 Whole‐House Fan ‐ Installation Cooling 9% 0% 7% 19% $200 18 0.62 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $125 4 1.49 Insulation ‐ Ducting Cooling 3% 0% 15% 75% $500 18 0.78 Insulation ‐ Ducting Space Heating 4% 4% 15% 75% $500 18 0.78 Repair and Sealing ‐ Ducting Cooling 10% 0% 12% 50% $500 18 2.08 Repair and Sealing ‐ Ducting Space Heating 15% 15% 12% 50% $500 18 2.08 Thermostat ‐ Clock/Programmable Cooling 8% 0% 55% 56% $114 11 2.89 Thermostat ‐ Clock/Programmable Space Heating 9% 5% 55% 56% $114 11 2.89 Doors ‐ Storm and Thermal Cooling 1% 0% 38% 75% $320 12 0.25 Doors ‐ Storm and Thermal Space Heating 2% 2% 38% 75% $320 12 0.25 Insulation ‐ Infiltration Control Cooling 3% 0% 46% 90% $266 12 1.72 Insulation ‐ Infiltration Control Space Heating 10% 10% 46% 90% $266 12 1.72 Insulation ‐ Ceiling Cooling 3% 0% 68% 72% $594 20 1.11 Insulation ‐ Ceiling Space Heating 10% 5% 68% 72% $594 20 1.11 Insulation ‐ Radiant Barrier Cooling 5% 0% 5% 90% $923 12 0.41 Insulation ‐ Radiant Barrier Space Heating 2% 1% 5% 90% $923 12 0.41 Roofs ‐ High Reflectivity Cooling 6% 0% 5% 10% $1,550 15 0.05 Windows ‐ Reflective Film Cooling 7% 0% 5% 45% $267 10 0.21 Windows ‐ High Efficiency/Energy Star Cooling 12% 0% 83% 90% $7,500 25 0.38 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 83% 90% $7,500 25 0.38 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 24% 25% $750 15 0.10 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 0% 10% 80% $2,975 15 0.03 Exterior Lighting ‐ Photosensor Control Exterior Lighting 15% 0% 24% 45% $90 8 0.21 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 10% 45% $72 8 0.35 Water Heater ‐ Faucet Aerators Water Heating 4% 2% 53% 90% $24 25 8.78 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 17% 38% $180 13 1.05 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 75% 80% $96 10 4.56 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 54% 75% $15 10 15.53 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 17% 75% $40 5 2.99 Water Heater ‐ Timer Water Heating 8% 4% 17% 40% $194 10 1.06 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 3.28 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 1.76 Refrigerator ‐ Early Replacement Appliances 15% 15% 0% 20% $1,203 13 0.08 Refrigerator ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 3.99 Freezer ‐ Early Replacement Appliances 15% 15% 0% 20% $484 11 0.18 Freezer ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 3.76 Home Energy Management System Cooling 10% 0% 20% 38% $300 20 2.46 Home Energy Management System Space Heating 10% 5% 20% 38% $300 20 2.46 Home Energy Management System Interior Lighting 10% 5% 20% 38% $300 20 2.46 Photovoltaics Cooling 50% 0% 0% 48% $17,000 15 0.10 Photovoltaics Space Heating 25% 25% 0% 48% $17,000 15 0.10 Pool ‐ Pump Timer Miscellaneous 60% 0% 59% 90% $160 15 4.92 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.43 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 25% $1,500 15 0.75 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $3,675 15 1.22 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $13,769 15 0.95 Avista 2011 Electric Integrated Resource Plan 524 Residential Energy Efficiency Equipment and Measure Data C-26 www.gepllc.com Table C-11 Energy-Efficiency Measure Data — Multi Family, Existing Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Early Replacement Cooling 10% 0% 0% 8% $2,895 15 0.02 Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 33% 100% $100 4 0.59 Room AC ‐ Removal of Second Unit Cooling 100% 0% 0% 25% $75 5 1.28 Ceiling Fan ‐ Installation Cooling 11% 0% 32% 75% $80 15 0.49 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $100 4 1.05 Insulation ‐ Ducting Cooling 3% 0% 13% 75% $375 18 1.16 Insulation ‐ Ducting Space Heating 4% 4% 13% 75% $375 18 1.16 Repair and Sealing ‐ Ducting Cooling 4% 0% 12% 50% $500 18 0.95 Repair and Sealing ‐ Ducting Space Heating 4% 4% 12% 50% $500 18 0.95 Thermostat ‐ Clock/Programmable Cooling 8% 0% 27% 68% $114 11 2.39 Thermostat ‐ Clock/Programmable Space Heating 6% 3% 27% 68% $114 11 2.39 Doors ‐ Storm and Thermal Cooling 1% 0% 17% 75% $320 12 0.35 Doors ‐ Storm and Thermal Space Heating 2% 2% 17% 75% $320 12 0.35 Insulation ‐ Infiltration Control Cooling 1% 0% 19% 90% $266 12 2.95 Insulation ‐ Infiltration Control Space Heating 13% 13% 19% 90% $266 12 2.95 Insulation ‐ Ceiling Cooling 13% 0% 27% 30% $215 20 5.67 Insulation ‐ Ceiling Space Heating 13% 13% 27% 30% $215 20 5.67 Insulation ‐ Radiant Barrier Cooling 4% 0% 5% 90% $923 12 0.52 Insulation ‐ Radiant Barrier Space Heating 4% 4% 5% 90% $923 12 0.52 Roofs ‐ High Reflectivity Cooling 13% 0% 3% 10% $1,550 15 0.03 Windows ‐ Reflective Film Cooling 7% 0% 5% 45% $167 10 0.10 Windows ‐ High Efficiency/Energy Star Cooling 13% 0% 70% 90% $2,500 25 0.56 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 70% 90% $2,500 25 0.56 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 6% 10% $256 15 0.14 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 0% 10% 50% $2,975 15 0.00 Exterior Lighting ‐ Photosensor Control Exterior Lighting 20% 0% 7% 45% $90 8 0.04 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 6% 45% $72 8 0.05 Water Heater ‐ Faucet Aerators Water Heating 5% 2% 43% 90% $24 25 6.63 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 6% 38% $180 13 0.65 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 71% 75% $96 10 2.84 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 54% 75% $15 10 9.66 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 17% 75% $40 5 1.86 Water Heater ‐ Timer Water Heating 8% 4% 5% 40% $194 10 0.66 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 2.04 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 0.58 Refrigerator ‐ Early Replacement Appliances 15% 15% 0% 20% $1,203 13 0.07 Refrigerator ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 3.36 Freezer ‐ Early Replacement Appliances 15% 15% 0% 20% $484 11 0.17 Freezer ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 3.57 Home Energy Management System Cooling 10% 0% 5% 13% $300 20 2.46 Home Energy Management System Space Heating 10% 5% 5% 13% $300 20 2.46 Home Energy Management System Interior Lighting 10% 5% 5% 13% $300 20 2.46 Photovoltaics Cooling 50% 0% 0% 12% $8,500 15 0.22 Photovoltaics Space Heating 25% 25% 0% 12% $8,500 15 0.22 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.13 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 10% $1,500 15 0.47 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $2,845 15 0.99 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $10,946 15 0.72 Avista 2011 Electric Integrated Resource Plan 525 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-27 An EnerNOC Company Table C-12 Energy-Efficiency Measure Data — Mobile Home, Existing Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Early Replacement Cooling 10% 0% 0% 8% $2,895 15 0.03 Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 59% 100% $100 4 0.63 Room AC ‐ Removal of Second Unit Cooling 100% 0% 0% 25% $75 5 1.46 Ceiling Fan ‐ Installation Cooling 11% 0% 60% 75% $80 15 0.79 Whole‐House Fan ‐ Installation Cooling 9% 0% 5% 19% $150 18 0.41 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $125 4 1.02 Insulation ‐ Ducting Cooling 3% 0% 15% 75% $375 18 0.94 Insulation ‐ Ducting Space Heating 4% 4% 15% 75% $375 18 0.94 Repair and Sealing ‐ Ducting Cooling 10% 0% 12% 50% $500 18 2.08 Repair and Sealing ‐ Ducting Space Heating 15% 15% 12% 50% $500 18 2.08 Thermostat ‐ Clock/Programmable Cooling 8% 0% 51% 56% $114 11 2.78 Thermostat ‐ Clock/Programmable Space Heating 9% 5% 51% 56% $114 11 2.78 Doors ‐ Storm and Thermal Cooling 1% 0% 38% 75% $320 12 0.25 Doors ‐ Storm and Thermal Space Heating 2% 2% 38% 75% $320 12 0.25 Insulation ‐ Infiltration Control Cooling 3% 0% 46% 90% $266 12 1.80 Insulation ‐ Infiltration Control Space Heating 10% 10% 46% 90% $266 12 1.80 Insulation ‐ Ceiling Cooling 3% 0% 79% 81% $707 20 1.00 Insulation ‐ Ceiling Space Heating 10% 5% 79% 81% $707 20 1.00 Insulation ‐ Radiant Barrier Cooling 2% 0% 5% 90% $923 12 0.35 Insulation ‐ Radiant Barrier Space Heating 1% 1% 5% 90% $923 12 0.35 Roofs ‐ High Reflectivity Cooling 6% 0% 5% 10% $1,550 15 0.02 Windows ‐ Reflective Film Cooling 7% 0% 5% 45% $167 10 0.16 Windows ‐ High Efficiency/Energy Star Cooling 12% 0% 47% 90% $7,500 25 0.37 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 47% 90% $7,500 25 0.37 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 67% 72% $750 15 0.09 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 0% 10% 80% $2,975 15 0.03 Exterior Lighting ‐ Photosensor Control Exterior Lighting 15% 0% 23% 45% $90 8 0.19 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 10% 45% $72 8 0.32 Water Heater ‐ Faucet Aerators Water Heating 4% 2% 79% 90% $24 25 4.47 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 17% 38% $180 13 0.53 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 92% 95% $96 10 2.32 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 54% 75% $15 10 7.91 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 17% 75% $40 5 1.52 Water Heater ‐ Timer Water Heating 8% 4% 17% 40% $194 10 0.54 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 1.67 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 1.65 Refrigerator ‐ Early Replacement Appliances 15% 15% 0% 20% $1,203 13 0.08 Refrigerator ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 4.06 Freezer ‐ Early Replacement Appliances 15% 15% 0% 20% $484 11 0.18 Freezer ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 3.82 Home Energy Management System Cooling 10% 0% 20% 38% $300 20 2.28 Home Energy Management System Space Heating 10% 5% 20% 38% $300 20 2.28 Home Energy Management System Interior Lighting 10% 5% 20% 38% $300 20 2.28 Photovoltaics Cooling 50% 0% 0% 48% $17,000 15 0.09 Photovoltaics Space Heating 25% 25% 0% 48% $17,000 15 0.09 Pool ‐ Pump Timer Miscellaneous 60% 0% 50% 90% $160 15 4.92 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.21 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 10% $1,500 15 0.38 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $2,616 15 0.88 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $11,135 15 0.62 Avista 2011 Electric Integrated Resource Plan 526 Residential Energy Efficiency Equipment and Measure Data C-28 www.gepllc.com Table C-13 Energy-Efficiency Measure Data — Limited Income, Existing Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Early Replacement Cooling 10% 0% 0% 8% $2,895 15 0.03 Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 25% 100% $100 4 0.61 Room AC ‐ Removal of Second Unit Cooling 100% 0% 0% 25% $75 5 2.56 Attic Fan ‐ Installation Cooling 1% 0% 3% 23% $116 18 0.05 Attic Fan ‐ Photovoltaic ‐ Installation Cooling 1% 0% 2% 11% $350 19 0.03 Ceiling Fan ‐ Installation Cooling 11% 0% 41% 75% $80 15 0.89 Whole‐House Fan ‐ Installation Cooling 9% 0% 5% 19% $150 18 0.46 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $125 4 0.82 Insulation ‐ Ducting Cooling 3% 0% 13% 75% $395 18 0.90 Insulation ‐ Ducting Space Heating 4% 4% 13% 75% $395 18 0.90 Repair and Sealing ‐ Ducting Cooling 10% 0% 12% 50% $500 18 2.07 Repair and Sealing ‐ Ducting Space Heating 15% 15% 12% 50% $500 18 2.07 Thermostat ‐ Clock/Programmable Cooling 8% 0% 27% 68% $114 11 2.63 Thermostat ‐ Clock/Programmable Space Heating 9% 5% 27% 68% $114 11 2.63 Doors ‐ Storm and Thermal Cooling 1% 0% 17% 75% $320 12 0.25 Doors ‐ Storm and Thermal Space Heating 2% 2% 17% 75% $320 12 0.25 Insulation ‐ Infiltration Control Cooling 3% 0% 19% 90% $266 12 1.78 Insulation ‐ Infiltration Control Space Heating 10% 10% 19% 90% $266 12 1.78 Insulation ‐ Ceiling Cooling 3% 0% 36% 41% $215 20 2.44 Insulation ‐ Ceiling Space Heating 10% 5% 36% 41% $215 20 2.44 Insulation ‐ Radiant Barrier Cooling 2% 0% 5% 90% $923 12 0.35 Insulation ‐ Radiant Barrier Space Heating 1% 1% 5% 90% $923 12 0.35 Roofs ‐ High Reflectivity Cooling 6% 0% 3% 10% $1,550 15 0.03 Windows ‐ Reflective Film Cooling 7% 0% 5% 45% $167 10 0.18 Windows ‐ High Efficiency/Energy Star Cooling 12% 0% 68% 90% $2,500 25 0.51 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 68% 90% $2,500 25 0.51 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 8% 10% $256 15 0.16 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 50% 10% 50% $2,975 15 0.01 Exterior Lighting ‐ Photosensor Control Exterior Lighting 15% 0% 8% 45% $90 8 0.06 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 6% 45% $72 8 0.10 Water Heater ‐ Faucet Aerators Water Heating 4% 2% 46% 90% $24 25 5.95 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 6% 38% $180 13 0.71 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 73% 75% $96 10 3.09 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 54% 75% $15 10 10.53 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 17% 75% $40 5 2.03 Water Heater ‐ Timer Water Heating 8% 4% 5% 40% $194 10 0.72 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 2.23 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 0.77 Refrigerator ‐ Early Replacement Appliances 15% 15% 0% 20% $1,203 13 0.07 Refrigerator ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 3.36 Freezer ‐ Early Replacement Appliances 15% 15% 0% 20% $484 11 0.17 Freezer ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 3.57 Home Energy Management System Cooling 10% 0% 5% 13% $300 20 2.00 Home Energy Management System Space Heating 10% 5% 5% 13% $300 20 2.00 Home Energy Management System Interior Lighting 10% 5% 5% 13% $300 20 2.00 Photovoltaics Cooling 50% 0% 0% 48% $8,500 15 0.17 Photovoltaics Space Heating 25% 25% 0% 48% $8,500 15 0.17 Pool ‐ Pump Timer Miscellaneous 60% 0% 50% 90% $160 15 2.02 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.24 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 20% $1,500 15 0.51 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $2,970 15 1.03 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $10,798 15 0.69 Avista 2011 Electric Integrated Resource Plan 527 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-29 An EnerNOC Company Table C-14 Energy-Efficiency Measure Data — Single Family, New Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 41% 100% $125 4 0.78 Attic Fan ‐ Installation Cooling 1% 0% 13% 23% $97 18 0.15 Attic Fan ‐ Photovoltaic ‐ Installation Cooling 1% 0% 4% 11% $200 19 0.15 Ceiling Fan ‐ Installation Cooling 10% 0% 53% 75% $160 15 1.09 Whole‐House Fan ‐ Installation Cooling 9% 0% 4% 19% $200 18 0.92 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $125 4 1.69 Insulation ‐ Ducting Cooling 3% 0% 50% 75% $250 18 1.31 Insulation ‐ Ducting Space Heating 4% 4% 50% 75% $250 18 1.31 Thermostat ‐ Clock/Programmable Cooling 8% 0% 91% 95% $114 11 2.91 Thermostat ‐ Clock/Programmable Space Heating 8% 4% 91% 95% $114 11 2.91 Doors ‐ Storm and Thermal Cooling 1% 0% 13% 75% $180 12 0.45 Doors ‐ Storm and Thermal Space Heating 2% 2% 13% 75% $180 12 0.45 Insulation ‐ Ceiling Cooling 3% 0% 68% 71% $634 20 0.99 Insulation ‐ Ceiling Space Heating 8% 6% 68% 71% $634 20 0.99 Insulation ‐ Radiant Barrier Cooling 2% 0% 25% 90% $923 12 0.37 Insulation ‐ Radiant Barrier Space Heating 1% 1% 25% 90% $923 12 0.37 Insulation ‐ Foundation Cooling 3% 0% 20% 90% $358 20 1.35 Insulation ‐ Foundation Space Heating 6% 6% 20% 90% $358 20 1.35 Insulation ‐ Wall Cavity Cooling 2% 0% 20% 90% $236 20 1.15 Insulation ‐ Wall Cavity Space Heating 3% 3% 20% 90% $236 20 1.15 Insulation ‐ Wall Sheathing Cooling 1% 0% 64% 90% $300 20 0.89 Insulation ‐ Wall Sheathing Space Heating 3% 3% 64% 90% $300 20 0.89 Roofs ‐ High Reflectivity Cooling 5% 0% 5% 90% $517 15 0.17 Windows ‐ Reflective Film Cooling 7% 0% 2% 45% $267 10 0.31 Windows ‐ High Efficiency/Energy Star Cooling 12% 0% 100% 100% $2,200 25 0.62 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 100% 100% $2,200 25 0.62 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 24% 27% $500 15 0.16 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 0% 10% 80% $2,975 15 0.04 Exterior Lighting ‐ Photosensor Control Exterior Lighting 13% 0% 13% 45% $90 8 0.19 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 16% 45% $72 8 0.36 Water Heater ‐ Faucet Aerators Water Heating 4% 2% 38% 90% $24 25 11.03 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 8% 41% $50 13 4.71 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 90% 95% $48 10 11.33 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $15 10 19.30 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 5% 75% $40 5 3.70 Water Heater ‐ Timer Water Heating 8% 4% 5% 40% $194 10 1.31 Water Heater ‐ Drainwater Heat Reocvery Water Heating 9% 5% 1% 90% $899 15 0.47 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 4.06 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 1.99 Home Energy Management System Cooling 10% 0% 20% 68% $250 20 3.16 Home Energy Management System Space Heating 10% 5% 20% 68% $250 20 3.16 Home Energy Management System Interior Lighting 10% 5% 20% 68% $250 20 3.16 Photovoltaics Cooling 50% 0% 1% 48% $15,800 15 0.12 Photovoltaics Space Heating 25% 25% 1% 48% $15,800 15 0.12 Pool ‐ Pump Timer Miscellaneous 60% 0% 55% 90% $160 15 5.43 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.64 Advanced New Construction Designs Cooling 40% 0% 2% 45% $4,500 18 1.09 Advanced New Construction Designs Space Heating 40% 40% 2% 45% $4,500 18 1.09 Advanced New Construction Designs Interior Lighting 20% 20% 2% 45% $4,500 18 1.09 Energy Star Homes Cooling 20% 0% 12% 75% $5,000 18 0.75 Energy Star Homes Space Heating 20% 20% 12% 75% $5,000 18 0.75 Energy Star Homes Interior Lighting 20% 20% 12% 75% $5,000 18 0.75 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 25% $1,500 15 0.94 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $3,675 15 1.53 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $13,769 15 1.14 Avista 2011 Electric Integrated Resource Plan 528 Residential Energy Efficiency Equipment and Measure Data C-30 www.gepllc.com Table C-15 Energy-Efficiency Measure Data — Multi Family, New Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 33% 100% $100 4 0.62 Ceiling Fan ‐ Installation Cooling 10% 0% 18% 75% $80 15 0.77 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $100 4 1.12 Insulation ‐ Ducting Cooling 2% 0% 50% 75% $200 18 1.18 Insulation ‐ Ducting Space Heating 2% 2% 50% 75% $200 18 1.18 Thermostat ‐ Clock/Programmable Cooling 8% 0% 77% 80% $114 11 2.29 Thermostat ‐ Clock/Programmable Space Heating 5% 3% 77% 80% $114 11 2.29 Doors ‐ Storm and Thermal Cooling 1% 0% 19% 75% $180 12 0.66 Doors ‐ Storm and Thermal Space Heating 2% 2% 19% 75% $180 12 0.66 Insulation ‐ Ceiling Cooling 12% 0% 27% 48% $152 20 10.12 Insulation ‐ Ceiling Space Heating 16% 16% 27% 48% $152 20 10.12 Insulation ‐ Radiant Barrier Cooling 2% 0% 5% 90% $923 12 0.50 Insulation ‐ Radiant Barrier Space Heating 3% 3% 5% 90% $923 12 0.50 Insulation ‐ Wall Cavity Cooling 2% 0% 4% 90% $63 20 6.14 Insulation ‐ Wall Cavity Space Heating 4% 4% 4% 90% $63 20 6.14 Insulation ‐ Wall Sheathing Cooling 1% 0% 55% 90% $210 20 1.59 Insulation ‐ Wall Sheathing Space Heating 3% 3% 55% 90% $210 20 1.59 Roofs ‐ High Reflectivity Cooling 8% 0% 0% 90% $517 15 0.10 Windows ‐ Reflective Film Cooling 7% 0% 2% 45% $167 10 0.17 Windows ‐ High Efficiency/Energy Star Cooling 13% 0% 100% 100% $2,200 25 0.63 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 100% 100% $2,200 25 0.63 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 6% 9% $256 15 0.14 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 0% 10% 50% $2,975 15 0.01 Exterior Lighting ‐ Photosensor Control Exterior Lighting 20% 0% 1% 45% $90 8 0.04 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 11% 45% $72 8 0.05 Water Heater ‐ Faucet Aerators Water Heating 5% 2% 11% 90% $24 25 7.63 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 0% 41% $50 13 2.68 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 66% 75% $48 10 6.45 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $15 10 10.99 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 5% 75% $40 5 2.11 Water Heater ‐ Timer Water Heating 8% 4% 5% 40% $194 10 0.75 Water Heater ‐ Drainwater Heat Reocvery Water Heating 9% 5% 1% 90% $899 15 0.27 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 2.31 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 0.63 Home Energy Management System Cooling 10% 0% 5% 68% $250 20 3.19 Home Energy Management System Space Heating 10% 5% 5% 68% $250 20 3.19 Home Energy Management System Interior Lighting 10% 5% 5% 68% $250 20 3.19 Photovoltaics Cooling 50% 0% 0% 12% $7,900 15 0.26 Photovoltaics Space Heating 25% 25% 0% 12% $7,900 15 0.26 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.23 Advanced New Construction Designs Cooling 40% 0% 2% 45% $2,500 18 1.47 Advanced New Construction Designs Space Heating 40% 40% 2% 45% $2,500 18 1.47 Advanced New Construction Designs Interior Lighting 20% 20% 2% 45% $2,500 18 1.47 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 10% $1,500 15 0.53 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $2,845 15 1.13 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $10,946 15 0.84 Avista 2011 Electric Integrated Resource Plan 529 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-31 An EnerNOC Company Table C-16 Energy-Efficiency Measure Data — Mobile Home, New Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 59% 100% $100 4 0.66 Ceiling Fan ‐ Installation Cooling 10% 0% 57% 75% $80 15 0.95 Whole‐House Fan ‐ Installation Cooling 9% 0% 4% 19% $150 18 0.53 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $125 4 1.09 Insulation ‐ Ducting Cooling 3% 0% 50% 75% $200 18 1.59 Insulation ‐ Ducting Space Heating 4% 4% 50% 75% $200 18 1.59 Thermostat ‐ Clock/Programmable Cooling 8% 0% 57% 75% $114 11 2.77 Thermostat ‐ Clock/Programmable Space Heating 8% 4% 57% 75% $114 11 2.77 Doors ‐ Storm and Thermal Cooling 1% 0% 13% 75% $180 12 0.49 Doors ‐ Storm and Thermal Space Heating 2% 2% 13% 75% $180 12 0.49 Insulation ‐ Ceiling Cooling 3% 0% 79% 81% $176 20 3.02 Insulation ‐ Ceiling Space Heating 8% 6% 79% 81% $176 20 3.02 Insulation ‐ Radiant Barrier Cooling 2% 0% 25% 90% $923 12 0.36 Insulation ‐ Radiant Barrier Space Heating 1% 1% 25% 90% $923 12 0.36 Insulation ‐ Wall Cavity Cooling 2% 0% 20% 90% $197 20 1.35 Insulation ‐ Wall Cavity Space Heating 3% 3% 20% 90% $197 20 1.35 Insulation ‐ Wall Sheathing Cooling 1% 0% 64% 90% $300 20 0.96 Insulation ‐ Wall Sheathing Space Heating 3% 3% 64% 90% $300 20 0.96 Roofs ‐ High Reflectivity Cooling 5% 0% 5% 90% $517 15 0.07 Windows ‐ Reflective Film Cooling 7% 0% 2% 45% $167 10 0.21 Windows ‐ High Efficiency/Energy Star Cooling 12% 0% 85% 90% $2,200 25 0.57 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 85% 90% $2,200 25 0.57 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 67% 72% $500 15 0.14 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 50% 10% 80% $2,975 15 0.03 Exterior Lighting ‐ Photosensor Control Exterior Lighting 13% 0% 13% 45% $90 8 0.17 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 16% 45% $72 8 0.32 Water Heater ‐ Faucet Aerators Water Heating 4% 2% 57% 90% $24 25 5.14 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 8% 41% $50 13 2.20 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 92% 95% $48 10 5.28 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $15 10 9.00 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 5% 75% $40 5 1.72 Water Heater ‐ Timer Water Heating 8% 4% 5% 40% $194 10 0.61 Water Heater ‐ Drainwater Heat Reocvery Water Heating 9% 5% 1% 90% $899 15 0.22 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 1.89 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 1.79 Home Energy Management System Cooling 10% 0% 20% 68% $250 20 2.94 Home Energy Management System Space Heating 10% 5% 20% 68% $250 20 2.94 Home Energy Management System Interior Lighting 10% 5% 20% 68% $250 20 2.94 Photovoltaics Cooling 50% 0% 1% 48% $15,800 15 0.10 Photovoltaics Space Heating 25% 25% 1% 48% $15,800 15 0.10 Pool ‐ Pump Timer Miscellaneous 60% 0% 35% 90% $160 15 5.38 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.28 Advanced New Construction Designs Cooling 30% 0% 2% 45% $4,500 18 0.52 Advanced New Construction Designs Space Heating 30% 30% 2% 45% $4,500 18 0.52 Advanced New Construction Designs Interior Lighting 20% 20% 2% 45% $4,500 18 0.52 Energy Efficient Manufactured Homes Cooling 20% 0% 10% 75% $3,500 18 0.88 Energy Efficient Manufactured Homes Space Heating 20% 20% 10% 75% $3,500 18 0.88 Energy Efficient Manufactured Homes Interior Lighting 20% 20% 10% 75% $3,500 18 0.88 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 10% $1,500 15 0.44 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $2,616 15 1.00 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $11,738 15 0.69 Avista 2011 Electric Integrated Resource Plan 530 Residential Energy Efficiency Equipment and Measure Data C-32 www.gepllc.com Table C-17 Energy-Efficiency Measure Data — Limited Income, New Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 25% 100% $100 4 0.65 Attic Fan ‐ Installation Cooling 1% 0% 15% 23% $97 18 0.07 Attic Fan ‐ Photovoltaic ‐ Installation Cooling 1% 0% 5% 11% $200 19 0.07 Ceiling Fan ‐ Installation Cooling 10% 0% 33% 75% $80 15 1.03 Whole‐House Fan ‐ Installation Cooling 9% 0% 4% 19% $150 18 0.58 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $125 4 0.87 Insulation ‐ Ducting Cooling 3% 0% 50% 75% $210 18 1.47 Insulation ‐ Ducting Space Heating 4% 4% 50% 75% $210 18 1.47 Thermostat ‐ Clock/Programmable Cooling 8% 0% 29% 30% $114 11 2.54 Thermostat ‐ Clock/Programmable Space Heating 8% 4% 29% 30% $114 11 2.54 Doors ‐ Storm and Thermal Cooling 1% 0% 19% 75% $180 12 0.46 Doors ‐ Storm and Thermal Space Heating 2% 2% 19% 75% $180 12 0.46 Insulation ‐ Ceiling Cooling 3% 0% 36% 48% $152 20 3.20 Insulation ‐ Ceiling Space Heating 8% 6% 36% 48% $152 20 3.20 Insulation ‐ Radiant Barrier Cooling 2% 0% 5% 90% $923 12 0.36 Insulation ‐ Radiant Barrier Space Heating 1% 1% 5% 90% $923 12 0.36 Insulation ‐ Foundation Cooling 3% 0% 4% 90% $358 20 1.37 Insulation ‐ Foundation Space Heating 6% 6% 4% 90% $358 20 1.37 Insulation ‐ Wall Cavity Cooling 2% 0% 4% 90% $63 20 3.46 Insulation ‐ Wall Cavity Space Heating 3% 3% 4% 90% $63 20 3.46 Insulation ‐ Wall Sheathing Cooling 1% 0% 59% 90% $210 20 1.19 Insulation ‐ Wall Sheathing Space Heating 3% 3% 59% 90% $210 20 1.19 Roofs ‐ High Reflectivity Cooling 5% 0% 0% 90% $517 15 0.08 Windows ‐ Reflective Film Cooling 7% 0% 2% 45% $167 10 0.23 Windows ‐ High Efficiency/Energy Star Cooling 12% 0% 78% 90% $2,200 25 0.55 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 78% 90% $2,200 25 0.55 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 8% 9% $256 15 0.17 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 50% 10% 50% $2,975 15 0.01 Exterior Lighting ‐ Photosensor Control Exterior Lighting 13% 0% 0% 45% $90 8 0.06 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 11% 45% $72 8 0.10 Water Heater ‐ Faucet Aerators Water Heating 4% 2% 11% 90% $24 25 6.84 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 0% 41% $50 13 2.92 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 21% 75% $48 10 7.03 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $15 10 11.97 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 5% 75% $40 5 2.29 Water Heater ‐ Timer Water Heating 8% 4% 5% 40% $194 10 0.81 Water Heater ‐ Drainwater Heat Reocvery Water Heating 9% 5% 1% 90% $899 15 0.29 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 2.52 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 0.83 Home Energy Management System Cooling 10% 0% 5% 68% $250 20 2.50 Home Energy Management System Space Heating 10% 5% 5% 68% $250 20 2.50 Home Energy Management System Interior Lighting 10% 5% 5% 68% $250 20 2.50 Photovoltaics Cooling 50% 0% 0% 48% $7,900 15 0.20 Photovoltaics Space Heating 25% 25% 0% 48% $7,900 15 0.20 Pool ‐ Pump Timer Miscellaneous 60% 0% 35% 90% $160 15 2.21 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.30 Advanced New Construction Designs Cooling 30% 0% 2% 45% $2,500 18 1.25 Advanced New Construction Designs Space Heating 30% 30% 2% 45% $2,500 18 1.25 Advanced New Construction Designs Interior Lighting 20% 20% 2% 45% $2,500 18 1.25 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 20% $1,500 15 0.58 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $2,970 15 1.18 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $10,798 15 0.81 Avista 2011 Electric Integrated Resource Plan 531 Global Energy Partners D-1 An EnerNOC Company APPENDIX D COMMERCIAL ENERGY EFFICIENCY EQUIPMENT AND MEASURE DATA This appendix presents detailed information for all commercial and industrial energy efficiency equipment and measures that were evaluated in LoadMAP. Several sets of tables are provided. Table D-1 provides brief descriptions for all equipment and measures that were assessed for potenital. Tables D-2 through D-9 list the detailed unit-level data for the equipment measures for each of the C&I segments — small/medium commercial, large commercial, extra-large commercial, and extra-large industial — and for existing and new construction, respectively. Savings are in kWh/yr/sq.ft., and incremental costs are in $/sq.ft. The B/C ratio is zero if the measure represents the baseline technology or if the technology is not available in the first year of the forecast (2012). The B/C ratio is calculated within LoadMAP for each year of the forecast and is available once the technology or measure becomes available. Tables D-10 through D-17 list the detailed unit-level data for the non-equipment energy efficiency measures for each of the segments and for existing and new construction, respectively. Because these measures can produce energy-use savings for multiple end-use loads (e.g., insulation affects heating and cooling energy use) savings are expressed as a percentage of the end-use loads. Base saturation indicates the percentage of buildings in which the measure is already installed. Applicability/Feasibility is the product of two factors that account for whether the measure is applicable to the building. Cost is expressed in $/sq.ft. The detailed measure-level tables present the results of the benefit/cost (B/C) analysis for the first year of the forecast. The B/C ratio is zero if the measure represents the baseline technology or if the measure is not available in the first year of the forecast (2012). The B/C ratio is calculated within LoadMAP for each year of the forecast and is available once the technology or measure becomes available. Note that Tables D-2 through D-17 present information for Washington. For Idaho, savings and B/C ratios may be slightly different due to weather-related usage, differences in the states’ market profiles, and different retail electricity prices. Although Idaho-specific values are not presented here, they are available within the LoadMAP files. Avista 2011 Electric Integrated Resource Plan 532 Commercial Energy Efficiency Equipment and Measure Data D-2 www.gepllc.com Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Cooling Central Cooling Systems Commercial buildings are often cooled with a central chiller plant that  creates chilled water for distribution throughout the facility. Chillers can  be air source or water source, which include heat rejection via a  condenser loop and cooling tower. Because of the wide variety of  system types and sizes, savings and cost values for efficiency  improvements in chiller systems represent an average over air‐ and  water‐cooled systems, as well as screw, reciprocating, and centrifugal  technologies. Under this simplified approach, each central system is  characterized by an aggregate efficiency value (inclusive of chiller,  pumps, motors and condenser loop equipment), in kW/ton with a  further efficiency upgrade through the application of variable  refrigerant flow technology.   Cooling Chilled Water Variable Flow  System  The chilled water variable flow system is essentially a single chilled  water loop with variable volume and speed. A single set of pumps  operated by a VSD eliminates the need for separate distribution pumps  and makes the chilled water flow throughout the entire system be  variable. The use of adjustable flow limiting valves is designed to  optimize water flow. Such valves provide flow limiting, shut‐off and  adjustment functions, automatically compensating for changes in  system pressure to maximize energy efficiency.  Cooling Packaged Cooling Systems /  Rooftop Units (RTUs) and  Heat Pumps    Packaged cooling systems are simple to install and maintain, and are  commonly used in small and medium‐sized commercial buildings.   Applications range from a single supply system with air intake filters,  supply fan, and cooling coil, or can become more complex with the  addition of a return air duct, return air fan, and various controls to  optimize performance. For packaged RTUs, varying Energy Efficiency  Ratios (EER) were considered, as well as ductless or “mini‐split” systems  with variable refrigerant flow. For heat pumps, units with increasing EER  and COP levels were evaluated, as well as a ductless mini‐split system.   Cooling Packaged Terminal Air  Conditioners (PTAC)  Window (or wall) mounted room air conditioners (and heat pumps) are  designed to cool (or heat) a single room or space.  This type of unit  incorporates a complete air‐cooled refrigeration and air‐handling  system in an individual package.  Conditioned air is discharged in  response to thermostatic control to meet room requirements.  Each  unit has a self‐contained, air‐cooled direct expansion (DX) cooling  system, a heat pump or other fuel‐based heating system and associated  controls. The energy savings increase with each incremental increase in  efficiency, measured in terms of EER level.    Space Heating Convert to Gas This fuel‐switching measure is the replacement of an electric furnace  with a gas furnace. This measure eliminates all prior electricity  consumption and demand due to electric space heating. In this study, it  is assumed this measure can be implemented only in buildings within  500 feet of a gas main.  Avista 2011 Electric Integrated Resource Plan 533 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-3 An EnerNOC Company Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Cooling, Space  Heating,  Interior  Lighting  Energy Management  System  An energy management system (EMS) allows managers/owners to  monitor and control the major energy‐consuming systems within a  commercial building.  At the minimum, the EMS can be used to monitor  and record energy consumption of the different end‐uses in a building,  and can control operation schedules of the HVAC and lighting systems.   The monitoring function helps building managers/owners to identify  systems that are operating inefficiently so that actions can be taken to  correct the problem.  The EMS can also provide preventive maintenance  scheduling that will reduce the cost of operations and maintenance in  the long run.  The control functionality of the EMS allows the building  manager/owner to operate building systems from one central location.   The operation schedules set via the EMS help to prevent building  systems from operating during unwanted or unoccupied periods. This  analysis assumes that this measure is limited to buildings with a central  HVAC system.  Cooling, Space  Heating  Economizer Economizers allow outside air (when it is cool and dry enough) to be  brought into the building space to meet cooling loads instead of using  mechanically cooled interior air.  A dual enthalpy economizer consists of  indoor and outdoor temperature and humidity sensors, dampers,  motors, and motor controls.  Economizers are most applicable to  temperate climates and savings will be smaller in extremely hot or  humid areas.  Cooling VSD on Water Pumps The part‐load efficiency of chilled water loop pumps can be improved  substantially by varying the speed of the motor drive according to the  building demand for cooling.  There is also a reduction in piping losses  associated with this measure that has a major impact on the energy use  for a building.  However, pump speeds can generally only be reduced to  a minimum specified rate, because chillers and the control valves may  require a minimum flow rate to operate.  There are two major types of  variable speed drives:  mechanical and electronic.  An additional benefit  of variable‐speed drives is the ability to start and stop the motor  gradually, thus extending the life of the motor and associated  machinery.  This analysis assumes that electronic variable speed drives  are installed.  Cooling Turbocor Compressor Turbocor compressors use oil‐free magnetic bearings to reduce friction  losses and couples that with a two‐stage centrifugal compressor to  reduce central chiller energy consumption.  Cooling High‐Efficiency Cooling  Tower Fans  High efficiency cooling tower fans utilize variable frequency drives in the  cooling tower design. VFDs improve fan performance by adjusting fan  speed and rotation as conditions change.  Avista 2011 Electric Integrated Resource Plan 534 Commercial Energy Efficiency Equipment and Measure Data D-4 www.gepllc.com Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Cooling Condenser Water  Temperature Reset  Chilled water reset controls save energy by improving chiller  performance through increasing the supply chilled water temperature,  which allows increased suction pressure during low load periods.   Raising the chilled water temperature also reduces chilled water piping  losses.  However, the primary savings from the chilled water reset  measure results from chiller efficiency improvement.  This is due partly  to the smaller temperature difference between chilled water and  ambient air, and partly due to the sensitivity of chiller performance to  suction temperature.  Cooling Maintenance  Filters, coils, and fins require regular cleaning and maintenance for the  heat pump or roof top unit to function effectively and efficiently  throughout its years of service. Neglecting necessary maintenance leads  to a steady decline in performance while energy use increases.   Maintenance can increase the efficiency of poorly performing  equipment by as much as 10%.  Cooling Evaporative Precooler Evaporative precooling can improve the performance of air conditioning  systems, most commonly RTUs. These systems typically use indirect  evaporative cooling as a first stage to pre‐cool outside air. If the  evaporative system cannot meet the full cooling load, the air steam is  further cooled with conventional refrigerative air conditioning  technology.     Cooling Roof‐ High Reflectivity  (Cool Roof)  The color and material of a building structure surface will determine the  amount of solar radiation absorbed by that surface and subsequently  transferred into a building. This is called solar absorptance. By using a  material or painting the roof with a light color (and a lower solar  absorptance), the roof will absorb less solar radiation and consequently  reduce the cooling load.   Cooling, Space  Heating  Green Roofs A green roof covers a section or the entire building roof with a  waterproof membrane and vegetative material. Like cool roofs, green  roofs can reduce solar absorptance and they can also provide insulation.  They also provide non‐energy benefits by absorbing rainwater and thus  reducing storm water run‐off, providing wildlife habitat, and reducing  so‐called urban heat island effects.  Cooling, Space  Heating,  Ventilation  HVAC Retrocommissioning Over time, the performance of complex mechanical systems providing  heating and cooling to existing commercial spaces degrades as a result  of inappropriate changes to or overrides of controls, deteriorating  equipment, clogged filters, changing demands and schedules, and  pressure imbalances. Retrocommissioning is a comprehensive analysis  of an entire system in which an engineer assesses shortcomings in  system performance, and then optimizes through a process of tune‐up,  maintenance, and reprogramming of control or automation software.  Energy efficiency programs throughout the country promote  retrocommissioning as a means of greatly reducing energy consumption  in existing buildings.  Avista 2011 Electric Integrated Resource Plan 535 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-5 An EnerNOC Company Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Cooling, Space  Heating,  Ventilation,  Interior  Lighting  Comprehensive  Retrocommissioning  Comprehensive retrocommissioning covers not only HVAC and lighting,  but other existing building systems as well. For example, it can improve  efficiency of non‐HVAC motors, vertical transport systems, and  domestic hot water systems.   Cooling, Space  Heating,  Ventilation,  Interior  Lighting/Exteri or Lighting  HVAC Commissioning     Lighting Commissioning     Comprehensive  Commissioning  For new construction and major renovations, commissioning ensures  that building systems are properly designed, specified, and installed to  meet the design intent and provide high‐efficiency performance. As the  names suggests, HVAC Commissioning and Lighting Commissioning  focus only on HVAC and lighting equipment and controls.  Comprehensive commissioning addresses these systems but usually  begins earlier in the design process, and may also address domestic hot  water, non‐HVAC fans, vertical transport, telecommunications, fire  protection, and other building systems.  Cooling, Space  Heating,  Interior  Lighting  Advanced New  Construction Designs  Advanced new construction designs use an integrated approach to the  design of new buildings to account for the interaction of building  systems. Typically, architects and engineers work closely to specify the  building orientation, building shell, building mechanical systems, and  controls strategies with the goal of optimizing building energy efficiency  and comfort. Options that may be evaluated and incorporated include  passive solar strategies, increased thermal mass, daylighting strategies,  and shading strategies, This measure was modeled for new construction  only.  Cooling, Space  Heating  Programmable Thermostat A programmable thermostat can be added to most heating/cooling  systems.  They are typically used during winter to lower temperatures  at night and in summer to increase temperatures during the afternoon.   There are two‐setting models, and well as models that allow separate  programming for each day of the week.  The energy savings from this  type of thermostat are identical to those of a "setback" strategy with  standard thermostats, but the convenience of a programmable  thermostat makes it a much more attractive option.  In this analysis, the  baseline is assumed to have no thermostat setback.  Cooling, Space  Heating  Duct Repair and Sealing An ideal duct system would be free of leaks.  Leakage in unsealed ducts  varies considerably because of the differences in fabricating machinery  used, the methods for assembly, installation workmanship, and age of  the ductwork.  Air leaks from the system to the outdoors result in a  direct loss proportional to the amount of leakage and the difference in  enthalpy between the outdoor air and the conditioned air.  To seal  ducts, a wide variety of sealing methods and products exist.  Each has a  relatively short shelf life, and no documented research has identified  the aging characteristics of sealant applications.  This analysis assumes  that the baseline air loss from ducts has doubled, and conducting repair  and sealing of the ducts will restore leakage from ducts to the original  baseline level.  Avista 2011 Electric Integrated Resource Plan 536 Commercial Energy Efficiency Equipment and Measure Data D-6 www.gepllc.com Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Cooling, Space  Heating  Duct Insulation Air distribution ducts can be insulated to reduce heating or cooling  losses.  Best results can be achieved by covering the entire surface area  with insulation.  Insulation material inhibits the transfer of heat through  the air‐supply duct.  Several types of ducts and duct insulation are  available, including flexible duct, pre‐insulated duct, duct board, duct  wrap, tacked, or glued rigid insulation, and waterproof hard shell  materials for exterior ducts.    Cooling, Space  Heating  Insulation – Radiant Barrier Radiant barriers inhibit heat transfer by thermal radiation. When a  radiant barrier is installed beneath the roofing material much of the  heat radiated from a hot roof is reflected back to the roof limiting the  amount of heat emitted downwards.   Cooling, Space  Heating  High‐Efficiency Windows High‐efficiency windows, such as those labeled under the ENERGY STAR  Program, are designed to reduce a building's energy bill while increasing  comfort for the occupants at the same time.  High‐efficiency windows  have reducing properties that reduce the amount of heat transfer  through the glazing surface.  For example, some windows have a low‐E  coating, which is a thin film of metallic oxide coating on the glass  surface that allows passage of short‐wave solar energy through glass  and prevents long‐wave energy from escaping.  Another example is  double‐pane glass that reduces conductive and convective heat  transfer.  There are also double‐pane glasses that are gas‐filled (usually  argon) to further increase the insulating properties of the window.  Cooling, Space  Heating  Ceiling and Wall Cavity   Insulation  Thermal insulation is material or combinations of materials that are  used to inhibit the flow of heat energy by conductive, convective, and  radiative transfer modes.  Thus, thermal insulation can conserve energy  by reducing the heat loss or gain of a building.  The type of building  construction defines insulating possibilities.  Typical insulating materials  include:  loose‐fill (blown) cellulose; loose‐fill (blown) fiberglass; and  rigid polystyrene.  Ventilation Cooking – Exhaust Hoods  with Sensor Controls  Improved exhaust hoods involve installing variable‐speed controls on  commercial kitchen hoods. These controls provide ventilation based on  actual cooking loads. When grills, broilers, stoves, fryers or other  kitchen appliances are not being used, the controls automatically sense  the reduced load and decrease the fan speed accordingly. This results in  lower energy consumption because the system is only running as  needed rather than at 100% capacity at all times.  Ventilation Variable Air Volume A variable air volume ventilation system modulates the air flow rate as  needed based on the interior conditions of the building to reduce fan  load, improve dehumidification, and reduce energy usage.  Ventilation Fans – Energy Efficient  Motors  High‐efficiency motors are essentially interchangeable with standard  motors, but differences in construction make them more efficient.   Energy‐efficient motors achieve their improved efficiency by reducing  the losses that occur in the conversion of electrical energy to  mechanical energy.  This analysis assumes that the efficiency of supply  fans is increased by 5% due to installing energy‐efficient motors.  Avista 2011 Electric Integrated Resource Plan 537 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-7 An EnerNOC Company Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Ventilation Fans – Variable Speed  Control (VSD)  The part‐load efficiency of ventilation fans can be improved  substantially by varying the speed of the motor drive.  There are two  major types of variable speed controls:  mechanical and electronic.  An  additional benefit of variable‐speed controls is the ability to start and  stop the motor gradually, thus extending the life of the motor and  associated machinery. This analysis assumes that electronic variable  speed controls are installed.  Water Heating High‐Efficiency Water  Heater Systems  Efficient electric water heaters are characterized by a high recovery or  thermal efficiency (percentage of delivered electric energy which is  transferred to the water) and low standby losses (the ratio of heat lost  per hour to the content of the stored water). Included in the savings  associated with high‐efficiency electric water heaters are timers that  allow temperature setpoints to change with hot water demand  patterns. For example, the heating element could be shut off  throughout the night, increasing the overall energy factor of the unit. In  addition, tank and pipe insulation reduces standby losses and therefore  reduces the demands on the water heater. This analysis considers  conventional electric water heaters with efficiency greater than 96%, as  well as geothermal heat pump water heaters for effective efficiency  greater than one. Solar water heating was evaluated as well.  Water Heating Convert to Gas This fuel‐switching measure is the replacement of an electric water  heater with a gas‐fired water heater. This measure will eliminate all  prior electricity consumption and demand due to electric water heating.  In this study, it is assumed that this measure can be implemented only  in buildings within 500 feet of a gas main.  Water Heating Heat Pump Water Heater Heat pump water heaters use heat pump technology to extract heat  from the ambient surroundings and transfer it to a hot water tank.  These devices are available as an alternative to conventional tank water  heaters of 55 gallons or larger.    Water Heating Faucet Aerators/Low Flow  Nozzles  A faucet aerator or low flow nozzle spreads the stream from a faucet  helping to reduce water usage. The amount of water passing through  the aerator is measured in gallons per minute (GPM) and the lower the  GPM the more water the aerator conserves.   Water Heating Pipe Insulation Insulating hot water pipes decreases the amount of energy lost during  distribution of hot water throughout the building. Insulating pipes will  result in quicker delivery of hot water and allows lowering the water  heating set point. There are several different types of insulation, the  most common being polyethylene and neoprene.        Water Heating High‐Efficiency Circulation  Pump  A high efficiency circulation pump uses an electronically commutated  motor (ECM) to improve motor efficiency over a larger range of partial  loads. In addition, an ECM allows for improved low RPM performance  with greater torque and smaller pump dimensions.  Avista 2011 Electric Integrated Resource Plan 538 Commercial Energy Efficiency Equipment and Measure Data D-8 www.gepllc.com Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Water Heating Tank Blanket/Insulation Insulation levels on domestic hot water heaters can be increased by  installing a fiberglass blanket on the outside of the tank. This increase in  insulation reduces standby losses and thus saves energy.  Water heater  insulation is available either by the blanket or by square foot of  fiberglass insulation with R‐values ranging from 5 to 14.    Water Heating Thermostat Setback Installing a setback thermostat on the water heater can lead to  significant energy savings during periods when there is no one in the  building.    Water Heating Hot Water Saver A hot water saver is a plumbing device that attaches to the showerhead  and that pauses the flow of water until the water is hot enough for use.  The water is re‐started by the flip of a switch.  Interior  Lighting,  Exterior  Lighting  Lamp Replacement  (Interior Screw‐in, HID, and  Linear Fluorescent   Exterior Screw‐in, HID, and  Linear Fluorescent)  Commercial lighting differs from the residential sector in that efficiency  changes typically require more than the simple purchase and quick  installation of a screw‐in compact fluorescent lamp. Restrictions  regarding ballasts, fixtures, and circuitry limit the potential for direct  substitution of one lamp type for another. However, such replacements  do exist. For example, screw‐in incandescent lamps can readily be  replaced with CFLs or LEDs. Also, during the buildout for a leased office  space, the management could decide to replace all T12 lamps and  magnetic ballasts with T8/electronic ballast configurations. This type of  decision‐making is modeled on a stock turnover basis because of the  time between opportunities for upgrades.  Interior  Lighting,  Exterior  Lighting  Lighting  Retrocommissioning  Lighting retrocommissioning projects in existing commercial buildings  do not require an event such as a tenant turnover, a major renovation,  or an update to electrical circuits to drive its adoption. Rather, a  decision‐maker can decide at any time to perform a comprehensive  audit of a facility's lighting systems, followed by an upgrade of  equipment (lamps, ballasts, fixtures, reflectors), controls (occupancy  sensors, daylighting controls, and central automation).   Interior  Lighting   Delamping and Install  Reflectors  While sometimes included in lighting retrofit projects, delamping is  often performed as a separate energy efficiency measure in which a  lighting engineer analyzes the lighting provided by current systems  compared to the requirements of building occupants. This often leads  to the removal of unnecessary lamps corresponding to an overall  reduction in energy usage. .In addition, installing a reflector in each  fixture can improve light distribution from the remaining lamps.    Interior  Lighting,  Exterior  Lighting  Lighting Time Clocks and  Timers  While outdoor lighting is typically required only at night, in many cases  lighting remains on during daylight hours. A simple timer can set a  diurnal schedule for outdoor lighting and thus reduce the operating  hours by as much as 50%.  Interior  Lighting  Central Lighting Controls Central lighting control systems provide building‐wide control of interior  lighting to ensure that lights are properly scheduled based on expected  building occupancy. Individual zones or circuits can be controlled.  Avista 2011 Electric Integrated Resource Plan 539 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-9 An EnerNOC Company Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Interior  Lighting  Photocell Controlled T8  Dimming Ballasts  Photocells, in concert with dimming ballasts, can detect when adequate  daylighting is available and dim or turn off lights to reduce electricity  consumption. Usually one photocell is used to control a group of  fixtures, a zone, or a circuit.   Interior  Lighting  Bi‐Level Fixture with  Occupancy  Sensor  Bi‐level fixtures with occupancy sensors detect when a space is  unoccupied and reduce light output to a lower level. These devices   Interior  Lighting  High Bay Fixtures Fluorescent fixtures designed for high‐bay applications have several  advantages over similar HID fixtures: lower energy consumption, lower  lumen depreciation rates, better dimming options, faster start‐up and  restrike, better color rendition, more pupil lumens, and reduced glare.   Interior  Lighting  Occupancy Sensor The installation of occupancy sensors allows lights to be turned off  during periods when a space is unoccupied, virtually eliminating the  wasted energy due to lights being left on. There are several types of  occupancy sensors in the market.   Interior  Lighting  LED Exit Lighting The lamps inside exit signs represent a significant energy end‐use, since  they usually operate 24 hours per day.  Many old exit signs use  incandescent lamps, which consume approximately 40 watts per sign.   The incandescent lamps can be replaced with LED lamps that are  specially designed for this specific purpose.  In comparison, the LED  lamps consume approximately 2‐5 watts.  Interior  Lighting  Task Lighting In commercial facilities, individual work areas can use task lighting  instead of brightly lighting the entire area.  Significant energy savings  can be realized by focusing light directly where it is needed and  lowering the general lighting level.  An example of task lighting is the  common desk lamp.  A 25W desk lamp can be installed in place of a  typical lamp in a fixture.  Interior  Lighting,  Cooling  Hotel Guestroom Controls Hotel guestrooms can be fitted with occupancy controls that turn off  energy‐using equipment when the guest is not using the room.  The  occupancy controls comes in several forms, but this analysis assumes  the simplest kind, which is a simple switch near the room’s entry where  the guest can deposit their room key or card. If the key or card is  present, then lights, TV, and air conditioning can receive power and  operate. When the guest leaves and takes the key, all equipment shuts  off.  Exterior  Lighting  Daylighting Controls Daylighting controls use a photosensor to detect ambient light and turn  off exterior lights accordingly.   Avista 2011 Electric Integrated Resource Plan 540 Commercial Energy Efficiency Equipment and Measure Data D-10 www.gepllc.com Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Exterior  Lighting  Photovoltaic Lighting Outdoor photovoltaic (PV) lighting systems use PV panels (or modules),  which convert sunlight to electricity.  The electricity is stored in  batteries for use at night.  They can be cost effective relative to  installing power cables and/or step down transformers for relatively  small lighting loads. The "nightly run time" listings on most "off‐the‐ shelf" products are based on specific sunlight conditions. Systems  located in places that receive less sunlight than the system is designed  for will operate for fewer hours per night than expected. Nightly run  times may also vary depending on how clear the sky is on any given day.  Shading of the PV panel by landscape features (vegetation, buildings,  etc.) will also have a large impact on battery charging and performance.   Open areas with no shading, such as parking lots, are ideal places where  PV lighting systems can be used.  Exterior  Lighting  Cold Cathode Lighting Cold cathode lighting does not use an external heat source to provide  thermionic emission of electrons. Cold cathode lighting is typically used  for exterior signage or where temperatures are likely to drop below  freezing.  Exterior  Lighting  Induction Lamps Induction lamps use a contactless bulb and rely on electromagnetic  fields to transfer power. This allows for the lamp to utilize more  efficient materials that would otherwise react with metal electrodes. In  addition, the lack of an electrode significantly extends lamp life while  reducing lumen depreciation.  Office  Equipment  Desktop and Laptop  Computing Equipment  ENERGY STAR labeled office equipment saves energy by powering down  and "going to sleep" when not in use.  ENERGY STAR labeled computers  automatically power down to 15 watts or less when not in use and may  actually last longer than conventional products because they spend a  large portion of time in a low‐power sleep mode.  ENERGY STAR labeled  computers also generate less heat than conventional models. The  ClimateSavers Initiative, made up of leading computer processor  manufacturers, has stated a goal of reducing power consumption in  active mode by 50% by integrating innovative power management into  the chip design process.  Office  Equipment  Monitors ENERGY STAR labeled office equipment saves energy by powering down  and "going to sleep" when not in use.  ENERGY STAR labeled monitors  automatically power down to 15 watts or less when not in use.  Office  Equipment  Servers In addition to the "sleep" mode a reductions and the efficient  processors being designed by members of the ClimateSavers Initiative,  servers have additional energy‐saving opportunities through  "virtualization" and other architecture solutions that involve optimal  matching of computation tasks to hardware requirements  Avista 2011 Electric Integrated Resource Plan 541 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-11 An EnerNOC Company Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Office  Equipment  Printers/Copiers/ Fax/ POS  Terminals  ENERGY STAR labeled office equipment saves energy by powering down  and "going to sleep" when not in use.  ENERGY STAR labeled copiers are  equipped with a feature that allows them to automatically turn off after  a period of inactivity, reducing a copier's annual electricity costs by over  60%.  High‐speed copiers that include a duplexing unit that is set to  automatically make double‐sided copies can reduce paper costs and  help to save trees.  Office  Equipment  ENERGY STAR Power  Supply  Power supplies with an efficient ac‐dc or ac‐ac conversion process can  obtain the ENERGY STAR label. These devices can be used to power  computers, phones, and other office equipment.   Refrigeration Walk‐in Refrigeration  Systems  Standard compressors typically operate at approximately 65%  efficiency. High‐efficiency models are available that can improve  compressor efficiency by 15%.  Refrigeration Glass Door and Solid Door  Refrigeration Units (Reach‐ in /Open Display  Case/Vending Machine)    Door Gasket Replacement    High Efficiency Case  Lighting  In addition to walk‐in, "cold‐storage" refrigeration, a significant amount  of energy in the commercial sector can be attributed to "reach‐in" units.  These stand‐alone appliances can range from a residential‐style  refrigerator/freezer unit in an office kitchen or the breakroom of a retail  store to the refrigerated display cases in some grocery or convenience  stores. As in the case of residential units, these refrigerators can be  designed to perform at higher efficiency through a combination of  compressor equipment upgrades, default temperature settings, and  defrost patterns.   Other measures for these units are replacing aging door gaskets that no  longer adequately seal the case, and replacing inefficient display lights  with CFL or LED systems to reduce internal heat gains in the cases.   Refrigeration Open Display Case Glass doors can be used to enclose multi‐deck display cases for  refrigerated items in supermarkets.  In addition, more efficient units are  designed to perform at higher efficiency through a combination of  compressor equipment upgrades, default temperature settings, and  defrost patterns.  Refrigeration Anti‐Sweat Heater/ Auto  Door Closer Controls  Anti‐sweat heaters are used in virtually all low‐temperature display  cases and many medium‐temperature cases to control humidity and  prevent the condensation of water vapor on the sides and doors and on  the products contained in the cases.  Typically, these heaters stay on all  the time, even though they only need to be on about half the time.  Anti‐sweat heater controls can come in the form of humidity sensors or  time clocks.  Avista 2011 Electric Integrated Resource Plan 542 Commercial Energy Efficiency Equipment and Measure Data D-12 www.gepllc.com Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Refrigeration Floating Head Pressure  Controls  Floating head pressure control allows the pressure in the condenser to  "float" with ambient temperatures. This method reduces refrigeration  compression ratios, improves system efficiency and extends the  compressor life. The greatest savings with a floating head pressure  approach occurs when the ambient temperatures are low, such as in  the winter season.  Floating head pressure control is most practical for  new installations. However, retrofits installation can be completed with  some existing refrigeration systems. Installing floating head pressure  control increases the capacity of the compressor when temperatures  are low, which may lead to short cycling.  Refrigeration Bare Suction Lines Insulating bare suction lines reduces heat   Refrigeration Night Covers Night covers can be used on open refrigeration cases when a facility is  closed or few customers are in the store.   Refrigeration Strip Curtain Strip curtains at the entrances to large walk‐in coolers or freezers, such  as those used in supermarkets, reduce air transfer between the  refrigerated space and the surrounding space.   Refrigeration Icemakers In certain building types (restaurant, hotel), the production of ice is a  significant usage of electricity. By optimizing the timing of ice  production and the type of output to the specific application, icemakers  are assumed to deliver electricity savings.  Refrigeration Vending Machine ‐  Controller  Cold beverage vending machines usually operate 24 hours a day  regardless of whether the surrounding area is occupied or not.  The  result is that the vending machine consumes energy unnecessarily,  because it will operate all night to keep the beverage cold even when  there would be no customer until the next morning.  A vending machine  controller can reduce energy consumption without compromising the  temperature of the vended product. The controller uses an infrared  sensor to monitor the surrounding area’s occupancy and will power  down the vending machine when the area is unoccupied.  It will also  monitor the room’s temperature and will re ‐power the machine at one  to three hour intervals independent of occupancy to ensure that the  product stays cold.    Food Service Kitchen Equipment Commercial cooking and food preparation equipment represent a  significant contribution to energy consumption in restaurants and other  food service applications. By replacing old units with efficient ones, this  energy consumption can be greatly reduced. These measures include  fryers, commercial ovens, dishwashers, hot food containers and  miscellaneous other food preparation equipment. Savings range  between 15 and 65%, depending on the specific unit being replaced.  Cooling, Space  Heating,  Interior  Lighting, Food  Preparation,  Refrigeration  Custom Measures Custom measures were included in the CPA analysis to serve as a “catch  all” for measures for which costs and savings are not easily quantified  and that could be part of a program such as Avista’s existing Site‐ Specific incentive program. Costs and energy savings were assumed  such that the measures passed the economic screen.   Avista 2011 Electric Integrated Resource Plan 543 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-13 An EnerNOC Company Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Miscellaneous Non‐HVAC motor Because the Small/Medium Commercial and Large Commercial  segments include some industrial customers, the CPA analysis included  equipment upgrades for non‐HVAC motors. This equipment measure  also incorporates improvements for vertical transport. Premium  efficiency motors reduce the amount of lost energy going into heat  rather than power.  Since less heat is generated, less energy is needed  to cool the motor with a fan.  Therefore, the initial cost of energy  efficient motors is generally higher than for standard motors. However  their life‐cycle costs can make them far more economical because of  savings they generate in operating expense.  Premium efficiency motors can provide savings of 0.5% to 3% over  standard motors.  The savings results from the fact that energy efficient  motors run cooler than their standard counterparts, resulting in an  increase in the life of the motor insulation and bearing.  In general, an  efficient motor is a more reliable motor because there are fewer  winding failures, longer periods between needed maintenance, and  fewer forced outages.  For example, using copper instead of aluminum  in the windings, and increasing conductor cross‐sectional area, lowers a  motor’s I2R losses.  Miscellaneous Pumps – Variable Speed  Control  The part‐load efficiency of chilled and hot water loop pumps can be  improved substantially by varying the speed of the motor drive  according to the building demand for heating or cooling. There is also a  reduction in piping losses associated with this measure that has a major  impact on the heating loads and energy use for a building. However,  pump speeds can generally only be reduced to a minimum specified  rate, because chillers, boilers, and the control valves may require a  minimum flow rate to operate. There are two major types of variable  speed controls:  mechanical and electronic.  An additional benefit of  variable‐speed drives is the ability to start and stop the motor gradually,  thus extending the life of the motor and associated machinery. This  analysis assumes that electronic variable speed controls are installed.  Miscellaneous Laundry – High Efficiency   Clothes Washer  High efficiency clothes washers use designs that require less water.   These machines use sensors to match the hot water needs to the load,  preventing energy waste. There are two designs:  top‐loading and front‐ loading. Further energy and water savings can be achieved through  advanced technologies such as inverter‐drive or combination washer‐ dryer units.  Miscellaneous ENERGY STAR Water Cooler An ENERGY STAR water cooler has more insulation and improved  chilling mechanisms, resulting in about half the energy use of a standard  cooler.  Miscellaneous Industrial Process  Improvements   Because the Avista C&I sector segmentation was based on Avista’s rate  classes, the commercial building segments include a small percentage  or industrial business types. This measure was included to account for  energy efficiency potential that could be achieved through various  process improvements at these customers.   Avista 2011 Electric Integrated Resource Plan 544 Commercial Energy Efficiency Equipment and Measure Data D-14 www.gepllc.com Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Machine Drive. Motors, Premium  Efficiency  Premium efficiency motors reduce the amount of lost energy going into  heat rather than power.  Since less heat is generated, less energy is  needed to cool the motor with a fan.  Therefore, the initial cost of  energy efficient motors is generally higher than for standard motors.   However their life‐cycle costs can make them far more economical  because of savings they generate in operating expense.  Premium efficiency motors can provide savings of 0.5% to 3% over  standard motors.  The savings results from the fact that energy efficient  motors run cooler than their standard counterparts, resulting in an  increase in the life of the motor insulation and bearing.  In general, an  efficient motor is a more reliable motor because there are fewer  winding failures, longer periods between needed maintenance, and  fewer forced outages.  For example, using copper instead of aluminum  in the windings, and increasing conductor cross‐sectional area, lowers a  motor’s I2R losses.  This analysis assumes 75% loading factor (for peak efficiency) for 1800  rpm motor.  Hours of operation vary depending on horsepower size. In  addition, improved drives and controls are assumed to be implemented  along with the motors, resulting in savings as high as 10% of annual  energy consumption  Machine Drive Motors – Variable  Frequency Drive  In addition to energy savings, VFDs increase motor and system life and  provide a greater degree of control over the motor system. Especially  for motor systems handling fluids, VFDs can efficiently respond to  changing operating conditions.   Machine Drive Magnetic Adjustable  Speed Drive  To allow for adjustable speed operation, this technology uses magnetic  induction to couple a drive to its load. Varying the magnetic slip within  the coupling controls the speed of the output shaft.  Magnetic drives  perform best at the upper end of the speed range due to the energy  consumed by the slip. Unlike traditional ASDs, magnetically coupled  ASDs create no power distortion on the electrical system. However,  magnetically coupled ASD efficiency is best when power needs are  greatest. VFDs may show greater efficiency when the average load  speed is below 90% of the motor speed, however this occurs when  power demands are reduced.  Machine Drive Compressed Air – System  Controls, Optimization and  Improvements,  Maintenance  Controls for compressed air systems can shift load from two partially  loaded compressors to one compressor in order to maximize  compression efficiency and may also involve the addition of VFDs.  Improvements include installing high‐efficiency motors. Maintenance  includes fixing air leaks and replacing air filters.  Machine Drive Fan Systems – Controls,  Optimization and  Maintenance  Certain practices require a consistent flow rate, such as indoor air  quality and clean room ventilation. To achieve this, fan flow controls  can be used to maintain precise volume flow control ensuring a  constant air delivery even on fluctuating pressure conditions. This is  done through programmable circuitry to electronically control fan  motor speed. Motors can be configured to accept a signal from a  controller that would vary the flow rate in direct proportion to the  signal.  Avista 2011 Electric Integrated Resource Plan 545 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-15 An EnerNOC Company Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Machine Drive Pumping Systems –  Controls, Optimization and  Maintenance  Pumping systems optimization includes installing VFDs, correctly  resizing the motors, and installing timers and automated on‐off  controls. Maintenance includes repairing diaphragms and fixing piping  leaks.  Process Process  Cooling/Refrigeration  Because of the customized nature of industrial cooling and refrigeration  applications, a variety of opportunities are summarized as a general  improvement in cooling and cold storage equipment. Costs and savings  were developed using average values for this group of measures from  the Sixth Plan industrial supply curve workbooks.  Process Process Heating Because of the customized nature of industrial heating applications, a  variety of opportunities are summarized as a general improvement in  process heating equipment, such as arc furnaces. Costs and savings  were developed using average values for this group of measures from  the Sixth Plan industrial supply curve workbooks.  Process Electrochemical Process Because of the customized nature of industrial electrochemical  applications, a variety of opportunities are summarized as a general  improvement in equipment and processes. Costs and savings were  developed using average values for this group of measures from the  Sixth Plan industrial supply curve workbooks.  Process Refrigeration – System  Controls, Maintenance,  and Optimization  Because refrigeration equipment performance degrades over time and  control settings are frequently overridden, these measures account for  savings that can be achieved through system maintenance and controls  optimization.  Avista 2011 Electric Integrated Resource Plan 546 Commercial Energy Efficiency Equipment and Measure Data D-16 www.gepllc.com Table D-2 Energy Efficiency Equipment Data — Small/Medium Comm., Existing Vintage    Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 1.5 kw/ton, COP 2.3 ‐               $0.00 20 ‐             Cooling Central Chiller 1.3 kw/ton, COP 2.7 0.29             $0.39 20 ‐             Cooling Central Chiller 1.26 kw/ton, COP 2.8 0.35             $0.50 20 0.51           Cooling Central Chiller 1.0 kw/ton, COP 3.5 0.73             $0.62 20 1.90           Cooling Central Chiller 0.97 kw/ton, COP 3.6 0.77             $0.74 20 1.39           Cooling Central Chiller Variable Refrigerant Flow 1.01             $11.57 20 0.07           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.22             $0.18 16 ‐             Cooling RTU EER 11.2 0.43             $0.35 16 ‐             Cooling RTU EER 12.0 0.57             $0.58 16 0.49           Cooling RTU Ductless VRF 0.69             $5.12 16 0.05           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.09             $0.08 14 0.86           Cooling PTAC EER 10.8 0.21             $0.16 14 1.00           Cooling PTAC EER 11 0.25             $0.43 14 0.43           Cooling PTAC EER 11.5 0.33             $0.96 14 0.27           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 0.57             $0.39 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 0.90             $1.18 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 1.20             $1.57 15 0.98           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 1.31             $1.96 15 0.68           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 1.46             $11.50 20 0.10           Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 1.30             $1.22 15 1.07           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.23             $0.09 4 ‐             Interior Lighting Interior Screw‐in CFL 0.94             $0.03 7 16.50        Interior Lighting Interior Screw‐in LED 1.04             $1.18 12 0.84           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.30             ($0.07) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.30             ($0.03) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.91             $0.25 6 1.73           Interior Lighting Linear Fluorescent T5 0.95             $0.43 6 1.06           Interior Lighting Linear Fluorescent LED 0.99             $3.74 15 0.33           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.14             $0.05 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.60             $0.02 7 17.60        Exterior Lighting Exterior Screw‐in Metal Halides 0.60             $0.05 4 3.16           Exterior Lighting Exterior Screw‐in LED 0.66             $0.64 12 0.90           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.22             ($0.13) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.24             $0.55 9 0.37           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.01             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.04             $0.02 6 1.12           Exterior Lighting Linear Fluorescent T5 0.04             $0.03 6 0.69           Exterior Lighting Linear Fluorescent LED 0.05             $0.24 15 0.22           Water Heating Water Heater Baseline (EF=0.90)‐               $0.00 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 0.10             $0.02 15 5.23           Water Heating Water Heater Geothermal Heat Pump 1.33             $3.53 15 0.43           Water Heating Water Heater Solar 1.46             $3.03 15 0.55           Food Preparation Fryer Standard ‐               $0.00 12 ‐             Food Preparation Fryer Efficient 0.03             $0.04 12 0.80           Food Preparation Oven Standard ‐               $0.00 12 ‐             Avista 2011 Electric Integrated Resource Plan 547 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-17 An EnerNOC Company Table D-2 Energy Efficiency Equipment Data — Small/Med. Comm., Existing Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Food Preparation Oven Efficient 0.39             $0.36 12 1.02           Food Preparation Dishwasher Standard ‐               $0.00 12 ‐             Food Preparation Dishwasher Efficient 0.02             $0.05 12 0.36           Food Preparation Hot Food Container Standard ‐               $0.00 12 ‐             Food Preparation Hot Food Container Efficient 0.40             $0.16 12 2.29           Food Preparation Food Prep Standard ‐               $0.00 12 ‐             Food Preparation Food Prep Efficient 0.00             $0.03 12 0.07           Refrigeration Walk in Refrigeration Standard ‐               $0.00 18 ‐             Refrigeration Walk in Refrigeration Efficient ‐               $0.09 18 ‐             Refrigeration Glass Door Display Standard ‐               $0.00 18 ‐             Refrigeration Glass Door Display Efficient 0.16             $0.00 18 56.08        Refrigeration Solid Door Refrigerator Standard ‐               $0.00 18 ‐             Refrigeration Solid Door Refrigerator Efficient 0.19             $0.02 18 9.87           Refrigeration Open Display Case Standard ‐               $0.00 18 ‐             Refrigeration Open Display Case Efficient 0.00             $0.00 18 0.24           Refrigeration Vending Machine Base ‐               $0.00 10 ‐             Refrigeration Vending Machine Base (2012)0.11             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency 0.13             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency (2012)0.20             $0.00 10 46.48        Refrigeration Icemaker Standard ‐               $0.00 12 ‐             Refrigeration Icemaker Efficient 0.05             $0.00 12 12.76        Office Equipment Desktop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Desktop Computer Energy Star 0.19             $0.00 4 23.04        Office Equipment Desktop Computer Climate Savers 0.27             $0.36 4 0.23           Office Equipment Laptop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Laptop Computer Energy Star 0.02             $0.00 4 7.34           Office Equipment Laptop Computer Climate Savers 0.03             $0.12 4 0.08           Office Equipment Server Standard ‐               $0.00 3 ‐             Office Equipment Server Energy Star 0.12             $0.01 3 2.14           Office Equipment Monitor Standard ‐               $0.00 4 ‐             Office Equipment Monitor Energy Star 0.22             $0.00 4 19.68        Office Equipment Printer/copier/fax Standard ‐               $0.00 6 ‐             Office Equipment Printer/copier/fax Energy Star 0.09             $0.04 6 0.98           Office Equipment POS Terminal Standard ‐               $0.00 4 ‐             Office Equipment POS Terminal Energy Star 0.03             $0.00 4 2.96           Miscellaneous Non‐HVAC Motor Standard ‐               $0.00 15 ‐             Miscellaneous Non‐HVAC Motor Standard (2015)0.01             $0.00 15 ‐             Miscellaneous Non‐HVAC Motor High Efficiency 0.05             $0.06 15 0.95           Miscellaneous Non‐HVAC Motor High Efficiency (2015)0.06             $0.06 15 ‐             Miscellaneous Non‐HVAC Motor Premium 0.07             $0.11 15 0.72           Miscellaneous Non‐HVAC Motor Premium (2015)0.08             $0.11 15 ‐             Miscellaneous Other Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Miscellaneous Other Miscellaneous Miscellaneous (2013)0.00             $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 548 Commercial Energy Efficiency Equipment and Measure Data D-18 www.gepllc.com Table D-3 Energy Efficiency Equipment Data — Large Commercial, Existing Vintage    Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 1.5 kw/ton, COP 2.3 ‐               $0.00 20 ‐             Cooling Central Chiller 1.3 kw/ton, COP 2.7 0.30             $0.26 20 ‐             Cooling Central Chiller 1.26 kw/ton, COP 2.8 0.36             $0.33 20 0.83           Cooling Central Chiller 1.0 kw/ton, COP 3.5 0.75             $0.41 20 3.11           Cooling Central Chiller 0.97 kw/ton, COP 3.6 0.79             $0.49 20 2.28           Cooling Central Chiller Variable Refrigerant Flow 1.04             $7.63 20 0.11           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.22             $0.13 16 ‐             Cooling RTU EER 11.2 0.45             $0.25 16 ‐             Cooling RTU EER 12.0 0.59             $0.41 16 0.75           Cooling RTU Ductless VRF 0.72             $3.67 16 0.07           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.09             $0.09 14 0.86           Cooling PTAC EER 10.8 0.21             $0.17 14 1.00           Cooling PTAC EER 11 0.25             $0.46 14 0.43           Cooling PTAC EER 11.5 0.34             $1.03 14 0.27           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 0.46             $0.18 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 0.73             $0.55 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 0.97             $0.73 15 1.85           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 1.07             $0.91 15 1.28           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 1.19             $5.35 20 0.19           Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 1.03             $1.22 15 0.86           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.19             $0.08 4 ‐             Interior Lighting Interior Screw‐in CFL 0.78             $0.03 7 14.13        Interior Lighting Interior Screw‐in LED 0.87             $1.11 12 0.72           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.31             ($0.08) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.30             ($0.03) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.89             $0.25 6 1.66           Interior Lighting Linear Fluorescent T5 0.92             $0.42 6 1.02           Interior Lighting Linear Fluorescent LED 0.97             $3.67 15 0.32           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.08             $0.01 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.34             $0.01 7 34.02        Exterior Lighting Exterior Screw‐in Metal Halides 0.34             $0.02 4 6.10           Exterior Lighting Exterior Screw‐in LED 0.38             $0.19 12 1.73           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.19             ($0.11) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.20             $0.45 9 0.37           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.01             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.04             $0.02 6 1.18           Exterior Lighting Linear Fluorescent T5 0.04             $0.03 6 0.72           Exterior Lighting Linear Fluorescent LED 0.05             $0.24 15 0.23           Water Heating Water Heater Baseline (EF=0.90)‐               $0.00 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 0.12             $0.02 15 5.71           Water Heating Water Heater Geothermal Heat Pump 1.54             $3.53 15 0.46           Water Heating Water Heater Solar 1.69             $3.03 15 0.60           Food Preparation Fryer Standard ‐               $0.00 12 ‐             Food Preparation Fryer Efficient 0.07             $0.02 12 3.52           Food Preparation Oven Standard ‐               $0.00 12 ‐             Avista 2011 Electric Integrated Resource Plan 549 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-19 An EnerNOC Company Table D-3 Energy Efficiency Equipment Data — Large Commercial, Existing Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Food Preparation Oven Efficient 0.75             $0.46 12 1.43           Food Preparation Dishwasher Standard ‐               $0.00 12 ‐             Food Preparation Dishwasher Efficient 0.07             $0.10 12 0.58           Food Preparation Hot Food Container Standard ‐               $0.00 12 ‐             Food Preparation Hot Food Container Efficient 0.35             $0.30 12 0.99           Food Preparation Food Prep Standard ‐               $0.00 12 ‐             Food Preparation Food Prep Efficient 0.01             $0.03 12 0.24           Refrigeration Walk in Refrigeration Standard ‐               $0.00 18 ‐             Refrigeration Walk in Refrigeration Efficient 0.15             $1.26 18 0.13           Refrigeration Glass Door Display Standard ‐               $0.00 18 ‐             Refrigeration Glass Door Display Efficient 0.13             $0.01 18 24.96        Refrigeration Solid Door Refrigerator Standard ‐               $0.00 18 ‐             Refrigeration Solid Door Refrigerator Efficient 0.30             $0.08 18 4.39           Refrigeration Open Display Case Standard ‐               $0.00 18 ‐             Refrigeration Open Display Case Efficient 0.00             $0.04 18 0.16           Refrigeration Vending Machine Base ‐               $0.00 10 ‐             Refrigeration Vending Machine Base (2012)0.13             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency 0.15             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency (2012)0.23             $0.00 10 20.70        Refrigeration Icemaker Standard ‐               $0.00 12 ‐             Refrigeration Icemaker Efficient 0.11             $0.02 12 5.62           Office Equipment Desktop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Desktop Computer Energy Star 0.35             $0.00 4 47.46        Office Equipment Desktop Computer Climate Savers 0.50             $0.32 4 0.46           Office Equipment Laptop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Laptop Computer Energy Star 0.02             $0.00 4 15.12        Office Equipment Laptop Computer Climate Savers 0.04             $0.06 4 0.17           Office Equipment Server Standard ‐               $0.00 3 ‐             Office Equipment Server Energy Star 0.13             $0.01 3 4.41           Office Equipment Monitor Standard ‐               $0.00 4 ‐             Office Equipment Monitor Energy Star 0.19             $0.01 4 9.14           Office Equipment Printer/copier/fax Standard ‐               $0.00 6 ‐             Office Equipment Printer/copier/fax Energy Star 0.08             $0.02 6 2.02           Office Equipment POS Terminal Standard ‐               $0.00 4 ‐             Office Equipment POS Terminal Energy Star 0.01             $0.00 4 2.94           Miscellaneous Non‐HVAC Motor Standard ‐               $0.00 15 ‐             Miscellaneous Non‐HVAC Motor Standard (2015)0.01             $0.00 15 ‐             Miscellaneous Non‐HVAC Motor High Efficiency 0.06             $0.06 15 0.92           Miscellaneous Non‐HVAC Motor High Efficiency (2015)0.06             $0.06 15 ‐             Miscellaneous Non‐HVAC Motor Premium 0.08             $0.13 15 0.69           Miscellaneous Non‐HVAC Motor Premium (2015)0.09             $0.13 15 ‐             Miscellaneous Other Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Miscellaneous Other Miscellaneous Miscellaneous (2013)0.00             $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 550 Commercial Energy Efficiency Equipment and Measure Data D-20 www.gepllc.com Table D-4 Energy Efficiency Equipment Data — Extra Large Commercial, Existing Vintage    Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 0.75 kw/ton, COP 4.7 ‐               $0.00 20 ‐             Cooling Central Chiller 0.60 kw/ton, COP 5.9 0.43             $0.09 20 ‐             Cooling Central Chiller 0.58 kw/ton, COP 6.1 0.49             $0.18 20 0.66           Cooling Central Chiller 0.55 kw/Ton, COP 6.4 0.57             $0.25 20 0.91           Cooling Central Chiller 0.51 kw/ton, COP 6.9 0.69             $0.44 20 0.78           Cooling Central Chiller 0.50 kw/Ton, COP 7.0 0.72             $0.53 20 0.69           Cooling Central Chiller 0.48 kw/ton, COP 7.3 0.77             $0.62 20 0.68           Cooling Central Chiller Variable Refrigerant Flow 1.00             $10.92 20 0.05           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.20             $0.24 16 ‐             Cooling RTU EER 11.2 0.41             $0.45 16 ‐             Cooling RTU EER 12.0 0.53             $0.75 16 0.37           Cooling RTU Ductless VRF 0.65             $6.64 16 0.03           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.08             $0.06 14 1.09           Cooling PTAC EER 10.8 0.19             $0.12 14 1.28           Cooling PTAC EER 11 0.22             $0.32 14 0.55           Cooling PTAC EER 11.5 0.30             $0.71 14 0.34           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 0.50             $0.24 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 0.79             $0.73 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 1.06             $0.97 15 1.34           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 1.16             $1.21 15 0.93           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 1.29             $7.10 20 0.14           Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 1.21             $1.22 15 1.01           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.30             $0.14 4 ‐             Interior Lighting Interior Screw‐in CFL 1.25             $0.06 7 13.22        Interior Lighting Interior Screw‐in LED 1.38             $1.90 12 0.67           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.13             ($0.05) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.20             ($0.03) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.59             $0.21 6 1.31           Interior Lighting Linear Fluorescent T5 0.61             $0.35 6 0.80           Interior Lighting Linear Fluorescent LED 0.64             $3.08 15 0.25           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.02             $0.00 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.10             $0.00 7 37.00        Exterior Lighting Exterior Screw‐in Metal Halides 0.10             $0.00 4 6.64           Exterior Lighting Exterior Screw‐in LED 0.11             $0.05 12 1.89           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.26             ($0.16) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.28             $0.64 9 0.37           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.00             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.01             $0.00 6 1.12           Exterior Lighting Linear Fluorescent T5 0.01             $0.01 6 0.69           Exterior Lighting Linear Fluorescent LED 0.01             $0.06 15 0.22           Water Heating Water Heater Baseline (EF=0.90)‐               $0.00 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 0.19             $0.02 15 9.79           Water Heating Water Heater Geothermal Heat Pump 2.47             $3.53 15 0.80           Water Heating Water Heater Solar 2.72             $3.03 15 1.02           Food Preparation Fryer Standard ‐               $0.00 12 ‐             Avista 2011 Electric Integrated Resource Plan 551 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-21 An EnerNOC Company Table D-4 Energy Efficiency Equipment Data — Extra Large Commercial, Existing Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Food Preparation Fryer Efficient 0.03             $0.00 12 6.02           Food Preparation Oven Standard ‐               $0.00 12 ‐             Food Preparation Oven Efficient 0.85             $0.38 12 2.11           Food Preparation Dishwasher Standard ‐               $0.00 12 ‐             Food Preparation Dishwasher Efficient 0.03             $0.04 12 0.57           Food Preparation Hot Food Container Standard ‐               $0.00 12 ‐             Food Preparation Hot Food Container Efficient 0.17             $0.22 12 0.73           Food Preparation Food Prep Standard ‐               $0.00 12 ‐             Food Preparation Food Prep Efficient 0.00             $0.03 12 0.15           Refrigeration Walk in Refrigeration Standard ‐               $0.00 18 ‐             Refrigeration Walk in Refrigeration Efficient 0.06             $0.05 18 1.42           Refrigeration Glass Door Display Standard ‐               $0.00 18 ‐             Refrigeration Glass Door Display Efficient 0.04             $0.00 18 78.11        Refrigeration Solid Door Refrigerator Standard ‐               $0.00 18 ‐             Refrigeration Solid Door Refrigerator Efficient 0.27             $0.02 18 12.81        Refrigeration Open Display Case Standard ‐               $0.00 18 ‐             Refrigeration Open Display Case Efficient 0.01             $0.03 18 0.34           Refrigeration Vending Machine Base ‐               $0.00 10 ‐             Refrigeration Vending Machine Base (2012)0.13             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency 0.16             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency (2012)0.24             $0.00 10 68.21        Refrigeration Icemaker Standard ‐               $0.00 12 ‐             Refrigeration Icemaker Efficient 0.05             $0.00 12 17.60        Office Equipment Desktop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Desktop Computer Energy Star 0.25             $0.00 4 32.37        Office Equipment Desktop Computer Climate Savers 0.35             $0.33 4 0.32           Office Equipment Laptop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Laptop Computer Energy Star 0.02             $0.00 4 10.31        Office Equipment Laptop Computer Climate Savers 0.04             $0.10 4 0.12           Office Equipment Server Standard ‐               $0.00 3 ‐             Office Equipment Server Energy Star 0.06             $0.00 3 3.01           Office Equipment Monitor Standard ‐               $0.00 4 ‐             Office Equipment Monitor Energy Star 0.11             $0.01 4 6.80           Office Equipment Printer/copier/fax Standard ‐               $0.00 6 ‐             Office Equipment Printer/copier/fax Energy Star 0.02             $0.01 6 1.38           Office Equipment POS Terminal Standard ‐               $0.00 4 ‐             Office Equipment POS Terminal Energy Star 0.00             $0.00 4 2.01           Miscellaneous Non‐HVAC Motor Standard ‐               $0.00 15 ‐             Miscellaneous Non‐HVAC Motor Standard (2015)0.01             $0.00 15 ‐             Miscellaneous Non‐HVAC Motor High Efficiency 0.03             $0.03 15 1.02           Miscellaneous Non‐HVAC Motor High Efficiency (2015)0.04             $0.03 15 ‐             Miscellaneous Non‐HVAC Motor Premium 0.05             $0.07 15 0.76           Miscellaneous Non‐HVAC Motor Premium (2015)0.05             $0.07 15 ‐             Miscellaneous Other Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Miscellaneous Other Miscellaneous Miscellaneous (2013) 0.00             $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 552 Commercial Energy Efficiency Equipment and Measure Data D-22 www.gepllc.com Table D-5 Energy Efficiency Equipment Data — Extra Large Industrial, Existing Vintage     Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 0.75 kw/ton, COP 4.7 ‐               $0.00 20 ‐             Cooling Central Chiller 0.60 kw/ton, COP 5.9 1.61             $0.33 20 ‐             Cooling Central Chiller 0.58 kw/ton, COP 6.1 1.82             $0.66 20 0.68           Cooling Central Chiller 0.55 kw/Ton, COP 6.4 2.15             $0.93 20 0.94           Cooling Central Chiller 0.51 kw/ton, COP 6.9 2.58             $1.59 20 0.80           Cooling Central Chiller 0.50 kw/Ton, COP 7.0 2.68             $1.92 20 0.71           Cooling Central Chiller 0.48 kw/ton, COP 7.3 2.90             $2.25 20 0.70           Cooling Central Chiller Variable Refrigerant Flow 3.74             $39.62 20 0.06           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.56             $0.39 16 ‐             Cooling RTU EER 11.2 1.12             $0.73 16 ‐             Cooling RTU EER 12.0 1.47             $1.22 16 0.62           Cooling RTU Ductless VRF 1.79             $10.83 16 0.06           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.20             $0.06 14 2.79           Cooling PTAC EER 10.8 0.47             $0.11 14 3.27           Cooling PTAC EER 11 0.55             $0.31 14 1.41           Cooling PTAC EER 11.5 0.75             $0.69 14 0.87           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 1.07             $0.92 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 1.69             $2.75 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 2.25             $3.66 15 0.75           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 2.47             $4.58 15 0.52           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 2.74             $26.86 20 0.08           Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 7.66             $1.22 15 6.38           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.09             $0.04 4 ‐             Interior Lighting Interior Screw‐in CFL 0.38             $0.02 7 14.80        Interior Lighting Interior Screw‐in LED 0.42             $0.52 12 0.75           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.46             ($0.14) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.10             ($0.01) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.31             $0.08 6 1.73           Interior Lighting Linear Fluorescent T5 0.32             $0.14 6 1.06           Interior Lighting Linear Fluorescent LED 0.33             $1.21 15 0.33           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.01             $0.00 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.02             $0.00 7 15.02        Exterior Lighting Exterior Screw‐in Metal Halides 0.02             $0.00 4 2.69           Exterior Lighting Exterior Screw‐in LED 0.03             $0.03 12 0.77           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.07             ($0.04) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.08             $0.18 9 0.37           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.00             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.00             $0.00 6 1.16           Exterior Lighting Linear Fluorescent T5 0.00             $0.00 6 0.71           Exterior Lighting Linear Fluorescent LED 0.00             $0.01 15 0.22           Process Process Cooling/Refrigera Standard ‐               $0.00 10 ‐             Process Process Cooling/Refrigera Efficient 18.88           $5.59 10 2.49           Process Process Heating Standard ‐               $0.00 10 ‐             Process Process Heating Efficient 6.18             $0.57 10 7.97           Process Electrochemical Process Standard ‐               $0.00 10 ‐             Avista 2011 Electric Integrated Resource Plan 553 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-23 An EnerNOC Company Table D-5 Energy Efficiency Equipment Data — Extra Large Industrial, Existing Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Process Electrochemical Process Efficient 13.16           $2.64 10 3.67           Machine Drive Less than 5 HP Standard ‐               $0.00 10 ‐             Machine Drive Less than 5 HP High Efficiency 0.05             $0.02 10 2.08           Machine Drive Less than 5 HP Standard (2015)0.07             $0.00 10 ‐             Machine Drive Less than 5 HP Premium 0.07             $0.03 10 1.66           Machine Drive Less than 5 HP High Efficiency (2015)0.11             $0.02 10 ‐             Machine Drive Less than 5 HP Premium (2015)0.14             $0.03 10 ‐             Machine Drive 5‐24 HP Standard ‐               $0.00 10 ‐             Machine Drive 5‐24 HP High 0.11             $0.02 10 5.09           Machine Drive 5‐24 HP Premium 0.18             $0.03 10 4.07           Machine Drive 25‐99 HP Standard ‐               $0.00 10 ‐             Machine Drive 25‐99 HP High 0.31             $0.02 10 13.72        Machine Drive 25‐99 HP Premium 0.49             $0.03 10 10.97        Machine Drive 100‐249 HP Standard ‐               $0.00 10 ‐             Machine Drive 100‐249 HP High 0.12             $0.02 10 5.17           Machine Drive 100‐249 HP Premium 0.15             $0.03 10 3.44           Machine Drive 250‐499 HP Standard ‐               $0.00 10 ‐             Machine Drive 250‐499 HP High 0.35             $0.02 10 15.66        Machine Drive 250‐499 HP Premium 0.47             $0.03 10 10.44        Machine Drive 500 and more HP Standard ‐               $0.00 10 ‐             Machine Drive 500 and more HP High 0.59             $0.02 10 26.28        Machine Drive 500 and more HP Premium 0.78             $0.03 10 17.52        Miscellaneous Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 554 Commercial Energy Efficiency Equipment and Measure Data D-24 www.gepllc.com Table D-6 Energy Efficiency Equipment Data — Small/Medium Commercial, New Vintage   Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 1.5 kw/ton, COP 2.3 ‐               $0.00 20 ‐             Cooling Central Chiller 1.3 kw/ton, COP 2.7 0.29             $0.39 20 ‐             Cooling Central Chiller 1.26 kw/ton, COP 2.8 0.35             $0.50 20 0.51           Cooling Central Chiller 1.0 kw/ton, COP 3.5 0.73             $0.62 20 1.90           Cooling Central Chiller 0.97 kw/ton, COP 3.6 0.77             $0.74 20 1.39           Cooling Central Chiller Variable Refrigerant Flow 1.01             $11.57 20 0.07           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.22             $0.18 16 ‐             Cooling RTU EER 11.2 0.43             $0.35 16 ‐             Cooling RTU EER 12.0 0.57             $0.58 16 0.49           Cooling RTU Ductless VRF 0.69             $5.12 16 0.05           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.09             $0.08 14 0.86           Cooling PTAC EER 10.8 0.21             $0.16 14 1.00           Cooling PTAC EER 11 0.25             $0.43 14 0.43           Cooling PTAC EER 11.5 0.33             $0.96 14 0.27           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 0.57             $0.39 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 0.90             $1.18 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 1.20             $1.57 15 0.98           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 1.31             $1.96 15 0.68           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 1.46             $11.50 20 0.10           Combined Heating/Cooling Heat Pump Geothermal Heat Pump 1.75             $20.69 20 ‐             Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 1.64             $1.22 15 1.35           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.20             $0.09 4 ‐             Interior Lighting Interior Screw‐in CFL 0.85             $0.03 7 14.85        Interior Lighting Interior Screw‐in LED 0.93             $1.18 12 0.76           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.27             ($0.07) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.27             ($0.03) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.82             $0.25 6 1.56           Interior Lighting Linear Fluorescent T5 0.85             $0.43 6 0.95           Interior Lighting Linear Fluorescent LED 0.89             $3.74 15 0.30           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.13             $0.05 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.54             $0.02 7 15.84        Exterior Lighting Exterior Screw‐in Metal Halides 0.54             $0.05 4 2.84           Exterior Lighting Exterior Screw‐in LED 0.60             $0.64 12 0.81           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.20             ($0.13) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.22             $0.55 9 0.33           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.01             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.04             $0.02 6 1.01           Exterior Lighting Linear Fluorescent T5 0.04             $0.03 6 0.62           Exterior Lighting Linear Fluorescent LED 0.04             $0.24 15 0.20           Water Heating Water Heater Baseline (EF=0.90)‐               $0.00 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 0.10             $0.02 15 5.23           Water Heating Water Heater Geothermal Heat Pump 1.33             $3.53 15 0.43           Water Heating Water Heater Solar 1.46             $3.03 15 0.55           Food Preparation Fryer Standard ‐               $0.00 12 ‐             Food Preparation Fryer Efficient 0.03             $0.04 12 0.80           Avista 2011 Electric Integrated Resource Plan 555 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-25 An EnerNOC Company Table D-6 Energy Efficiency Equipment Data — Small/Medium Commercial, New Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Food Preparation Oven Standard ‐               $0.00 12 ‐             Food Preparation Oven Efficient 0.39             $0.36 12 1.02           Food Preparation Dishwasher Standard ‐               $0.00 12 ‐             Food Preparation Dishwasher Efficient 0.02             $0.05 12 0.36           Food Preparation Hot Food Container Standard ‐               $0.00 12 ‐             Food Preparation Hot Food Container Efficient 0.40             $0.16 12 2.29           Food Preparation Food Prep Standard ‐               $0.00 12 ‐             Food Preparation Food Prep Efficient 0.00             $0.03 12 0.07           Refrigeration Walk in Refrigeration Standard ‐               $0.00 18 ‐             Refrigeration Walk in Refrigeration Efficient ‐               $0.09 18 ‐             Refrigeration Glass Door Display Standard ‐               $0.00 18 ‐             Refrigeration Glass Door Display Efficient 0.16             $0.00 18 56.08        Refrigeration Solid Door Refrigerator Standard ‐               $0.00 18 ‐             Refrigeration Solid Door Refrigerator Efficient 0.19             $0.02 18 9.87           Refrigeration Open Display Case Standard ‐               $0.00 18 ‐             Refrigeration Open Display Case Efficient 0.00             $0.00 18 0.24           Refrigeration Vending Machine Base ‐               $0.00 10 ‐             Refrigeration Vending Machine Base (2012)0.11             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency 0.13             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency (2012)0.20             $0.00 10 46.48        Refrigeration Icemaker Standard ‐               $0.00 12 ‐             Refrigeration Icemaker Efficient 0.05             $0.00 12 12.76        Office Equipment Desktop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Desktop Computer Energy Star 0.19             $0.00 4 23.04        Office Equipment Desktop Computer Climate Savers 0.27             $0.36 4 0.23           Office Equipment Laptop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Laptop Computer Energy Star 0.02             $0.00 4 7.34           Office Equipment Laptop Computer Climate Savers 0.03             $0.12 4 0.08           Office Equipment Server Standard ‐               $0.00 3 ‐             Office Equipment Server Energy Star 0.12             $0.01 3 2.14           Office Equipment Monitor Standard ‐               $0.00 4 ‐             Office Equipment Monitor Energy Star 0.22             $0.00 4 19.68        Office Equipment Printer/copier/fax Standard ‐               $0.00 6 ‐             Office Equipment Printer/copier/fax Energy Star 0.09             $0.04 6 0.98           Office Equipment POS Terminal Standard ‐               $0.00 4 ‐             Office Equipment POS Terminal Energy Star 0.03             $0.00 4 2.96           Miscellaneous Non‐HVAC Motor Standard ‐               $0.00 15 ‐             Miscellaneous Non‐HVAC Motor Standard (2015)0.01             $0.00 15 ‐             Miscellaneous Non‐HVAC Motor High Efficiency 0.05             $0.06 15 0.95           Miscellaneous Non‐HVAC Motor High Efficiency (2015)0.06             $0.06 15 ‐             Miscellaneous Non‐HVAC Motor Premium 0.07             $0.11 15 0.72           Miscellaneous Non‐HVAC Motor Premium (2015)0.08             $0.11 15 ‐             Miscellaneous Other Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Miscellaneous Other Miscellaneous Miscellaneous (2013)0.00             $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 556 Commercial Energy Efficiency Equipment and Measure Data D-26 www.gepllc.com Table D-7 Energy Efficiency Equipment Data — Large Commercial, New Vintage    Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 1.5 kw/ton, COP 2.3 ‐               $0.00 20 ‐             Cooling Central Chiller 1.3 kw/ton, COP 2.7 0.32             $0.24 20 ‐             Cooling Central Chiller 1.26 kw/ton, COP 2.8 0.39             $0.31 20 0.97           Cooling Central Chiller 1.0 kw/ton, COP 3.5 0.80             $0.38 20 3.62           Cooling Central Chiller 0.97 kw/ton, COP 3.6 0.85             $0.45 20 2.66           Cooling Central Chiller Variable Refrigerant Flow 1.12             $7.06 20 0.12           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.22             $0.13 16 ‐             Cooling RTU EER 11.2 0.45             $0.25 16 ‐             Cooling RTU EER 12.0 0.59             $0.41 16 0.75           Cooling RTU Ductless VRF 0.72             $3.67 16 0.07           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.09             $0.09 14 0.86           Cooling PTAC EER 10.8 0.21             $0.17 14 1.00           Cooling PTAC EER 11 0.25             $0.46 14 0.43           Cooling PTAC EER 11.5 0.34             $1.03 14 0.27           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 0.46             $0.18 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 0.73             $0.55 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 0.97             $0.73 15 1.85           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 1.07             $0.91 15 1.28           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 1.19             $5.35 20 0.19           Combined Heating/Cooling Heat Pump Geothermal Heat Pump 1.42             $9.62 20 ‐             Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 1.30             $1.22 15 1.09           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.17             $0.08 4 ‐             Interior Lighting Interior Screw‐in CFL 0.71             $0.03 7 12.72        Interior Lighting Interior Screw‐in LED 0.78             $1.11 12 0.65           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.28             ($0.08) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.27             ($0.03) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.80             $0.25 6 1.49           Interior Lighting Linear Fluorescent T5 0.83             $0.42 6 0.92           Interior Lighting Linear Fluorescent LED 0.87             $3.67 15 0.29           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.07             $0.01 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.31             $0.01 7 30.62        Exterior Lighting Exterior Screw‐in Metal Halides 0.31             $0.02 4 5.49           Exterior Lighting Exterior Screw‐in LED 0.34             $0.19 12 1.56           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.17             ($0.11) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.18             $0.45 9 0.34           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.01             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.04             $0.02 6 1.06           Exterior Lighting Linear Fluorescent T5 0.04             $0.03 6 0.65           Exterior Lighting Linear Fluorescent LED 0.04             $0.24 15 0.20           Water Heating Water Heater Baseline (EF=0.90)‐               $0.00 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 0.12             $0.02 15 5.71           Water Heating Water Heater Geothermal Heat Pump 1.54             $3.53 15 0.46           Water Heating Water Heater Solar 1.69             $3.03 15 0.60           Food Preparation Fryer Standard ‐               $0.00 12 ‐             Food Preparation Fryer Efficient 0.07             $0.02 12 3.52           Avista 2011 Electric Integrated Resource Plan 557 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-27 An EnerNOC Company Table D-7 Energy Efficiency Equipment Data — Large Commercial, New Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Food Preparation Oven Standard ‐               $0.00 12 ‐             Food Preparation Oven Efficient 0.75             $0.46 12 1.43           Food Preparation Dishwasher Standard ‐               $0.00 12 ‐             Food Preparation Dishwasher Efficient 0.07             $0.10 12 0.58           Food Preparation Hot Food Container Standard ‐               $0.00 12 ‐             Food Preparation Hot Food Container Efficient 0.35             $0.30 12 0.99           Food Preparation Food Prep Standard ‐               $0.00 12 ‐             Food Preparation Food Prep Efficient 0.01             $0.03 12 0.24           Refrigeration Walk in Refrigeration Standard ‐               $0.00 18 ‐             Refrigeration Walk in Refrigeration Efficient 0.15             $1.26 18 0.13           Refrigeration Glass Door Display Standard ‐               $0.00 18 ‐             Refrigeration Glass Door Display Efficient 0.13             $0.01 18 24.96        Refrigeration Solid Door Refrigerator Standard ‐               $0.00 18 ‐             Refrigeration Solid Door Refrigerator Efficient 0.30             $0.08 18 4.39           Refrigeration Open Display Case Standard ‐               $0.00 18 ‐             Refrigeration Open Display Case Efficient 0.00             $0.04 18 0.16           Refrigeration Vending Machine Base ‐               $0.00 10 ‐             Refrigeration Vending Machine Base (2012)0.13             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency 0.15             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency (2012)0.23             $0.00 10 20.70        Refrigeration Icemaker Standard ‐               $0.00 12 ‐             Refrigeration Icemaker Efficient 0.11             $0.02 12 5.62           Office Equipment Desktop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Desktop Computer Energy Star 0.35             $0.00 4 47.46        Office Equipment Desktop Computer Climate Savers 0.50             $0.32 4 0.46           Office Equipment Laptop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Laptop Computer Energy Star 0.02             $0.00 4 15.12        Office Equipment Laptop Computer Climate Savers 0.04             $0.06 4 0.17           Office Equipment Server Standard ‐               $0.00 3 ‐             Office Equipment Server Energy Star 0.13             $0.01 3 4.41           Office Equipment Monitor Standard ‐               $0.00 4 ‐             Office Equipment Monitor Energy Star 0.19             $0.01 4 9.14           Office Equipment Printer/copier/fax Standard ‐               $0.00 6 ‐             Office Equipment Printer/copier/fax Energy Star 0.08             $0.02 6 2.02           Office Equipment POS Terminal Standard ‐               $0.00 4 ‐             Office Equipment POS Terminal Energy Star 0.01             $0.00 4 2.94           Miscellaneous Non‐HVAC Motor Standard ‐               $0.00 15 ‐             Miscellaneous Non‐HVAC Motor Standard (2015)0.01             $0.00 15 ‐             Miscellaneous Non‐HVAC Motor High Efficiency 0.06             $0.06 15 0.92           Miscellaneous Non‐HVAC Motor High Efficiency (2015)0.06             $0.06 15 ‐             Miscellaneous Non‐HVAC Motor Premium 0.08             $0.13 15 0.69           Miscellaneous Non‐HVAC Motor Premium (2015)0.09             $0.13 15 ‐             Miscellaneous Other Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Miscellaneous Other Miscellaneous Miscellaneous (2013) 0.00             $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 558 Commercial Energy Efficiency Equipment and Measure Data D-28 www.gepllc.com Table D-8 Energy Efficiency Equipment Data — Extra Large Commercial, New Vintage   Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 0.75 kw/ton, COP 4.7 ‐               $0.00 20 ‐             Cooling Central Chiller 0.60 kw/ton, COP 5.9 0.43             $0.09 20 ‐             Cooling Central Chiller 0.58 kw/ton, COP 6.1 0.49             $0.18 20 0.66           Cooling Central Chiller 0.55 kw/Ton, COP 6.4 0.57             $0.25 20 0.91           Cooling Central Chiller 0.51 kw/ton, COP 6.9 0.69             $0.44 20 0.78           Cooling Central Chiller 0.50 kw/Ton, COP 7.0 0.72             $0.53 20 0.69           Cooling Central Chiller 0.48 kw/ton, COP 7.3 0.77             $0.62 20 0.68           Cooling Central Chiller Variable Refrigerant Flow 1.00             $10.92 20 0.05           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.20             $0.24 16 ‐             Cooling RTU EER 11.2 0.41             $0.44 16 ‐             Cooling RTU EER 12.0 0.53             $0.73 16 0.37           Cooling RTU Ductless VRF 0.65             $6.51 16 0.04           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.08             $0.06 14 1.09           Cooling PTAC EER 10.8 0.19             $0.12 14 1.28           Cooling PTAC EER 11 0.22             $0.32 14 0.55           Cooling PTAC EER 11.5 0.30             $0.71 14 0.34           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 0.50             $0.24 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 0.79             $0.73 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 1.06             $0.97 15 1.34           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 1.16             $1.21 15 0.93           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 1.29             $7.10 20 0.14           Combined Heating/Cooling Heat Pump Geothermal Heat Pump 1.55             $12.77 20 ‐             Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 1.52             $1.22 15 1.27           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.27             $0.14 4 ‐             Interior Lighting Interior Screw‐in CFL 1.13             $0.06 7 11.90        Interior Lighting Interior Screw‐in LED 1.24             $1.90 12 0.61           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.11             ($0.05) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.18             ($0.03) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.53             $0.21 6 1.18           Interior Lighting Linear Fluorescent T5 0.55             $0.35 6 0.72           Interior Lighting Linear Fluorescent LED 0.58             $3.08 15 0.23           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.02             $0.00 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.09             $0.00 7 33.30        Exterior Lighting Exterior Screw‐in Metal Halides 0.09             $0.00 4 5.97           Exterior Lighting Exterior Screw‐in LED 0.10             $0.05 12 1.70           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.24             ($0.16) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.25             $0.64 9 0.33           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.00             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.01             $0.00 6 1.01           Exterior Lighting Linear Fluorescent T5 0.01             $0.01 6 0.62           Exterior Lighting Linear Fluorescent LED 0.01             $0.06 15 0.19           Water Heating Water Heater Baseline (EF=0.90)‐               $0.00 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 0.19             $0.02 15 9.79           Water Heating Water Heater Geothermal Heat Pump 2.47             $3.53 15 0.80           Water Heating Water Heater Solar 2.72             $3.03 15 1.02           Avista 2011 Electric Integrated Resource Plan 559 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-29 An EnerNOC Company Table D-9 Energy Efficiency Equipment Data — Extra Large Commercial, New Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Food Preparation Fryer Standard ‐               $0.00 12 ‐             Food Preparation Fryer Efficient 0.03             $0.00 12 6.02           Food Preparation Oven Standard ‐               $0.00 12 ‐             Food Preparation Oven Efficient 0.85             $0.38 12 2.11           Food Preparation Dishwasher Standard ‐               $0.00 12 ‐             Food Preparation Dishwasher Efficient 0.03             $0.04 12 0.57           Food Preparation Hot Food Container Standard ‐               $0.00 12 ‐             Food Preparation Hot Food Container Efficient 0.17             $0.22 12 0.73           Food Preparation Food Prep Standard ‐               $0.00 12 ‐             Food Preparation Food Prep Efficient 0.00             $0.03 12 0.15           Refrigeration Walk in Refrigeration Standard ‐               $0.00 18 ‐             Refrigeration Walk in Refrigeration Efficient 0.06             $0.05 18 1.42           Refrigeration Glass Door Display Standard ‐               $0.00 18 ‐             Refrigeration Glass Door Display Efficient 0.04             $0.00 18 78.11        Refrigeration Solid Door Refrigerator Standard ‐               $0.00 18 ‐             Refrigeration Solid Door Refrigerator Efficient 0.27             $0.02 18 13.75        Refrigeration Open Display Case Standard ‐               $0.00 18 ‐             Refrigeration Open Display Case Efficient 0.01             $0.03 18 0.34           Refrigeration Vending Machine Base ‐               $0.00 10 ‐             Refrigeration Vending Machine Base (2012)0.13             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency 0.16             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency (2012)0.24             $0.00 10 68.21        Refrigeration Icemaker Standard ‐               $0.00 12 ‐             Refrigeration Icemaker Efficient 0.05             $0.00 12 17.60        Office Equipment Desktop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Desktop Computer Energy Star 0.25             $0.00 4 32.37        Office Equipment Desktop Computer Climate Savers 0.35             $0.33 4 0.32           Office Equipment Laptop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Laptop Computer Energy Star 0.02             $0.00 4 10.31        Office Equipment Laptop Computer Climate Savers 0.04             $0.10 4 0.12           Office Equipment Server Standard ‐               $0.00 3 ‐             Office Equipment Server Energy Star 0.06             $0.00 3 3.01           Office Equipment Monitor Standard ‐               $0.00 4 ‐             Office Equipment Monitor Energy Star 0.11             $0.01 4 6.80           Office Equipment Printer/copier/fax Standard ‐               $0.00 6 ‐             Office Equipment Printer/copier/fax Energy Star 0.02             $0.01 6 1.38           Office Equipment POS Terminal Standard ‐               $0.00 4 ‐             Office Equipment POS Terminal Energy Star 0.00             $0.00 4 2.01           Miscellaneous Non‐HVAC Motor Standard ‐               $0.00 15 ‐             Miscellaneous Non‐HVAC Motor Standard (2015)0.01             $0.00 15 ‐             Miscellaneous Non‐HVAC Motor High Efficiency 0.03             $0.03 15 1.02           Miscellaneous Non‐HVAC Motor High Efficiency (2015)0.04             $0.03 15 ‐             Miscellaneous Non‐HVAC Motor Premium 0.05             $0.07 15 0.76           Miscellaneous Non‐HVAC Motor Premium (2015)0.05             $0.07 15 ‐             Miscellaneous Other Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Miscellaneous Other Miscellaneous Miscellaneous (2013)0.00             $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 560 Commercial Energy Efficiency Equipment and Measure Data D-30 www.gepllc.com Table D-9 Energy Efficiency Equipment Data — Extra Large Industrial, New Vintage    Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 0.75 kw/ton, COP 4.7 ‐               $0.00 20 ‐             Cooling Central Chiller 0.60 kw/ton, COP 5.9 1.61             $0.33 20 ‐             Cooling Central Chiller 0.58 kw/ton, COP 6.1 1.82             $0.66 20 0.68           Cooling Central Chiller 0.55 kw/Ton, COP 6.4 2.15             $0.93 20 0.94           Cooling Central Chiller 0.51 kw/ton, COP 6.9 2.58             $1.59 20 0.80           Cooling Central Chiller 0.50 kw/Ton, COP 7.0 2.68             $1.92 20 0.71           Cooling Central Chiller 0.48 kw/ton, COP 7.3 2.90             $2.25 20 0.70           Cooling Central Chiller Variable Refrigerant Flow 3.74             $39.62 20 0.06           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.56             $0.39 16 ‐             Cooling RTU EER 11.2 1.12             $0.74 16 ‐             Cooling RTU EER 12.0 1.47             $1.23 16 0.62           Cooling RTU Ductless VRF 1.79             $10.88 16 0.06           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.20             $0.06 14 2.79           Cooling PTAC EER 10.8 0.47             $0.11 14 3.27           Cooling PTAC EER 11 0.55             $0.31 14 1.41           Cooling PTAC EER 11.5 0.75             $0.69 14 0.87           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 1.07             $0.92 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 1.69             $2.75 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 2.25             $3.66 15 0.75           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 2.47             $4.58 15 0.52           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 2.74             $26.86 20 0.08           Combined Heating/Cooling Heat Pump Geothermal Heat Pump 3.29             $48.32 20 ‐             Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 9.66             $1.22 15 8.05           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.08             $0.04 4 ‐             Interior Lighting Interior Screw‐in CFL 0.34             $0.02 7 13.32        Interior Lighting Interior Screw‐in LED 0.38             $0.52 12 0.68           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.41             ($0.14) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.09             ($0.01) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.28             $0.08 6 1.56           Interior Lighting Linear Fluorescent T5 0.29             $0.14 6 0.96           Interior Lighting Linear Fluorescent LED 0.30             $1.21 15 0.30           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.01             $0.00 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.02             $0.00 7 13.52        Exterior Lighting Exterior Screw‐in Metal Halides 0.02             $0.00 4 2.42           Exterior Lighting Exterior Screw‐in LED 0.02             $0.03 12 0.69           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.07             ($0.04) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.07             $0.18 9 0.33           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.00             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.00             $0.00 6 1.05           Exterior Lighting Linear Fluorescent T5 0.00             $0.00 6 0.64           Exterior Lighting Linear Fluorescent LED 0.00             $0.01 15 0.20           Process Process Cooling/Refrigera Standard ‐               $0.00 10 ‐             Process Process Cooling/Refrigera Efficient 18.88           $5.59 10 2.49           Process Process Heating Standard ‐               $0.00 10 ‐             Process Process Heating Efficient 6.18             $0.57 10 7.97           Avista 2011 Electric Integrated Resource Plan 561 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-31 An EnerNOC Company Table D-9 Energy Efficiency Equipment Data — Extra Large Industrial, New Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Process Electrochemical Process Standard ‐               $0.00 10 ‐             Process Electrochemical Process Efficient 13.16           $2.64 10 3.67           Machine Drive Less than 5 HP Standard ‐               $0.00 10 ‐             Machine Drive Less than 5 HP High Efficiency 0.05             $0.02 10 2.08           Machine Drive Less than 5 HP Standard (2015)0.07             $0.00 10 ‐             Machine Drive Less than 5 HP Premium 0.07             $0.03 10 1.66           Machine Drive Less than 5 HP High Efficiency (2015)0.11             $0.02 10 ‐             Machine Drive Less than 5 HP Premium (2015)0.14             $0.03 10 ‐             Machine Drive 5‐24 HP Standard ‐               $0.00 10 ‐             Machine Drive 5‐24 HP High 0.11             $0.02 10 5.09           Machine Drive 5‐24 HP Premium 0.18             $0.03 10 4.07           Machine Drive 25‐99 HP Standard ‐               $0.00 10 ‐             Machine Drive 25‐99 HP High 0.31             $0.02 10 13.72        Machine Drive 25‐99 HP Premium 0.49             $0.03 10 10.97        Machine Drive 100‐249 HP Standard ‐               $0.00 10 ‐             Machine Drive 100‐249 HP High 0.12             $0.02 10 5.17           Machine Drive 100‐249 HP Premium 0.15             $0.03 10 3.44           Machine Drive 250‐499 HP Standard ‐               $0.00 10 ‐             Machine Drive 250‐499 HP High 0.35             $0.02 10 15.66        Machine Drive 250‐499 HP Premium 0.47             $0.03 10 10.44        Machine Drive 500 and more HP Standard ‐               $0.00 10 ‐             Machine Drive 500 and more HP High 0.59             $0.02 10 26.28        Machine Drive 500 and more HP Premium 0.78             $0.03 10 17.52        Miscellaneous Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 562 Commercial Energy Efficiency Equipment and Measure Data D-32 www.gepllc.com Table D-10 Energy Efficiency Measure Data — Small/Med. Comm., Existing Vintage     Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio RTU ‐ Maintenance Cooling 14% 0% 14% 90% $0.08 4 0.75 RTU ‐ Evaporative Precooler Cooling 10% 0% 0% 0% $0.88 15 0.20 Chiller ‐ Chilled Water Reset Cooling 14% 0% 0% 0% $0.86 4 0.08 Chiller ‐ Chilled Water Variable‐Flow System Cooling 5% 0% 0% 0% $0.86 10 0.07 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 0% $0.90 20 0.70 Chiller ‐ VSD Cooling 27% 0% 0% 0% $1.17 20 0.48 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 0% 0% $0.04 10 0.01 Chiller ‐ Condenser Water Temprature Reset Cooling 10% 0% 0% 0% $0.87 14 0.18 Cooling ‐ Economizer Installation Cooling 6% 0% 45% 49% $0.15 15 0.71 Heat Pump ‐ Maintenance Combined Heating/Cooling 7% 7% 10% 95% $0.03 4 5.00 Insulation ‐ Ducting Cooling 6% 0% 9% 50% $0.41 20 0.71 Insulation ‐ Ducting Space Heating 3% 1% 9% 50% $0.41 20 0.71 Repair and Sealing ‐ Ducting Cooling 2% 0% 5% 25% $0.38 15 0.45 Repair and Sealing ‐ Ducting Space Heating 2% 1% 5% 25% $0.38 15 0.45 Energy Management System Cooling 6% 0% 24% 75% $0.35 14 0.72 Energy Management System Space Heating 5% 3% 24% 75% $0.35 14 0.72 Energy Management System Interior Lighting 2% 1% 24% 75% $0.35 14 0.72 Cooking ‐ Exhaust Hoods with Sensor Control Ventilation 25% 13% 1% 15% $0.04 10 7.36 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 11% 90% $0.05 10 1.38 Fans ‐ Variable Speed Control Ventilation 15% 5% 8% 90% $0.20 10 0.89 Retrocommissioning ‐ HVAC Cooling 9% 0% 15% 90% $0.60 4 0.50 Retrocommissioning ‐ HVAC Space Heating 9% 6% 15% 90% $0.60 4 0.50 Retrocommissioning ‐ HVAC Ventilation 9% 6% 15% 90% $0.60 4 0.50 Pumps ‐ Variable Speed Control Miscellaneous 1% 0% 0% 34% $0.44 10 1.01 Thermostat ‐ Clock/Programmable Cooling 5% 0% 34% 50% $0.13 11 1.12 Thermostat ‐ Clock/Programmable Space Heating 5% 1% 34% 50% $0.13 11 1.12 Insulation ‐ Ceiling Cooling 2% 0% 10% 18% $0.64 20 0.70 Insulation ‐ Ceiling Space Heating 17% 4% 10% 18% $0.64 20 0.70 Insulation ‐ Radiant Barrier Cooling 3% 0% 7% 13% $0.26 20 0.81 Insulation ‐ Radiant Barrier Space Heating 5% 2% 7% 13% $0.26 20 0.81 Roofs ‐ High Reflectivity Cooling 15% 0% 2% 95% $0.18 15 1.47 Windows ‐ High Efficiency Cooling 5% 0% 61% 75% $0.44 20 0.63 Windows ‐ High Efficiency Space Heating 3% 2% 61% 75% $0.44 20 0.63 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 81% 90% $0.65 8 0.34 Interior Lighting ‐ Photocell Controlled T8 Dimming Ballasts Interior Lighting 25% 13% 1% 45% $0.50 8 0.90 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 2% 50% $0.11 8 1.36 Interior Fluorescent ‐ Delamp and Install Reflectors Interior Lighting 20% 10% 18% 25% $0.50 11 0.97 Interior Fluorescent ‐ Bi‐Level Fixture w/Occupancy Sensor Interior Lighting 10% 5% 10% 23% $0.50 8 0.36 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 23% $0.70 11 1.73 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 7% 45% $0.20 8 1.11 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.26 Interior Screw‐in ‐ Task Lighting Interior Lighting 7% 4% 25% 75% $0.24 5 0.09 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 9% 56% $0.20 8 0.56 Water Heater ‐ Faucet Aerators/Low Flow Nozzles Water Heating 4% 1% 8% 90% $0.01 9 4.28 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 46% 50% $0.28 15 0.37 Water Heater ‐ High Efficiency Circulation Pump Water Heating 5% 4% 0% 0% $0.11 10 0.64 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 40% 50% $0.02 10 5.87 Water Heater ‐ Thermostat Setback Water Heating 4% 2% 5% 75% $0.11 10 0.47 Water Heater ‐ Hot Water Saver Water Heating 5% 1% 0% 0% $0.02 5 1.56 Refrigeration ‐ Anti‐Sweat Heater/Auto Door Closer Refrigeration 5% 3% 0% 75% $0.20 16 1.10 Refrigeration ‐ Floating Head Pressure Refrigeration 7% 4% 18% 38% $0.35 16 1.25 Refrigeration ‐ Door Gasket Replacement Refrigeration 4% 2% 5% 75% $0.10 8 0.10 Insulation ‐ Bare Suction Lines Refrigeration 3% 2% 5% 75% $0.10 8 0.21 Refrigeration ‐ Night Covers Refrigeration 6% 3% 5% 75% $0.05 8 1.02 Refrigeration ‐ Strip Curtain Refrigeration 4% 2% 5% 56% $0.02 8 0.00 Retrocommissioning ‐ Comprehensive Cooling 12% 0% 40% 90% $0.70 4 0.71 Retrocommissioning ‐ Comprehensive Space Heating 12% 9% 40% 90% $0.70 4 0.71 Retrocommissioning ‐ Comprehensive Interior Lighting 12% 9% 40% 90% $0.70 4 0.71 Office Equipment ‐ Energy Star Power Supply Office Equipment 1% 1% 10% 95% $0.00 7 61.20 Vending Machine ‐ Controller Refrigeration 15% 11% 2% 10% $0.27 10 1.09 LED Exit Lighting Interior Lighting 2% 2% 9% 86% $0.00 10 12.75 Retrocommissioning ‐ Lighting Interior Lighting 9% 6% 5% 90% $0.10 5 1.59 Retrocommissioning ‐ Lighting Exterior Lighting 9% 6% 5% 90% $0.10 5 1.59 Refrigeration ‐ High Efficiency Case Lighting Refrigeration 4% 2% 5% 75% $0.20 8 0.00 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 1.37 Exterior Lighting ‐ Induction Lamps Exterior Lighting 3% 3% 5% 56% $0.00 5 8.10 Laundry ‐ High Efficiency Clothes Washer Miscellaneous 0% 0% 5% 10% $0.00 10 36.95 Interior Lighting ‐ Hotel Guestroom Controls Interior Lighting 10% 5% 0% 0% $0.14 8 0.33 Miscellaneous ‐ Energy Star Water Cooler Miscellaneous 0% 0% 5% 95% $0.00 8 1.95 Industrial Process Improvements Miscellaneous 10% 8% 0% 23% $0.52 10 1.16 Custom Measures Cooling 10% 0% 10% 45% $1.50 15 0.59 Custom Measures Space Heating 10% 8% 10% 45% $1.50 15 0.59 Custom Measures Interior Lighting 10% 6% 10% 45% $1.50 15 0.59 Custom Measures Food Preparation 10% 7% 10% 45% $1.50 15 0.59 Custom Measures Refrigeration 10% 5% 10% 45% $1.50 15 0.59 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 19% $0.80 15 0.69 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $4.00 15 0.54 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 47% $8.04 15 1.08 Avista 2011 Electric Integrated Resource Plan 563 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-33 An EnerNOC Company Table D-11 Energy Efficiency Measure Data — Large Commercial, Existing Vintage     Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio RTU ‐ Maintenance Cooling 14% 0% 27% 90% $0.06 4 1.30 RTU ‐ Evaporative Precooler Cooling 10% 0% 0% 0% $0.88 15 0.21 Chiller ‐ Chilled Water Reset Cooling 19% 0% 15% 75% $0.18 4 0.50 Chiller ‐ Chilled Water Variable‐Flow System Cooling 5% 0% 30% 34% $0.18 10 0.31 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 66% $0.90 20 0.64 Chiller ‐ VSD Cooling 32% 0% 15% 66% $1.17 20 0.52 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 15% 41% $0.04 10 0.01 Chiller ‐ Condenser Water Temprature Reset Cooling 9% 0% 5% 75% $0.18 14 0.76 Cooling ‐ Economizer Installation Cooling 11% 0% 44% 49% $0.15 15 1.29 Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 10% 95% $0.06 4 3.04 Insulation ‐ Ducting Cooling 3% 0% 8% 50% $0.41 20 0.52 Insulation ‐ Ducting Space Heating 3% 1% 8% 50% $0.41 20 0.52 Repair and Sealing ‐ Ducting Cooling 2% 0% 5% 25% $0.38 15 0.43 Repair and Sealing ‐ Ducting Space Heating 2% 1% 5% 25% $0.38 15 0.43 Energy Management System Cooling 23% 0% 37% 90% $0.35 14 2.63 Energy Management System Space Heating 18% 12% 37% 90% $0.35 14 2.63 Energy Management System Interior Lighting 9% 6% 37% 90% $0.35 14 2.63 Cooking ‐ Exhaust Hoods with Sensor Control Ventilation 13% 7% 1% 11% $0.04 10 2.97 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 11% 90% $0.05 10 1.11 Fans ‐ Variable Speed Control Ventilation 15% 5% 2% 90% $0.20 10 0.71 Retrocommissioning ‐ HVAC Cooling 12% 0% 15% 90% $0.30 4 0.72 Retrocommissioning ‐ HVAC Space Heating 12% 9% 15% 90% $0.30 4 0.72 Retrocommissioning ‐ HVAC Ventilation 9% 6% 15% 90% $0.30 4 0.72 Pumps ‐ Variable Speed Control Miscellaneous 1% 0% 0% 34% $0.13 10 1.05 Thermostat ‐ Clock/Programmable Cooling 5% 0% 33% 50% $0.13 11 1.02 Thermostat ‐ Clock/Programmable Space Heating 5% 1% 33% 50% $0.13 11 1.02 Insulation ‐ Ceiling Cooling 1% 0% 9% 30% $0.85 20 0.45 Insulation ‐ Ceiling Space Heating 12% 3% 9% 30% $0.85 20 0.45 Insulation ‐ Radiant Barrier Cooling 2% 0% 7% 13% $0.26 20 0.64 Insulation ‐ Radiant Barrier Space Heating 5% 2% 7% 13% $0.26 20 0.64 Roofs ‐ High Reflectivity Cooling 5% 0% 2% 75% $0.08 15 1.08 Windows ‐ High Efficiency Cooling 12% 0% 72% 75% $0.88 20 0.74 Windows ‐ High Efficiency Space Heating 11% 8% 72% 75% $0.88 20 0.74 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 86% 90% $0.65 8 0.34 Interior Lighting ‐ Photocell Controlled T8 Dimming Ballasts Interior Lighting 25% 13% 1% 45% $0.45 8 0.96 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 2% 13% $0.29 8 0.42 Interior Fluorescent ‐ Delamp and Install Reflectors Interior Lighting 30% 15% 17% 38% $0.50 11 1.40 Interior Fluorescent ‐ Bi‐Level Fixture w/Occupancy Sensor Interior Lighting 10% 5% 10% 23% $0.40 8 0.43 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 23% $0.63 11 1.85 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 13% 45% $0.20 8 1.10 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.21 Interior Screw‐in ‐ Task Lighting Interior Lighting 10% 5% 10% 75% $0.24 5 0.13 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 9% 56% $0.20 8 0.55 Water Heater ‐ Faucet Aerators/Low Flow Nozzles Water Heating 4% 1% 3% 90% $0.03 9 1.62 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 0% 0% $0.28 15 0.42 Water Heater ‐ High Efficiency Circulation Pump Water Heating 5% 4% 0% 23% $0.11 10 0.70 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $0.04 10 3.28 Water Heater ‐ Thermostat Setback Water Heating 4% 2% 0% 0% $0.11 10 0.52 Water Heater ‐ Hot Water Saver Water Heating 5% 1% 0% 3% $0.04 5 0.88 Refrigeration ‐ Anti‐Sweat Heater/Auto Door Closer Refrigeration 5% 3% 0% 75% $0.20 16 0.58 Refrigeration ‐ Floating Head Pressure Refrigeration 7% 4% 38% 45% $0.35 16 0.95 Refrigeration ‐ Door Gasket Replacement Refrigeration 4% 2% 5% 75% $0.10 8 0.65 Insulation ‐ Bare Suction Lines Refrigeration 3% 2% 5% 75% $0.10 8 0.37 Refrigeration ‐ Night Covers Refrigeration 6% 3% 5% 75% $0.05 8 0.65 Refrigeration ‐ Strip Curtain Refrigeration 4% 2% 5% 56% $0.02 8 0.96 Retrocommissioning ‐ Comprehensive Cooling 12% 0% 40% 90% $0.35 4 1.06 Retrocommissioning ‐ Comprehensive Space Heating 12% 9% 40% 90% $0.35 4 1.06 Retrocommissioning ‐ Comprehensive Interior Lighting 12% 9% 40% 90% $0.35 4 1.06 Office Equipment ‐ Energy Star Power Supply Office Equipment 1% 1% 10% 95% $0.00 7 68.11 Vending Machine ‐ Controller Refrigeration 15% 11% 2% 10% $0.27 10 1.11 LED Exit Lighting Interior Lighting 2% 2% 9% 86% $0.00 10 12.29 Retrocommissioning ‐ Lighting Interior Lighting 9% 6% 5% 90% $0.05 5 3.07 Retrocommissioning ‐ Lighting Exterior Lighting 9% 6% 5% 90% $0.05 5 3.07 Refrigeration ‐ High Efficiency Case Lighting Refrigeration 4% 2% 5% 75% $0.20 8 0.52 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 1.14 Exterior Lighting ‐ Induction Lamps Exterior Lighting 3% 3% 5% 56% $0.00 5 6.50 Laundry ‐ High Efficiency Clothes Washer Miscellaneous 0% 0% 5% 10% $0.00 10 33.94 Interior Lighting ‐ Hotel Guestroom Controls Interior Lighting 10% 5% 1% 2% $0.14 8 0.32 Miscellaneous ‐ Energy Star Water Cooler Miscellaneous 0% 0% 5% 95% $0.00 8 1.78 Industrial Process Improvements Miscellaneous 10% 8% 0% 5% $0.52 10 1.18 Custom Measures Cooling 10% 0% 10% 45% $0.90 15 0.99 Custom Measures Space Heating 10% 8% 10% 45% $0.90 15 0.99 Custom Measures Interior Lighting 10% 8% 10% 45% $0.90 15 0.99 Custom Measures Food Preparation 10% 8% 10% 45% $0.90 15 0.99 Custom Measures Refrigeration 10% 8% 10% 45% $0.90 15 0.99 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 28% $0.80 15 0.77 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 0% $4.00 15 0.59 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 0% $6.00 15 1.04 Avista 2011 Electric Integrated Resource Plan 564 Commercial Energy Efficiency Equipment and Measure Data D-34 www.gepllc.com Table D-12 Energy Efficiency Measure Data — Extra Large Comm., Existing Vintage     Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio RTU ‐ Maintenance Cooling 14% 0% 47% 90% $0.06 4 1.15 RTU ‐ Evaporative Precooler Cooling 10% 0% 0% 0% $0.88 15 0.19 Chiller ‐ Chilled Water Reset Cooling 15% 0% 30% 75% $0.09 4 0.79 Chiller ‐ Chilled Water Variable‐Flow System Cooling 8% 0% 30% 34% $0.09 10 1.00 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 75% $0.90 20 0.66 Chiller ‐ VSD Cooling 28% 0% 3% 75% $1.17 20 0.47 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 25% 37% $0.04 10 0.01 Chiller ‐ Condenser Water Temprature Reset Cooling 9% 0% 0% 75% $0.09 14 1.49 Cooling ‐ Economizer Installation Cooling 11% 0% 73% 81% $0.15 15 1.20 Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 5% 95% $0.06 4 2.91 Insulation ‐ Ducting Cooling 8% 0% 2% 50% $0.41 20 0.77 Insulation ‐ Ducting Space Heating 3% 1% 2% 50% $0.41 20 0.77 Repair and Sealing ‐ Ducting Cooling 5% 0% 5% 25% $0.38 15 0.65 Repair and Sealing ‐ Ducting Space Heating 5% 3% 5% 25% $0.38 15 0.65 Energy Management System Cooling 12% 0% 80% 90% $0.35 14 1.21 Energy Management System Space Heating 9% 6% 80% 90% $0.35 14 1.21 Energy Management System Interior Lighting 5% 3% 80% 90% $0.35 14 1.21 Cooking ‐ Exhaust Hoods with Sensor Control Ventilation 13% 7% 1% 8% $0.04 10 3.46 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 11% 90% $0.05 10 1.30 Fans ‐ Variable Speed Control Ventilation 15% 5% 2% 90% $0.20 10 0.83 Retrocommissioning ‐ HVAC Cooling 12% 0% 15% 90% $0.20 4 1.00 Retrocommissioning ‐ HVAC Space Heating 12% 9% 15% 90% $0.20 4 1.00 Retrocommissioning ‐ HVAC Ventilation 9% 6% 15% 90% $0.20 4 1.00 Pumps ‐ Variable Speed Control Miscellaneous 1% 0% 1% 34% $0.44 10 1.01 Thermostat ‐ Clock/Programmable Cooling 3% 0% 25% 50% $0.13 11 0.69 Thermostat ‐ Clock/Programmable Space Heating 3% 1% 25% 50% $0.13 11 0.69 Insulation ‐ Ceiling Cooling 1% 0% 2% 9% $0.85 20 0.48 Insulation ‐ Ceiling Space Heating 12% 3% 2% 9% $0.85 20 0.48 Insulation ‐ Radiant Barrier Cooling 1% 0% 2% 13% $0.26 20 0.57 Insulation ‐ Radiant Barrier Space Heating 4% 2% 2% 13% $0.26 20 0.57 Roofs ‐ High Reflectivity Cooling 10% 0% 0% 95% $0.18 15 0.90 Windows ‐ High Efficiency Cooling 6% 0% 95% 100% $2.10 20 0.37 Windows ‐ High Efficiency Space Heating 2% 2% 95% 100% $2.10 20 0.37 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 78% 90% $0.65 8 0.26 Interior Lighting ‐ Photocell Controlled T8 Dimming Ballasts Interior Lighting 25% 13% 3% 45% $0.40 8 0.72 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 2% 10% $0.29 8 0.45 Interior Fluorescent ‐ Delamp and Install Reflectors Interior Lighting 30% 15% 3% 25% $0.50 11 0.93 Interior Fluorescent ‐ Bi‐Level Fixture w/Occupancy Sensor Interior Lighting 10% 5% 10% 23% $0.20 8 0.57 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 23% $0.56 11 1.38 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 42% 45% $0.20 8 0.84 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.23 Interior Screw‐in ‐ Task Lighting Interior Lighting 10% 5% 5% 75% $0.24 5 0.18 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 12% 56% $0.20 8 0.42 Water Heater ‐ Faucet Aerators/Low Flow Nozzles Water Heating 4% 1% 2% 90% $0.03 9 2.66 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 0% 0% $0.28 15 0.70 Water Heater ‐ High Efficiency Circulation Pump Water Heating 5% 4% 0% 23% $0.11 10 1.19 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $0.04 10 5.48 Water Heater ‐ Thermostat Setback Water Heating 4% 0% 0% 0% $0.11 10 0.72 Water Heater ‐ Hot Water Saver Water Heating 5% 1% 0% 0% $0.04 5 1.45 Refrigeration ‐ Anti‐Sweat Heater/Auto Door Closer Refrigeration 5% 3% 10% 75% $0.20 16 0.02 Refrigeration ‐ Floating Head Pressure Refrigeration 7% 4% 10% 38% $0.35 16 0.34 Refrigeration ‐ Door Gasket Replacement Refrigeration 4% 2% 5% 75% $0.10 8 0.13 Insulation ‐ Bare Suction Lines Refrigeration 3% 2% 5% 75% $0.10 8 0.28 Refrigeration ‐ Night Covers Refrigeration 6% 3% 5% 75% $0.05 8 0.29 Refrigeration ‐ Strip Curtain Refrigeration 4% 2% 5% 56% $0.02 8 0.18 Retrocommissioning ‐ Comprehensive Cooling 12% 0% 40% 90% $0.25 4 1.21 Retrocommissioning ‐ Comprehensive Space Heating 12% 9% 40% 90% $0.25 4 1.21 Retrocommissioning ‐ Comprehensive Interior Lighting 12% 9% 40% 90% $0.25 4 1.21 Office Equipment ‐ Energy Star Power Supply Office Equipment 1% 1% 10% 95% $0.00 7 39.11 Vending Machine ‐ Controller Refrigeration 15% 11% 2% 10% $0.27 10 1.12 LED Exit Lighting Interior Lighting 2% 2% 9% 86% $0.00 10 18.34 Retrocommissioning ‐ Lighting Interior Lighting 9% 6% 5% 90% $0.05 5 2.54 Retrocommissioning ‐ Lighting Exterior Lighting 9% 6% 5% 90% $0.05 5 2.54 Refrigeration ‐ High Efficiency Case Lighting Refrigeration 4% 2% 5% 75% $0.20 8 0.04 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 1.61 Exterior Lighting ‐ Induction Lamps Exterior Lighting 3% 3% 5% 56% $0.00 5 6.95 Laundry ‐ High Efficiency Clothes Washer Miscellaneous 0% 0% 5% 10% $0.00 10 20.31 Interior Lighting ‐ Hotel Guestroom Controls Interior Lighting 10% 5% 0% 0% $0.14 8 0.47 Miscellaneous ‐ Energy Star Water Cooler Miscellaneous 0% 0% 5% 95% $0.00 8 1.07 Industrial Process Improvements Miscellaneous 10% 8% 0% 0% $0.52 10 1.11 Custom Measures Cooling 10% 0% 10% 45% $0.67 15 1.09 Custom Measures Space Heating 10% 8% 10% 45% $0.67 15 1.09 Custom Measures Interior Lighting 10% 8% 10% 45% $0.67 15 1.09 Custom Measures Food Preparation 10% 8% 10% 45% $0.67 15 1.09 Custom Measures Refrigeration 10% 8% 10% 45% $0.67 15 1.09 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 41% $0.80 15 1.28 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 0% $4.00 15 1.00 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 0% $4.00 15 1.66 Avista 2011 Electric Integrated Resource Plan 565 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-35 An EnerNOC Company Table D-13 Energy Efficiency Measure Data — Extra Large Industrial, Existing Vintage   Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Refrigeration ‐ System Controls Process 11% 8% 5% 34% $0.40 10 18.09 Refrigeration ‐ System Maintenance Process 3% 2% 5% 34% $0.00 10 2,067.93 Refrigeration ‐ System Optimization Process 15% 11% 5% 34% $0.80 10 12.92 Motors ‐ Variable Frequency Drive Machine Drive 13% 9% 25% 38% $0.10 10 3.38 Motors ‐ Magnetic Adjustable Speed Drives Machine Drive 13% 9% 25% 38% $0.10 10 3.38 Compressed Air ‐ System Controls Machine Drive 9% 7% 5% 34% $0.40 10 0.59 Compressed Air ‐ System Optimization and Improvements Machine Drive 13% 9% 5% 34% $0.80 10 0.42 Compressed Air ‐ System Maintenance Machine Drive 3% 2% 5% 34% $0.20 10 0.34 Compressed Air ‐ Compressor Replacement Machine Drive 5% 4% 5% 34% $0.20 10 0.68 Fan System ‐ Controls Machine Drive 4% 3% 10% 38% $0.35 10 0.11 Fan System ‐ Controls Machine Drive 4% 3% 10% 38% $0.35 10 0.11 Fan System ‐ Optimization Machine Drive 6% 5% 10% 38% $0.70 10 0.08 Fan System ‐ Optimization Machine Drive 6% 5% 10% 38% $0.70 10 0.08 Fan System ‐ Maintenance Machine Drive 1% 1% 10% 38% $0.15 10 0.07 Fan System ‐ Maintenance Machine Drive 1% 1% 10% 38% $0.15 10 0.07 Pumping System ‐ Controls Machine Drive 5% 4% 5% 34% $0.38 12 0.43 Pumping System ‐ Optimization Machine Drive 13% 9% 5% 34% $0.75 12 0.54 Pumping System ‐ Maintenance Machine Drive 2% 1% 5% 34% $0.19 10 0.27 RTU ‐ Maintenance Cooling 14% 0% 22% 90% $0.06 4 3.18 Chiller ‐ Chilled Water Reset Cooling 14% 0% 30% 75% $0.09 4 2.69 Chiller ‐ Chilled Water Variable‐Flow System Cooling 5% 0% 30% 34% $0.20 10 1.05 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 67% $0.90 20 2.48 Chiller ‐ VSD Cooling 26% 0% 15% 67% $1.17 20 1.68 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 25% 50% $0.04 10 0.03 Chiller ‐ Condenser Water Temprature Reset Cooling 10% 0% 0% 75% $0.20 14 2.72 Cooling ‐ Economizer Installation Cooling 6% 0% 29% 34% $0.15 15 2.02 Heat Pump ‐ Maintenance Combined Heating/Cooling 7% 7% 2% 95% $0.03 4 8.67 Insulation ‐ Ducting Space Heating 6% 6% 12% 50% $0.41 20 1.01 Insulation ‐ Ducting Cooling 3% 0% 12% 50% $0.41 20 1.01 Repair and Sealing ‐ Ducting Cooling 2% 0% 5% 25% $0.38 15 0.63 Repair and Sealing ‐ Ducting Space Heating 2% 1% 5% 25% $0.38 15 0.63 Energy Management System Cooling 6% 0% 11% 90% $0.35 14 1.09 Energy Management System Space Heating 5% 3% 11% 90% $0.35 14 1.09 Energy Management System Interior Lighting 2% 1% 11% 90% $0.35 14 1.09 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 2% 90% $0.14 10 2.94 Fans ‐ Variable Speed Control Ventilation 15% 5% 3% 90% $0.20 10 5.29 Retrocommissioning ‐ HVAC Cooling 12% 0% 1% 70% $0.25 4 1.54 Retrocommissioning ‐ HVAC Space Heating 12% 9% 1% 70% $0.25 4 1.54 Retrocommissioning ‐ HVAC Ventilation 9% 6% 1% 70% $0.25 4 1.54 Pumps ‐ Variable Speed Control Machine Drive 5% 4% 0% 34% $0.44 10 0.31 Thermostat ‐ Clock/Programmable Cooling 5% 0% 59% 70% $0.13 11 2.11 Thermostat ‐ Clock/Programmable Space Heating 5% 1% 59% 70% $0.13 11 2.11 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 84% 90% $0.65 8 0.17 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 2% 27% $0.08 8 0.46 Interior Fluorescent ‐ Delamp and Install Reflectors Interior Lighting 20% 10% 17% 38% $0.50 11 0.31 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 38% $0.20 11 1.95 LED Exit Lighting Interior Lighting 2% 2% 9% 86% $0.00 10 4.00 Retrocommissioning ‐ Lighting Interior Lighting 9% 6% 9% 70% $0.05 5 1.44 Retrocommissioning ‐ Lighting Exterior Lighting 9% 6% 9% 70% $0.05 5 1.44 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 15% 45% $0.20 8 0.55 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.07 Interior Screw‐in ‐ Task Lighting Interior Lighting 7% 4% 10% 75% $0.24 5 0.03 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 2% 56% $0.20 8 0.27 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 0.46 Custom Measures Cooling 10% 0% 10% 45% $1.60 15 1.63 Custom Measures Space Heating 10% 8% 10% 45% $1.60 15 1.63 Custom Measures Interior Lighting 10% 8% 10% 45% $1.60 15 1.63 Custom Measures Machine Drive 10% 8% 10% 45% $1.60 15 1.63 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 0% $4.00 15 2.67 Avista 2011 Electric Integrated Resource Plan 566 Commercial Energy Efficiency Equipment and Measure Data D-36 www.gepllc.com Table D-14 Energy Efficiency Measure Data — Small/Medium Comm., New Vintage     Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio RTU ‐ Maintenance Cooling 14% 0% 14% 90% $0.08 4 0.82 RTU ‐ Evaporative Precooler Cooling 10% 0% 0% 0% $0.88 15 0.18 Chiller ‐ Chilled Water Reset Cooling 11% 0% 0% 0% $0.86 4 0.06 Chiller ‐ Chilled Water Variable‐Flow System Cooling 4% 0% 0% 0% $0.86 10 0.05 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 0% $0.90 20 0.63 Chiller ‐ VSD Cooling 26% 0% 0% 0% $1.17 20 0.42 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 0% 0% $0.04 10 0.01 Chiller ‐ Condenser Water Temprature Reset Cooling 8% 0% 0% 0% $0.87 14 0.13 Cooling ‐ Economizer Installation Cooling 6% 0% 45% 49% $0.15 15 0.65 Heat Pump ‐ Maintenance Combined Heating/Cooling 7% 7% 10% 95% $0.03 4 4.32 Insulation ‐ Ducting Cooling 5% 0% 9% 50% $0.41 20 0.64 Insulation ‐ Ducting Space Heating 3% 1% 9% 50% $0.41 20 0.64 Energy Management System Cooling 5% 0% 24% 75% $0.35 14 0.55 Energy Management System Space Heating 2% 1% 24% 75% $0.35 14 0.55 Energy Management System Interior Lighting 2% 1% 24% 75% $0.35 14 0.55 Cooking ‐ Exhaust Hoods with Sensor Control Ventilation 25% 13% 1% 15% $0.04 10 7.04 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 11% 90% $0.05 10 1.32 Fans ‐ Variable Speed Control Ventilation 15% 5% 8% 90% $0.20 10 0.85 Commissioning ‐ HVAC Cooling 5% 0% 40% 75% $0.90 25 0.33 Commissioning ‐ HVAC Space Heating 5% 4% 40% 75% $0.90 25 0.33 Commissioning ‐ HVAC Ventilation 5% 4% 40% 75% $0.90 25 0.33 Pumps ‐ Variable Speed Control Miscellaneous 1% 0% 5% 34% $0.44 10 1.01 Thermostat ‐ Clock/Programmable Cooling 5% 0% 34% 50% $0.13 11 1.06 Thermostat ‐ Clock/Programmable Space Heating 5% 1% 34% 50% $0.13 11 1.06 Insulation ‐ Ceiling Cooling 1% 0% 10% 81% $0.16 20 1.60 Insulation ‐ Ceiling Space Heating 15% 4% 10% 81% $0.16 20 1.60 Insulation ‐ Radiant Barrier Cooling 2% 0% 7% 13% $0.26 20 0.76 Insulation ‐ Radiant Barrier Space Heating 6% 2% 7% 13% $0.26 20 0.76 Roofs ‐ High Reflectivity Cooling 7% 0% 5% 95% $0.09 15 1.25 Windows ‐ High Efficiency Cooling 5% 0% 61% 75% $0.35 20 0.69 Windows ‐ High Efficiency Space Heating 3% 2% 61% 75% $0.35 20 0.69 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 81% 90% $0.65 8 0.31 Interior Lighting ‐ Photocell Controlled T8 Dimming Ballasts Interior Lighting 25% 13% 1% 45% $0.38 8 1.07 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 10% 75% $0.09 8 1.50 Interior Fluorescent ‐ Bi‐Level Fixture w/Occupancy Sensor Interior Lighting 10% 5% 10% 23% $0.50 8 0.32 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 23% $0.70 11 1.56 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 7% 45% $0.20 8 1.00 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.24 Interior Screw‐in ‐ Task Lighting Interior Lighting 7% 4% 25% 75% $0.24 5 0.08 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 9% 56% $0.20 8 0.50 Water Heater ‐ Faucet Aerators/Low Flow Nozzles Water Heating 4% 1% 8% 90% $0.01 9 4.22 Water Heater ‐ Pipe Insulation Water Heating 4% 2% 46% 50% $0.28 15 0.24 Water Heater ‐ High Efficiency Circulation Pump Water Heating 5% 4% 0% 0% $0.11 10 0.63 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 40% 50% $0.02 10 5.80 Water Heater ‐ Thermostat Setback Water Heating 4% 0% 10% 75% $0.11 10 0.38 Water Heater ‐ Hot Water Saver Water Heating 5% 1% 0% 0% $0.02 5 1.53 Refrigeration ‐ Anti‐Sweat Heater/Auto Door Closer Refrigeration 5% 3% 0% 75% $0.20 16 1.09 Refrigeration ‐ Floating Head Pressure Refrigeration 7% 4% 18% 38% $0.35 16 1.24 Refrigeration ‐ Door Gasket Replacement Refrigeration 4% 2% 5% 75% $0.10 8 0.09 Insulation ‐ Bare Suction Lines Refrigeration 3% 2% 5% 75% $0.10 8 0.20 Refrigeration ‐ Night Covers Refrigeration 6% 3% 5% 75% $0.05 8 1.02 Refrigeration ‐ Strip Curtain Refrigeration 4% 2% 5% 56% $0.02 8 0.00 Commissioning ‐ Comprehensive Cooling 10% 0% 40% 75% $1.25 25 0.83 Commissioning ‐ Comprehensive Space Heating 10% 7% 40% 75% $1.25 25 0.83 Commissioning ‐ Comprehensive Interior Lighting 10% 7% 40% 75% $1.25 25 0.83 Office Equipment ‐ Energy Star Power Supply Office Equipment 1% 1% 10% 95% $0.00 7 61.07 Vending Machine ‐ Controller Refrigeration 15% 11% 2% 10% $0.27 10 1.08 LED Exit Lighting Interior Lighting 2% 2% 85% 86% $0.00 10 11.83 Commissioning ‐ Lighting Interior Lighting 5% 4% 30% 75% $0.20 25 1.54 Commissioning ‐ Lighting Exterior Lighting 5% 4% 30% 75% $0.20 25 1.54 Refrigeration ‐ High Efficiency Case Lighting Refrigeration 4% 2% 5% 75% $0.20 8 0.00 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 1.23 Exterior Lighting ‐ Induction Lamps Exterior Lighting 3% 3% 5% 56% $0.00 5 7.30 Laundry ‐ High Efficiency Clothes Washer Miscellaneous 0% 0% 5% 10% $0.00 10 36.95 Interior Lighting ‐ Hotel Guestroom Controls Interior Lighting 10% 5% 0% 0% $0.14 8 0.30 Miscellaneous ‐ Energy Star Water Cooler Miscellaneous 0% 0% 5% 95% $0.00 8 1.95 Advanced New Construction Designs Cooling 40% 0% 5% 75% $2.00 35 2.01 Advanced New Construction Designs Space Heating 40% 30% 5% 75% $2.00 35 2.01 Advanced New Construction Designs Interior Lighting 25% 19% 5% 75% $2.00 35 2.01 Insulation ‐ Wall Cavity Cooling 1% 0% 10% 68% $0.34 20 0.72 Insulation ‐ Wall Cavity Space Heating 10% 2% 10% 68% $0.34 20 0.72 Roofs ‐ Green Cooling 7% 0% 2% 11% $1.00 30 0.26 Roofs ‐ Green Space Heating 4% 3% 2% 11% $1.00 30 0.26 Industrial Process Improvements Miscellaneous 10% 8% 0% 23% $0.52 10 1.16 Custom Measures Cooling 8% 0% 10% 45% $1.50 15 0.45 Custom Measures Space Heating 8% 6% 10% 45% $1.50 15 0.45 Custom Measures Interior Lighting 8% 6% 10% 45% $1.50 15 0.45 Custom Measures Food Preparation 8% 6% 10% 45% $1.50 15 0.45 Custom Measures Refrigeration 8% 6% 10% 45% $1.50 15 0.45 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 19% $0.80 15 0.68 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $4.00 15 0.53 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 47% $8.04 15 1.01 Avista 2011 Electric Integrated Resource Plan 567 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-37 An EnerNOC Company Table D-15 Energy Efficiency Measure Data — Large Commercial, New Vintage     Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio RTU ‐ Maintenance Cooling 14% 0% 27% 90% $0.06 4 1.13 RTU ‐ Evaporative Precooler Cooling 10% 0% 0% 0% $0.88 15 0.19 Chiller ‐ Chilled Water Reset Cooling 18% 0% 30% 75% $0.18 4 0.42 Chiller ‐ Chilled Water Variable‐Flow System Cooling 5% 0% 30% 34% $0.18 10 0.28 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 66% $0.90 20 0.61 Chiller ‐ VSD Cooling 32% 0% 15% 66% $1.17 20 0.50 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 15% 41% $0.04 10 0.01 Chiller ‐ Condenser Water Temprature Reset Cooling 8% 0% 25% 75% $0.18 14 0.63 Cooling ‐ Economizer Installation Cooling 11% 0% 44% 49% $0.15 15 1.19 Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 10% 95% $0.06 4 2.72 Insulation ‐ Ducting Cooling 4% 0% 8% 50% $0.41 20 0.56 Insulation ‐ Ducting Space Heating 3% 1% 8% 50% $0.41 20 0.56 Energy Management System Cooling 21% 0% 48% 90% $0.35 14 2.10 Energy Management System Space Heating 8% 5% 48% 90% $0.35 14 2.10 Energy Management System Interior Lighting 9% 6% 48% 90% $0.35 14 2.10 Cooking ‐ Exhaust Hoods with Sensor Control Ventilation 13% 7% 1% 11% $0.04 10 2.84 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 11% 90% $0.05 10 1.07 Fans ‐ Variable Speed Control Ventilation 15% 5% 2% 90% $0.20 10 0.68 Commissioning ‐ HVAC Cooling 5% 0% 50% 75% $0.85 25 0.30 Commissioning ‐ HVAC Space Heating 5% 4% 50% 75% $0.85 25 0.30 Commissioning ‐ HVAC Ventilation 5% 4% 50% 75% $0.85 25 0.30 Pumps ‐ Variable Speed Control Miscellaneous 1% 0% 5% 34% $0.13 10 1.05 Thermostat ‐ Clock/Programmable Cooling 5% 0% 33% 50% $0.13 11 0.97 Thermostat ‐ Clock/Programmable Space Heating 5% 1% 33% 50% $0.13 11 0.97 Insulation ‐ Ceiling Cooling 1% 0% 75% 81% $0.35 20 0.60 Insulation ‐ Ceiling Space Heating 10% 3% 75% 81% $0.35 20 0.60 Insulation ‐ Radiant Barrier Cooling 1% 0% 7% 13% $0.26 20 0.56 Insulation ‐ Radiant Barrier Space Heating 5% 2% 7% 13% $0.26 20 0.56 Roofs ‐ High Reflectivity Cooling 4% 0% 5% 95% $0.05 15 1.28 Windows ‐ High Efficiency Cooling 12% 0% 72% 75% $0.88 20 0.72 Windows ‐ High Efficiency Space Heating 11% 8% 72% 75% $0.88 20 0.72 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 86% 90% $0.65 8 0.30 Interior Lighting ‐ Photocell Controlled T8 Dimming Ballasts Interior Lighting 25% 13% 1% 45% $0.34 8 1.14 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 10% 19% $0.19 8 0.57 Interior Fluorescent ‐ Bi‐Level Fixture w/Occupancy Sensor Interior Lighting 10% 5% 10% 23% $0.40 8 0.39 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 23% $0.63 11 1.66 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 13% 45% $0.20 8 0.99 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.19 Interior Screw‐in ‐ Task Lighting Interior Lighting 10% 5% 10% 75% $0.24 5 0.11 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 9% 56% $0.20 8 0.49 Water Heater ‐ Faucet Aerators/Low Flow Nozzles Water Heating 4% 1% 3% 90% $0.03 9 1.60 Water Heater ‐ Pipe Insulation Water Heating 4% 2% 0% 0% $0.28 15 0.27 Water Heater ‐ High Efficiency Circulation Pump Water Heating 5% 4% 0% 23% $0.11 10 0.69 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $0.04 10 3.23 Water Heater ‐ Thermostat Setback Water Heating 4% 0% 0% 0% $0.11 10 0.44 Water Heater ‐ Hot Water Saver Water Heating 5% 1% 0% 3% $0.04 5 0.87 Refrigeration ‐ Anti‐Sweat Heater/Auto Door Closer Refrigeration 5% 3% 0% 75% $0.20 16 0.58 Refrigeration ‐ Floating Head Pressure Refrigeration 7% 4% 38% 45% $0.35 16 0.94 Refrigeration ‐ Door Gasket Replacement Refrigeration 4% 2% 5% 75% $0.10 8 0.63 Insulation ‐ Bare Suction Lines Refrigeration 3% 2% 5% 75% $0.10 8 0.35 Refrigeration ‐ Night Covers Refrigeration 6% 3% 5% 75% $0.05 8 0.65 Refrigeration ‐ Strip Curtain Refrigeration 4% 2% 5% 56% $0.02 8 0.94 Commissioning ‐ Comprehensive Cooling 10% 0% 40% 75% $1.00 25 0.96 Commissioning ‐ Comprehensive Space Heating 10% 7% 40% 75% $1.00 25 0.96 Commissioning ‐ Comprehensive Interior Lighting 10% 7% 40% 75% $1.00 25 0.96 Office Equipment ‐ Energy Star Power Supply Office Equipment 1% 1% 10% 95% $0.00 7 67.83 Vending Machine ‐ Controller Refrigeration 15% 11% 2% 10% $0.27 10 1.09 LED Exit Lighting Interior Lighting 2% 2% 85% 86% $0.00 10 11.13 Commissioning ‐ Lighting Interior Lighting 5% 4% 60% 75% $0.15 25 1.99 Commissioning ‐ Lighting Exterior Lighting 5% 4% 60% 75% $0.15 25 1.99 Refrigeration ‐ High Efficiency Case Lighting Refrigeration 4% 2% 5% 75% $0.20 8 0.52 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 1.03 Exterior Lighting ‐ Induction Lamps Exterior Lighting 3% 3% 5% 56% $0.00 5 5.86 Laundry ‐ High Efficiency Clothes Washer Miscellaneous 0% 0% 5% 10% $0.00 10 33.94 Interior Lighting ‐ Hotel Guestroom Controls Interior Lighting 10% 5% 1% 2% $0.14 8 0.29 Miscellaneous ‐ Energy Star Water Cooler Miscellaneous 0% 0% 5% 95% $0.00 8 1.78 Advanced New Construction Designs Cooling 40% 0% 5% 75% $2.00 35 1.84 Advanced New Construction Designs Space Heating 40% 30% 5% 75% $2.00 35 1.84 Advanced New Construction Designs Interior Lighting 25% 19% 5% 75% $2.00 35 1.84 Insulation ‐ Wall Cavity Cooling 1% 0% 9% 68% $0.78 20 0.43 Insulation ‐ Wall Cavity Space Heating 10% 2% 9% 68% $0.78 20 0.43 Roofs ‐ Green Cooling 4% 0% 2% 13% $1.00 15 0.08 Roofs ‐ Green Space Heating 2% 2% 2% 13% $1.00 15 0.08 Industrial Process Improvements Miscellaneous 10% 8% 0% 5% $0.52 10 1.18 Custom Measures Cooling 8% 0% 10% 45% $0.90 15 0.73 Custom Measures Space Heating 8% 6% 10% 45% $0.90 15 0.73 Custom Measures Interior Lighting 8% 6% 10% 45% $0.90 15 0.73 Custom Measures Food Preparation 8% 6% 10% 45% $0.90 15 0.73 Custom Measures Refrigeration 8% 6% 10% 45% $0.90 15 0.73 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 28% $0.80 15 0.76 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 0% $4.00 15 0.58 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 0% $6.00 15 0.98 Avista 2011 Electric Integrated Resource Plan 568 Commercial Energy Efficiency Equipment and Measure Data D-38 www.gepllc.com Table D-16 Energy Efficiency Measure Data — Extra Large Commercial, New Vintage     Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio RTU ‐ Maintenance Cooling 14% 0% 47% 90% $0.06 4 1.02 RTU ‐ Evaporative Precooler Cooling 10% 0% 0% 0% $0.88 15 0.17 Chiller ‐ Chilled Water Reset Cooling 12% 0% 60% 75% $0.09 4 0.61 Chiller ‐ Chilled Water Variable‐Flow System Cooling 8% 0% 30% 34% $0.09 10 0.95 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 75% $0.90 20 0.64 Chiller ‐ VSD Cooling 28% 0% 3% 75% $1.17 20 0.45 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 25% 37% $0.04 10 0.01 Chiller ‐ Condenser Water Temprature Reset Cooling 8% 0% 25% 75% $0.09 14 1.28 Cooling ‐ Economizer Installation Cooling 11% 0% 73% 81% $0.15 15 1.14 Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 5% 95% $0.06 4 2.61 Insulation ‐ Ducting Cooling 7% 0% 2% 50% $0.41 20 0.71 Insulation ‐ Ducting Space Heating 3% 1% 2% 50% $0.41 20 0.71 Energy Management System Cooling 11% 0% 80% 90% $0.35 14 0.94 Energy Management System Space Heating 4% 2% 80% 90% $0.35 14 0.94 Energy Management System Interior Lighting 5% 3% 80% 90% $0.35 14 0.94 Cooking ‐ Exhaust Hoods with Sensor Control Ventilation 13% 7% 1% 8% $0.04 10 3.31 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 11% 90% $0.05 10 1.24 Fans ‐ Variable Speed Control Ventilation 15% 5% 2% 90% $0.20 10 0.80 Commissioning ‐ HVAC Cooling 5% 0% 50% 75% $0.70 25 0.42 Commissioning ‐ HVAC Space Heating 5% 4% 50% 75% $0.70 25 0.42 Commissioning ‐ HVAC Ventilation 5% 4% 50% 75% $0.70 25 0.42 Pumps ‐ Variable Speed Control Miscellaneous 1% 0% 1% 34% $0.44 10 1.01 Thermostat ‐ Clock/Programmable Cooling 3% 0% 25% 50% $0.13 11 0.67 Thermostat ‐ Clock/Programmable Space Heating 3% 1% 25% 50% $0.13 11 0.67 Insulation ‐ Ceiling Cooling 1% 0% 2% 81% $0.35 20 0.68 Insulation ‐ Ceiling Space Heating 10% 3% 2% 81% $0.35 20 0.68 Insulation ‐ Radiant Barrier Cooling 1% 0% 2% 13% $0.26 20 0.47 Insulation ‐ Radiant Barrier Space Heating 2% 1% 2% 13% $0.26 20 0.47 Roofs ‐ High Reflectivity Cooling 10% 0% 5% 95% $0.18 15 0.85 Windows ‐ High Efficiency Cooling 6% 0% 95% 100% $1.69 20 0.38 Windows ‐ High Efficiency Space Heating 2% 2% 95% 100% $1.69 20 0.38 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 78% 90% $0.65 8 0.23 Interior Lighting ‐ Photocell Controlled T8 Dimming Ballasts Interior Lighting 25% 13% 3% 45% $0.30 8 0.86 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 10% 15% $0.19 8 0.61 Interior Fluorescent ‐ Bi‐Level Fixture w/Occupancy Sensor Interior Lighting 10% 5% 10% 23% $0.20 8 0.52 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 23% $0.56 11 1.24 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 42% 45% $0.20 8 0.76 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.20 Interior Screw‐in ‐ Task Lighting Interior Lighting 10% 5% 25% 75% $0.24 5 0.16 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 12% 56% $0.20 8 0.38 Water Heater ‐ Faucet Aerators/Low Flow Nozzles Water Heating 4% 1% 2% 90% $0.03 9 2.63 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 0% 0% $0.28 15 0.69 Water Heater ‐ High Efficiency Circulation Pump Water Heating 5% 4% 0% 23% $0.11 10 1.18 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $0.04 10 5.43 Water Heater ‐ Thermostat Setback Water Heating 4% 0% 0% 0% $0.11 10 0.71 Water Heater ‐ Hot Water Saver Water Heating 5% 1% 0% 0% $0.04 5 1.43 Refrigeration ‐ Anti‐Sweat Heater/Auto Door Closer Refrigeration 5% 3% 10% 75% $0.20 16 0.02 Refrigeration ‐ Floating Head Pressure Refrigeration 7% 4% 10% 38% $0.35 16 0.32 Refrigeration ‐ Door Gasket Replacement Refrigeration 4% 2% 5% 75% $0.10 8 0.12 Insulation ‐ Bare Suction Lines Refrigeration 3% 2% 5% 75% $0.10 8 0.26 Refrigeration ‐ Night Covers Refrigeration 6% 3% 5% 75% $0.05 8 0.27 Refrigeration ‐ Strip Curtain Refrigeration 4% 2% 5% 56% $0.02 8 0.17 Commissioning ‐ Comprehensive Cooling 10% 0% 40% 75% $0.80 25 1.05 Commissioning ‐ Comprehensive Space Heating 10% 7% 40% 75% $0.80 25 1.05 Commissioning ‐ Comprehensive Interior Lighting 10% 7% 40% 75% $0.80 25 1.05 Office Equipment ‐ Energy Star Power Supply Office Equipment 1% 1% 10% 95% $0.00 7 38.86 Vending Machine ‐ Controller Refrigeration 15% 11% 2% 10% $0.27 10 1.10 LED Exit Lighting Interior Lighting 2% 2% 85% 86% $0.00 10 16.52 Commissioning ‐ Lighting Interior Lighting 5% 4% 60% 75% $0.10 25 2.47 Commissioning ‐ Lighting Exterior Lighting 5% 4% 60% 75% $0.10 25 2.47 Refrigeration ‐ High Efficiency Case Lighting Refrigeration 4% 2% 5% 75% $0.20 8 0.04 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 1.45 Exterior Lighting ‐ Induction Lamps Exterior Lighting 3% 3% 5% 56% $0.00 5 6.26 Laundry ‐ High Efficiency Clothes Washer Miscellaneous 0% 0% 5% 10% $0.00 10 20.31 Interior Lighting ‐ Hotel Guestroom Controls Interior Lighting 10% 5% 0% 0% $0.14 8 0.42 Miscellaneous ‐ Energy Star Water Cooler Miscellaneous 0% 0% 5% 95% $0.00 8 1.07 Advanced New Construction Designs Cooling 40% 0% 5% 75% $2.00 35 1.67 Advanced New Construction Designs Space Heating 40% 30% 5% 75% $2.00 35 1.67 Advanced New Construction Designs Interior Lighting 25% 19% 5% 75% $2.00 35 1.67 Insulation ‐ Wall Cavity Cooling 1% 0% 2% 68% $0.09 20 1.73 Insulation ‐ Wall Cavity Space Heating 10% 2% 2% 68% $0.09 20 1.73 Roofs ‐ Green Cooling 10% 0% 2% 13% $1.00 15 0.20 Roofs ‐ Green Space Heating 5% 3% 2% 13% $1.00 15 0.20 Industrial Process Improvements Miscellaneous 10% 8% 0% 0% $0.52 10 1.11 Custom Measures Cooling 8% 0% 10% 45% $0.67 15 0.81 Custom Measures Space Heating 8% 6% 10% 45% $0.67 15 0.81 Custom Measures Interior Lighting 8% 6% 10% 45% $0.67 15 0.81 Custom Measures Food Preparation 8% 6% 10% 45% $0.67 15 0.81 Custom Measures Refrigeration 8% 6% 10% 45% $0.67 15 0.81 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 41% $0.80 15 1.27 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 0% $4.00 15 1.00 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 0% $4.00 15 1.57 Avista 2011 Electric Integrated Resource Plan 569 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-39 An EnerNOC Company Table D-17 Energy Efficiency Measure Data — Extra Large Industrial, New Vintage   Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Refrigeration ‐ System Controls Process 11% 8% 5% 34% $0.40 10 18.09 Refrigeration ‐ System Maintenance Process 3% 2% 5% 34% $0.00 10 2,067.93 Refrigeration ‐ System Optimization Process 15% 11% 5% 34% $0.80 10 12.92 Motors ‐ Variable Frequency Drive Machine Drive 13% 9% 25% 38% $0.10 10 3.38 Motors ‐ Magnetic Adjustable Speed Drives Machine Drive 13% 9% 25% 38% $0.10 10 3.38 Compressed Air ‐ System Controls Machine Drive 9% 7% 5% 34% $0.40 10 0.59 Compressed Air ‐ System Optimization and Improvements Machine Drive 13% 9% 5% 34% $0.80 10 0.42 Compressed Air ‐ System Maintenance Machine Drive 3% 2% 5% 34% $0.20 10 0.34 Compressed Air ‐ Compressor Replacement Machine Drive 5% 4% 5% 34% $0.20 10 0.68 Fan System ‐ Controls Machine Drive 4% 3% 10% 38% $0.35 10 0.11 Fan System ‐ Controls Machine Drive 4% 3% 10% 38% $0.35 10 0.11 Fan System ‐ Optimization Machine Drive 6% 5% 10% 38% $0.70 10 0.08 Fan System ‐ Optimization Machine Drive 6% 5% 10% 38% $0.70 10 0.08 Fan System ‐ Maintenance Machine Drive 1% 1% 10% 38% $0.15 10 0.07 Fan System ‐ Maintenance Machine Drive 1% 1% 10% 38% $0.15 10 0.07 Pumping System ‐ Controls Machine Drive 5% 4% 5% 34% $0.38 12 0.42 Pumping System ‐ Optimization Machine Drive 13% 9% 5% 34% $0.75 12 0.54 Pumping System ‐ Maintenance Machine Drive 2% 1% 5% 34% $0.19 10 0.27 RTU ‐ Maintenance Cooling 14% 0% 22% 90% $0.06 4 2.82 Chiller ‐ Chilled Water Reset Cooling 14% 0% 60% 75% $0.09 4 2.53 Chiller ‐ Chilled Water Variable‐Flow System Cooling 4% 0% 30% 34% $0.20 10 0.80 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 67% $0.90 20 2.40 Chiller ‐ VSD Cooling 27% 0% 25% 67% $1.17 20 1.63 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 25% 50% $0.04 10 0.04 Chiller ‐ Condenser Water Temprature Reset Cooling 10% 0% 5% 75% $0.20 14 2.60 Cooling ‐ Economizer Installation Cooling 6% 0% 29% 34% $0.15 15 1.92 Heat Pump ‐ Maintenance Combined Heating/Cooling 7% 7% 2% 95% $0.03 4 7.76 Insulation ‐ Ducting Space Heating 5% 5% 12% 50% $0.41 20 0.95 Insulation ‐ Ducting Cooling 3% 0% 12% 50% $0.41 20 0.95 Energy Management System Cooling 5% 0% 11% 90% $0.35 14 0.88 Energy Management System Space Heating 2% 1% 11% 90% $0.35 14 0.88 Energy Management System Interior Lighting 2% 1% 11% 90% $0.35 14 0.88 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 2% 90% $0.14 10 2.81 Fans ‐ Variable Speed Control Ventilation 15% 5% 3% 90% $0.34 10 2.97 Commissioning ‐ HVAC Cooling 5% 0% 60% 75% $0.70 25 0.92 Commissioning ‐ HVAC Space Heating 5% 4% 60% 75% $0.70 25 0.92 Commissioning ‐ HVAC Ventilation 5% 4% 60% 75% $0.70 25 0.92 Pumps ‐ Variable Speed Control Machine Drive 5% 4% 0% 34% $0.44 10 0.31 Thermostat ‐ Clock/Programmable Cooling 5% 0% 59% 70% $0.13 11 2.02 Thermostat ‐ Clock/Programmable Space Heating 5% 1% 59% 70% $0.13 11 2.02 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 84% 90% $0.65 8 0.15 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 10% 40% $0.08 8 0.42 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 38% $0.20 11 1.76 LED Exit Lighting Interior Lighting 2% 2% 85% 86% $0.00 10 3.72 Commissioning ‐ Lighting Interior Lighting 5% 4% 60% 75% $0.10 25 1.41 Commissioning ‐ Lighting Exterior Lighting 5% 4% 60% 75% $0.10 25 1.41 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 15% 45% $0.20 8 0.50 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.06 Interior Screw‐in ‐ Task Lighting Interior Lighting 7% 4% 10% 75% $0.24 5 0.03 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 2% 56% $0.20 8 0.25 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 0.41 Advanced New Construction Designs Cooling 40% 0% 5% 75% $2.00 35 2.67 Advanced New Construction Designs Space Heating 40% 30% 5% 75% $2.00 35 2.67 Advanced New Construction Designs Interior Lighting 25% 19% 5% 75% $2.00 35 2.67 Custom Measures Cooling 8% 0% 10% 45% $1.60 15 1.28 Custom Measures Space Heating 8% 6% 10% 45% $1.60 15 1.28 Custom Measures Interior Lighting 8% 6% 10% 45% $1.60 15 1.28 Custom Measures Machine Drive 8% 6% 10% 45% $1.60 15 1.28 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 0% $4.00 15 2.51 Avista 2011 Electric Integrated Resource Plan 570 Avista 2011 Electric Integrated Resource Plan 571 2011 Electric Integrated Resource Plan Appendix D – Avista Electric Conservation Potential Assessment Study Avista 2011 Electric Integrated Resource Plan 572 Global Energy Partners An EnerNOC Company 500 Ygnacio Valley Road, Suite 450 Walnut Creek, CA 94596 P: 925.482.2000 F: 925.284.3147 E: gephq@gepllc.com AVISTA ELECTRIC CONSERVATION POTENTIAL ASSESSMENT STUDY Final Report — Electricity Potentials August 19, 2011 J. Borstein, Project Manager I. Rohmund, Director Avista 2011 Electric Integrated Resource Plan 573 Avista 2011 Electric Integrated Resource Plan 574 Global Energy Partners iii An EnerNOC Company This report was prepared by Global Energy Partners An EnerNOC Company 500 Ygnacio Valley Blvd., Suite 450 Walnut Creek, CA 94596 Principal Investigator(s): I. Rohmund J. Borstein A. Duer B. Kester J. Prijyanonda S. Yoshida Avista 2011 Electric Integrated Resource Plan 575 Avista 2011 Electric Integrated Resource Plan 576 Global Energy Partners v An EnerNOC Company EXECUTIVE SUMMARY Avista Corporation (Avista) engaged Global Energy Partners (Global) to conduct a Conservation Potential Assessment (CPA) Study. The CPA is a 20-year potentials study for energy efficiency (EE) and demand response (DR) to provide data on demand-side resources for developing Avista’s 2011 Integrated Resource Plan (IRP), and in accordance with Washington I-937. The study used 2009, the first year for which complete billing data was available, as the baseline year and then developed potential estimates for the period 2012–2032. This report provides results of the electricity energy efficiency potential study only, and subsequent documents will address natural gas and DR potential. Study Objectives The study objectives included: Conduct a conservation potential study for electricity for Washington and Idaho, and natural gas for Washington, Idaho, and Oregon. The study will account for: o Impacts of existing Avista conservation programs o Avista’s load forecasts and load shapes o Impacts of codes and standards o Technology developments and innovation o The economy and energy prices o Naturally occurring energy savings Assess and analyze cost-effective EE and DR potentials in accordance with the Northwest Power and Conservation Council’s (NWPPC) 6th Power Plan and Washington I-937 requirements. Obtain supply curves showing the incremental costs associated with achieving higher levels of EE and stacking EE resources by cost of conserved energy. Analyze various market penetration rates associated with technical, economic, achievable, and naturally occurring potential estimates. Study Approach To execute this project, Global took the following steps, which are also shown in Figure ES-1. 1. Performed a market assessment to describe base year energy consumption for the residential and C&I sectors. This included using utility data and secondary data to understand customers in Avista’s service territory and how these customers currently use electricity. Based on the market assessment, we developed energy market profiles for the study’s base year, 2009. 2. Developed a baseline energy forecast by sector and end use for the twenty-year study period. 3. Identified and analyzed energy-efficiency measures appropriate for the Avista service area. 4. Estimated four levels of energy-efficiency potential, technical, economic, maximum achievable, and realistic achievable. The steps are described in further detail in Chapter 2. Avista 2011 Electric Integrated Resource Plan 577 Avista Conservation Potential Assessment Study Executive Summary vi www.gepllc.com Figure ES-1 Analysis Approach Overview The study segmented Avista customers by state and rate class (Residential, Commercial & Industrial (C&I) General Service, C&I Large General Service, Extra Large Commercial, and Extra Large Industrial). In addition, the residential class was segmented by housing type and income (single family, multi-family, mobile home, and low income). The low-income threshold for purposes of this study was defined as 200% of the Federal poverty level. For the pumping rate classes, representing 2% of load, the Northwest Power and Conservation Council (NWPCC) Sixth Plan calculator was used to determine future EE potential. Within each segment, energy use was characterized by end-use (e.g., space heating, cooling, lighting, water heat, motors, etc.) and by technology (e.g., heat pump, resistance heating, furnace for space heating). This market characterization is detailed in Chapter 3. The baseline forecast is the ―business as usual‖ metric, without new utility conservation programs, against which energy savings from energy efficiency measures are compared. The baseline forecast includes the projected impacts of known codes and standards, as of 2010 when the study was conducted. These include the Energy Independence and Security Act (EISA), which mandates higher efficacies for lighting technologies starting in 2012, and a series of recent appliance standards agreed upon in 2010. These recent codes and standards have direct bearing on the amount of utility program potential over and above the effects of codes and standards and naturally occurring conservation. This process incorporates the changes in market conditions such as customer and market growth, income growth, Avista’s retail rates forecast, trends in end-use and technology saturations, equipment purchase decisions, consumer price elasticity, and income and persons per household. The baseline forecast enables understanding customer potential estimates in the context of total energy use in the future. For each customer sector, a robust list of electrical energy efficiency measures was compiled, drawing upon the Sixth Power Plan database, the Regional Technical Forum (RTF), and other Avista 2011 Electric Integrated Resource Plan 578 Executive Summary Avista Conservation Potential Assessment Study Global Energy Partners vii An EnerNOC Company measures considered applicable to Avista. This list of energy efficiency equipment and measures included 2,808 equipment options and 1,524 measure options and represented a wide variety of major types of end-use equipment, as well as devices and actions to reduce energy consumption. Considered against current avoided costs, many of these measures do not pass the economic screens, but may ultimately be part of Avista’s energy efficiency program portfolio during this 20 - year planning horizon. Measure cost, savings, estimated useful life, and other performance factors were characterized for the list of measures. Cost-effectiveness screening was performed, using the total resource cost (TRC) test, for each measure and each year of the study to develop economic potential. The measure analysis is discussed in Chapter 5. Market Characterization and Baseline Forecast During 2009, Avista served 354,615 residential, commercial, industrial, and pumping customers with a combined electricity use of approximately 8,862 GWh. Residential Sector The total number of 2009 residential customers was 200,134 in Washington and 99,579 in Idaho. Table ES-1 shows their distribution by housing type and income level. The limited income category, which is composed of single-family, multi-family, and mobile homes, represents households with income below $35,000 annually. Table ES-1 Residential Electricity Usage and Intensity by Segment and State, 2009 Washington Segment Intensity (kWh/Household) Number of Customers % of Customers 2009 Electricity Sales (MWh) % of Sales Single Family 14,547 109,134 54% 1,587,572 65% Multi-Family 8,728 18,219 9% 159,019 6% Mobile Home 13,092 5,248 3% 68,708 3% Limited Income 9,424 67,533 34% 636,407 26% Total 12,250 200,134 100% 2,451,707 100% Idaho Segment Intensity (kWh/Household) Number of Customers % of Customers 2009 Electricity Sales (MWh) % of Sales Single Family 13,703 59,205 59% 811,302 69% Multi-Family 8,213 5,237 5% 43,013 4% Mobile Home 12,320 4,774 5% 58,815 5% Limited Income 8,868 30,363 31% 269,249 23% Total 11,874 99,580 100% 1,182,379 100% For each residential segment, a snapshot of electricity use by end use and technology was developed. Figure ES-2 presents the end-use breakout by household for the residential sector as a whole. The appliance end use accounts for the largest share of the usage, closely followed by space heating, with water heating the third largest end use. The miscellaneous end use includes such devices as furnace fans, pool pumps, and other ―plug‖ loads (hair dryers, power tools, coffee makers, etc.). Interior and exterior lighting combined account for 12% of electricity use in 2009. The electronics end use, which includes personal computers, televisions, home audio, video game consoles, etc., also contributes significantly to household electricity usage. Cooling and combined heating and cooling through heat pumps make up the remainder. Avista 2011 Electric Integrated Resource Plan 579 Avista Conservation Potential Assessment Study Executive Summary viii www.gepllc.com Figure ES-2 Residential Electricity Use by End Use per Household, 2009 (kWh and %) The residential baseline forecast incorporates the effects of future customer growth, trends in appliance ownership, building codes, federal appliance standards and customer usage response to changes in electricity prices and household income. As such, it includes naturally-occurring energy efficiency. Overall, residential use in both states and for all segments increases from 3,634,054 MWh in 2009 to 5,600,870 MWh in 2032, an average annual growth rate of 1.9%. This reflects projected growth in the number of households, home size, and income levels, as well as relatively low electricity prices. Figure ES-3 shows the residential baseline forecast by end use. Figure ES-3 Residential Baseline Forecast by End Use Cooling, 601 , 5% Space Heating, 2,619 , 21% Heat & Cool, 714 , 6% Water Heating, 1,834 , 15% Appliances, 2,637 , 22% Interior Lighting, 1,279 , 10% Exterior Lighting, 213 , 2% Electronics, 1,053 , 9% Miscellaneous, 1,176 , 10% Avista 2011 Electric Integrated Resource Plan 580 Executive Summary Avista Conservation Potential Assessment Study Global Energy Partners ix An EnerNOC Company Commercial & Industrial Sector Table ES-2 and Table ES-3 present the segmentation of C&I customers in Washington and Idaho respectively. Although the General Service 011 and Large General Service 021 rate classes include a small percentage of industrial customers, we treated them as primarily commercial building types. For the General Service segment, we assumed facilities were small to medium buildings, dominated by retail facilities. For the Large General Service segment, we assumed the typical facility was an office building. Table ES-2 Commercial Sector Market Characterization Results, Washington 2009 Avista Rate Schedule LoadMAP Segment and Typical Building Electricity sales (MWh) Intensity (kWh/sq.ft.) General Service 011, 012 Small and Medium Commercial — Retail 415,935 17.5 Large General Service 021, 022 Large Commercial — Office 1,556,929 16.7 Extra Large General Service Commercial 025C Extra Large Commercial — University 265,686 13.9 Extra Large General Service Industrial 025I Extra Large Industrial 613,615 40.0 Total 2,852,165 Table ES-3 Commercial Sector Market Characterization Results, Idaho 2009 Avista Rate Schedule LoadMAP Segment and Typical Building Electricity sales (MWh) Intensity (kWh/sq.ft.) General Service 011, 012 Small and Medium Commercial — Retail 322,570 17.5 Large General Service 021, 022 Large Commercial — Office 699,953 16.7 Extra Large General Service Commercial 025C Extra Large Commercial — University 70,361 13.9 Extra Large General Service Industrial 025I, 025P Extra Large Industrial 1,087,974 40.0 Total 2,180,858 Figure ES-4 shows the breakdown of annual electricity usage by end use for the C&I sector as a whole. Lighting is the largest single end use in the sector, accounting for one fifth of total usage. Avista 2011 Electric Integrated Resource Plan 581 Avista Conservation Potential Assessment Study Executive Summary x www.gepllc.com Figure ES-4 Commercial and Industrial Electricity Consumption by End Use, 2009 Figure ES-5 presents the baseline forecast at the end-use level for the C&I sector as a whole. Overall, C&I annual energy use increases from 5,033,023 MWh in 2009 to 7,239,694 MWh in 2032, a 43.8% increase. This reflects growth in floor space across all sectors. Interior screw-in lighting increases over the forecast period, but at a slower rate than other technologies as a result of the EISA lighting standard. Figure ES-5 C&I Baseline Electricity Forecast by End Use System-wide Baseline Forecast Summary Table ES-4 and Figure ES-6 provide an overall summary of the baseline forecast by sector and for the Avista system as a whole. Overall, the forecast for the next 20 years shows substantial growth, reflecting projected increases in customers and income. This forecast is the metric against which the energy-efficiency savings potential is compared. Cooling 9% Space Heating 5% Heat & Cool 2% Ventilation 8% Water Heating 5% Food Preparation 2% Refrigeration 4%Interior Lighting 21% Exterior Lighting 3% Office Equipment 7% Miscellaneous 12% Machine Drive 15% Process 7% - 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000 8,000,000 2009 2012 2017 2022 2027 2032 An n u a l U s e ( M W h ) Cooling Space Heating Heat & Cool Ventilation Water Heating Food Preparation Refrigeration Interior Lighting Exterior Lighting Office Equipment Miscellaneous Machine Drive Process Avista 2011 Electric Integrated Resource Plan 582 Executive Summary Avista Conservation Potential Assessment Study Global Energy Partners xi An EnerNOC Company Table ES-4 Baseline Forecast Summary by Sector and State End Use 2009 2012 2022 2032 % Change ('09–'32) Avg. Growth Rate ('09–'32) Res. WA 2,451,707 2,448,104 2,947,427 3,792,486 54.7% 1.9% Res. ID 1,182,379 1,178,591 1,408,812 1,808,300 52.9% 1.8% C&I WA 2,852,165 2,955,156 3,509,816 4,280,649 50.1% 1.8% C&I ID 2,180,858 2,217,188 2,551,291 2,970,324 36.2% 1.3% Total 8,667,109 8,799,039 10,417,347 12,851,760 48.3% 1.7% Figure ES-6 Baseline Forecast Summary by Sector and State The baseline forecast, prior to the consideration of potentials, projects overall growth of 48% in electric consumption. This compounded average annual growth rate of 1.7% during this 20 year period is consistent with Avista’s current and previous Integrated Resource Plans. Chapter 4 provides details of the baseline forecast. Avista 2011 Electric Integrated Resource Plan 583 Avista Conservation Potential Assessment Study Executive Summary xii www.gepllc.com Definitions of Potential In this study, we estimated four types of potential: technical; economic; and achievable potential, which is further divided into maximum achievable, and realistic achievable. Technical and economic potential are both theoretical limits to efficiency savings. Achievable potential embodies a set of assumptions about the decisions consumers make regarding the efficiency of the equipment they purchase, the maintenance activities they undertake, the controls they use for energy-consuming equipment, and the elements of building construction. Technical potential is defined as the theoretical upper limit of energy efficiency potential. It assumes that customers adopt all feasible measures regardless of their cost. At the time of equipment failure, customers replace their equipment with the most efficient option available. In new construction, customers and developers also choose the most efficient equipment option. Examples of measures that make up technical potential in the residential sector include: Ductless mini-split air conditioners with variable refrigerant flow Ground source (or geothermal) heat pumps LED lighting for general service and linear applications Technical potential also assumes the adoption of every available other measure, where applicable. For example, it includes installation of high-efficiency windows in all new construction opportunities and air conditioner maintenance in all existing buildings with central and room air conditioning. Economic potential represents the adoption of all cost-effective energy efficiency measures. As described earlier, LoadMAP performs an economic screen to determine which measures are economically viable. LoadMAP incorporates the result of the screen into the purchase shares to reflect the most efficient measure that passes the screen. For our analysis, we apply the total resource cost (TRC) test, which compares lifetime energy and capacity benefits to the incremental cost, including the administrative costs associated with any energy-efficiency program. The benefits include non-energy benefits. Achievable potential refines the economic potential by taking into account penetration rates of efficient technologies, expected program participation, and customer preferences and likely behavior. Two types of achievable potential were evaluated for this study: Maximum achievable potential (MAP) establishes an upper boundary of potential savings a utility could achieve through its energy efficiency programs. MAP presumes incentives that are sufficient to ensure customer adoption. It also considers a maximum participation rate by customers for the various energy efficiency programs that are designed to deliver the various measures. For this study, we developed market acceptance rate (MAR) factors, based on the ramp rate curves used in the Sixth Power Plan.1 These MAR factors were then applied to this study’s estimates of economic potential to estimate MAP. Realistic achievable potential (RAP) represents a lower boundary forecast of potentials resulting from likely customer behavior and penetration rates of efficient technologies. It uses a set of program implementation factors (PIFs) to take into account existing barriers that are likely to limit the amount of savings that might be achieved through energy efficiency programs. The RAP also takes into account recent utility experience and reported savings from past and present programs. 1 The Sixth Power Plan Conservation Supply Curve workbooks are available at http://www.nwcouncil.org/energy/powerplan/6/supplycurves/default.htm, with separate workbooks for specific sectors and end uses. Avista 2011 Electric Integrated Resource Plan 584 Executive Summary Avista Conservation Potential Assessment Study Global Energy Partners xiii An EnerNOC Company Potential Savings from Electric Energy Efficiency Maximum achievable potential across all sectors is 88,760 MWh (10.1 aMW) in 2012 and increases to a cumulative value of 2,905,702 MWh (331.7 aMW) by 2032. These savings represents 1.0% of the baseline forecast in 2012 and 22.6% in 2032. Realistic achievable potential in 2012 is 50,261 MWh (5.7 aMW) and reaches a cumulative value of 2,155,133 MWh (246.0 aMW) by 2032, for savings that are 0.6% and 16.8% of the baseline in 2012 and 2032 respectively. Between 2012 and 2032, the baseline forecast shows overall electricity consumption growth of 46%, but the realistic achievable potential forecast reduces growth by half to 23%. Technical potential by 2032 is 37.8% of the baseline and economic potential savings are 26.4% of the baseline, or roughly 70% of technical potential savings. MAP and RAP savings in 2012 are 86% and 64% respectively of the economic potential savings. Figure ES-7 displays the energy use forecast for the four potential levels versus the baseline forecast. Figure ES-8 summarizes the energy-efficiency savings for the four potential levels relative to the baseline forecast for selected years. Table ES-5 presents the energy consumption and peak demand for the potential levels across sectors. Figure ES-7 Energy Efficiency Potential Forecasts, All Sectors - 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000 14,000,000 En e r g y C o n s u m p t i o n ( M W h ) Baseline Realistic Achievable Maximum Achievable Economic Technical Avista 2011 Electric Integrated Resource Plan 585 Avista Conservation Potential Assessment Study Executive Summary xiv www.gepllc.com Figure ES-8 Summary of Energy Efficiency Potential Savings, All Sectors Table ES-5 Summary of Energy Efficiency Potential, All Sectors 2012 2017 2022 2027 2032 Baseline Forecast (MWh) 8,799,039 9,463,880 10,417,347 11,536,869 12,851,760 Baseline Peak Demand (MW) 1,780 1,880 2,080 2,306 2,566 Cumulative Energy Savings (MWh) Realistic Achievable 50,261 405,985 945,183 1,536,357 2,155,133 Maximum Achievable 88,760 1,035,470 1,952,473 2,476,694 2,905,702 Economic 244,292 1,493,608 2,411,399 2,937,775 3,387,203 Technical 329,513 2,087,061 3,435,475 4,250,217 4,852,362 Cumulative Energy Savings (% of Baseline) Realistic Achievable 0.6% 4.3% 9.1% 13.3% 16.8% Maximum Achievable 1.0% 10.9% 18.7% 21.5% 22.6% Economic 2.8% 15.8% 23.1% 25.5% 26.4% Technical 3.7% 22.1% 33.0% 36.8% 37.8% Peak Savings (MW) Realistic Achievable 14 84 183 306 431 Maximum Achievable 22 207 386 492 566 Economic 60 302 479 580 659 Technical 78 422 669 826 943 Peak Savings (% of Baseline) Realistic Achievable 0.8% 4.5% 8.8% 13.3% 16.8% Maximum Achievable 1.2% 11.0% 18.6% 21.3% 22.1% Economic 3.4% 16.0% 23.0% 25.2% 25.7% Technical 4.4% 22.4% 32.2% 35.8% 36.8% Realistic Achievable Maximum Achievable Economic Technical 0% 5% 10% 15% 20% 25% 30% 35% 40% 2012 2017 2022 2027 2032 En e r g y S a v i n g s ( % o f B a s e l i n e F o r e c a s t ) Avista 2011 Electric Integrated Resource Plan 586 Executive Summary Avista Conservation Potential Assessment Study Global Energy Partners xv An EnerNOC Company Table ES-6 and Figure ES-9 summarize cumulative realistic achievable potential by sector. Initially, the residential sector accounts for about 52% of the savings, but by the end of the study, the C&I sector becomes the source of 58% of the savings. Table ES-6 Realistic Achievable Cumulative Energy-efficiency Potential by Sector, MWh Segment 2012 2017 2022 2027 2032 Residential, WA 17,413 94,529 238,739 431,973 637,029 Residential, ID 8,692 43,922 97,705 172,179 260,003 C&I, WA 15,733 173,433 378,252 575,328 774,619 C&I, ID 8,423 94,102 230,487 356,878 483,482 Total 50,261 405,985 945,183 1,536,357 2,155,133 Figure ES-9 Realistic Achievable Cumulative Potential by Sector Table ES-7 shows the incremental annual realistic achievable potential by sector for 2012 through 2015. During this period, lighting and appliance standards slow the rate of growth in the residential baseline energy consumption, thus reducing the amount of incremental annual potential savings from residential conservation programs. On the other hand, C&I potential continues to grow. Complete annual incremental savings for Washington and Idaho appear in Appendices A and B respectively. Table ES-7 Incremental Annual Realistic Achievable Energy-efficiency Potential by Sector, MWh Segment 2012 2013 2014 2015 Residential, WA 17,413 17,161 16,488 18,514 Residential, ID 8,692 8,451 7,943 8,569 C&I, WA 15,733 21,165 26,869 30,393 C&I, ID 8,423 10,734 14,543 16,956 Total 50,261 57,511 65,843 74,432 0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 2012 2017 2022 2027 2032 C&I, ID C&I, WA Residential, ID Residential, WA Sa v i n g s ( M W h ) Avista 2011 Electric Integrated Resource Plan 587 Avista Conservation Potential Assessment Study Executive Summary xvi www.gepllc.com Figure ES-10 illustrates how the annual incremental realistic achievable potential throughout the study tracks the avoided energy costs, with annual potential generally increasing or decreasing along with avoided costs. Note however that other factors also influence potential, particularly the rates at which programs can ramp up over time, which is particularly relevant to how potential changes from year to year in the early years of the study. Figure ES-10 Incremental Annual Realistic Achievable Energy-efficiency (MWh) vs. Avoided Energy Cost Note: Avoided costs are 2009 real dollars and include energy costs, risk, and the 10% Power Act premium. $- $10.00 $20.00 $30.00 $40.00 $50.00 $60.00 $70.00 $80.00 $90.00 - 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 Av o i d e d E n e r g y C o s t s , $ 2 0 0 9 R e a l An n u a l I n c r e m e n t a l S a v i n g s ( M W h ) Extra Large Industrial Extra Large Commercial Large Commercial Small Commercial Residential Avoided Costs Avista 2011 Electric Integrated Resource Plan 588 Executive Summary Avista Conservation Potential Assessment Study Global Energy Partners xvii An EnerNOC Company Residential Sector Potential Realistic achievable potential savings for the residential sector in both states is 26,105 MWh in 2012, or 0.7% of the sector’s baseline forecast. It reaches 897,032 MWh, or 16.0% of the baseline forecast by 2032. Technical and economic potential savings are 37.7% and 24.5% respectively. Table ES-8 presents estimates for energy and peak demand under the four types of potential. Table ES-8 Energy Efficiency Potential, Residential Sector 2012 2017 2022 2027 2032 Baseline Forecast (MWh) 3,626,696 3,871,294 4,356,240 4,918,847 5,600,787 Baseline Peak Demand (MW) 991 1,026 1,150 1,288 1,449 Cumulative Energy Savings (MWh) Realistic Achievable 26,105 138,450 336,444 604,152 897,032 Maximum Achievable 36,300 429,065 798,829 1,024,671 1,192,794 Economic 104,111 583,427 967,788 1,188,497 1,373,869 Technical 153,100 918,965 1,468,041 1,825,587 2,112,855 Cumulative Energy Savings (% of Baseline) Realistic Achievable 0.7% 3.6% 7.7% 12.3% 16.0% Maximum Achievable 1.0% 11.1% 18.3% 20.8% 21.3% Economic 2.9% 15.1% 22.2% 24.2% 24.5% Technical 4.2% 23.7% 33.7% 37.1% 37.7% Peak Savings (MW) Realistic Achievable 10 44 100 179 262 Maximum Achievable 14 120 232 301 343 Economic 38 171 286 349 396 Technical 51 256 407 503 579 Peak Savings (% of Baseline) Realistic Achievable 1.1% 4.3% 8.7% 13.9% 18.1% Maximum Achievable 1.4% 11.7% 20.2% 23.3% 23.7% Economic 3.8% 16.7% 24.9% 27.1% 27.3% Technical 5.1% 24.9% 35.4% 39.0% 40.0% In terms of how residential potential is divided among the various end uses, we note the following: Water Heating offers the highest cumulative technical potential over the 20-year period, which reflects the high potential for conversion to natural gas in homes where gas is available (see discussion below) and use of heat pump water heaters where gas is not available, as well as a wide range of other water heating measures. Conversion to natural gas passes the TRC test throughout the study period for most Washington housing types and for single family homes in Idaho. In contrast, based on the study’s assumptions of equ ipment cost and avoided cost, heat pump water heaters are cost-effective in new single family homes by 2014, but do not become cost-effective for existing homes until 2024 in Idaho and 2028 in Washington. Water heating also has the highest cumulative realistic achievable potential. Avista 2011 Electric Integrated Resource Plan 589 Avista Conservation Potential Assessment Study Executive Summary xviii www.gepllc.com Space Heating offers the second-highest cumulative technical potential over the study and its economic potential is slightly higher than water heating, again due to the potential for conversion to natural gas (see discussion below), but also due to shell measures, controls, and advanced new construction designs. Based on realistic achievable savings, space heating also ranks second. Interior lighting offers the fourth-largest technical potential savings, but the third-largest economic and realistic achievable potential. The lighting standard begins its phase-in starting in 2012, which coincides with the availability in the market place of advanced incandescent lamps that meet the minimum efficacy standard. The baseline forecast assumes that people will install both advanced incandescent and CFLs in screw-in lighting applications. For technical potential, LED lamps are the most efficient option, starting in 2012. However, LED lamps do not pass the economic screen until 2022, when they begin to become cost-effective for pin-based fixtures. Nonetheless, there is significant economic and realistic achievable lighting potential due to conversion from advanced incandescents to CFLs. Appliances rank sixth based on technical potential, but fourth in terms of realistic achievable potential. This reflects the cost-effectiveness of the highest-efficiency white-goods appliances for both new construction and for replacing failed units, as well as the market acceptance of high-efficiency appliances. Removal of second refrigerators and freezers also contributes to economic and realistic achievable potential within this end use. Cooling offers the third-highest technical potential, but is sixth based on realistic achievable potential. Initially technical potential is low but ramps up due to the assumption of increased saturation of air conditioning over time. Economic potential for cooling in 2031 is about 40% of technical potential because the higher SEER units do not pass the economic screen based on based on the study’s assumptions of equipment cost and avoided cost. Home electronics also offer substantial savings opportunities. Technical potential reflects the purchase of ENERGY STAR units for all technologies, except PCs and laptops for which a super-efficient ―climate saver‖ option is available in the marketplace. However, the climate saver options are not cost-effective during the forecast horizon, so economic potential reflects the purchase of ENERGY STAR units across all technologies in this end use. Commercial and Industrial Sector Potential Realistic achievable potential savings for the C&I sector in both states is 24,155 MWh in 2012, or 0.5% of the sector’s baseline forecast. It reaches 1,258,101 MWh, or 17.4% of the baseline forecast by 2032. Technical and economic potential savings are 37.8% and 27.8% of the baseline forecast respectively. Table ES-9 presents estimates for the sector’s energy and peak demand under the four types of potential. In terms of how potential is divided among the various end uses, we note the following: Interior lighting offers the largest technical, economic, and achievable potential. The high technical potential of 892,840 MWh in 2032 is a result of LED lighting that is now commercially available in screw-in and linear lighting applications, as well as numerous fixture improvement and control options. However, LED lighting is not cost effective given the study’s avoided cost assumptions, so economic potential reflects installation of CFL, T5, and Super T8 lamps throughout most of the commercial sector. Still, this results in realistic achievable potential of 598,564 MWh by 2032. Cooling has the third highest savings for technical potential at 302,301 MWh in 2032, and many of the cooling measures are cost effective, including installation of high-efficiency equipment, thermal shell measures, HVAC control strategies, and retrocommissioning. Because the market for cooling technologies is mature, these savings are relatively easy to capture, as reflected in the ramp rates for these measures. Thus realistic achievable potential for cooling, at 119,700 MWh, is the second highest among C&I end uses. Avista 2011 Electric Integrated Resource Plan 590 Executive Summary Avista Conservation Potential Assessment Study Global Energy Partners xix An EnerNOC Company Ventilation is second in terms of technical and economic potential due to conversion to variable air volume systems, high-efficiency and variable speed control fans, and retrocommissioning. Realistic achievable potential in 2032 of 117,020 MWh ranks this end use third, just behind cooling. Machine drive ranks fourth in realistic achievable potential at 101,018 MWh in 2032. Even though the National Electrical Manufacturer’s Association (NEMA) standards make premium efficiency motors the baseline efficiency level, savings remain available from upgrading to still more efficient levels. Office equipment, exterior lighting, and industrial process improvements offer smaller but still significant realistic achievable potential by 2032 at 73,152 MWh, 68,467 MWh, and 60,759 MWh respectively. Savings from commercial refrigeration, food preparation, and water heating are relatively small across the C&I sector as a whole, though these end uses can offer significant savings in supermarkets, restaurants, hospitals, and other buildings where these end use constitute a larger portion of overall energy use. Table ES-9 Energy Efficiency Potential, Commercial and Industrial Sector 2012 2017 2022 2027 2032 Baseline Forecast (MWh) 5,172,344 5,592,586 6,061,107 6,618,022 7,250,973 Cumulative Energy Savings (MWh) Realistic Achievable 24,155 267,535 608,739 932,205 1,258,101 Maximum Achievable 52,460 606,406 1,153,644 1,452,022 1,712,907 Economic 140,180 910,181 1,443,612 1,749,278 2,013,333 Technical 176,414 1,168,096 1,967,434 2,424,630 2,739,507 Cumulative Energy Savings (% of Baseline) Realistic Achievable 0.5% 4.8% 10.0% 14.1% 17.4% Maximum Achievable 1.0% 10.8% 19.0% 21.9% 23.6% Economic 2.7% 16.3% 23.8% 26.4% 27.8% Technical 3.4% 20.9% 32.5% 36.6% 37.8% Peak Savings (MW) Realistic Achievable 4 40 84 127 169 Maximum Achievable 8 88 154 191 223 Economic 22 130 193 231 263 Technical 27 166 262 324 364 Peak Savings (% of Baseline) Realistic Achievable 0.5% 4.7% 9.0% 12.4% 15.1% Maximum Achievable 1.0% 10.3% 16.6% 18.8% 20.0% Economic 2.7% 15.3% 20.8% 22.7% 23.6% Technical 3.4% 19.4% 28.2% 31.8% 32.6% Avista 2011 Electric Integrated Resource Plan 591 Avista Conservation Potential Assessment Study Executive Summary xx www.gepllc.com Sensitivity of Potential to Avoided Costs Global modeled several scenarios with varying levels of avoided costs in addition to the base case. The other scenarios included 150%, 125%, and 75% of the avoided costs used in the base case. Figure ES -11 shows how realistic achievable potential varies under the four scenarios. The base case realistic achievable potential is approximately 16.4% of the baseline forecast by 2032. With the 150% avoided cost case, realistic achievable potential increased to 19.2% of the baseline forecast, while the 125% avoided cost case and the 75% avoided cost case yielded realistic achievable potential equal to 18.1% and 13.2% of the baseline forecast respectively. While the changes are significant, the relationship between avoided cost and realistic achievable potential is not linear and increases in avoided costs do not provide equivalent percentage increases in realistic achievable potential. Technical potential imposes a limit on the amount of additional conservation and each incremental unit of conservation becomes increasingly expensive. Figure ES -11 Energy Savings, Economic Potential Case by Avoided Costs Scenario (MWh) The project developed a series of supply curves based on the four avoided cost scenarios, shown in Figure ES -12. Each supply curve is created by stacking measures and equipment over the 20- year planning horizon in ascending order of cost. As expected, this stacking of conservation resources produces a traditional upward-sloping supply curve. The 75% of avoided cost scenario provides roughly a 13% reduction in energy use compared with the baseline forecast in 2032, at a cost of $0.05/kWh or less. The other three scenarios track one another closely, providing just over 15% savings in 2032 at costs below $0.05/kWh. Avista 2011 Electric Integrated Resource Plan 592 Executive Summary Avista Conservation Potential Assessment Study Global Energy Partners xxi An EnerNOC Company Figure ES -12 Supply Curves for Evaluated EE Measures and Avoided Cost Scenarios Sensitivity of Potential to Customer and Economic Growth This conservation potential assessment shows that conservation offsets roughly 50% of growth in electrical energy use for the Avista system, whereas the Sixth Plan projects that conservation can offset 80% of growth. Of course, Avista’s service territory differs from the region overall in many ways, including its climate. Another significant factor may be the CPA study’s assumptions regarding customer and economic growth. To better understand how growth affects the study’s results, the project team evaluated scenarios with lower customer and economic growth, as indicated in Table ES-10. Table ES-10 Varying Growth Scenario Descriptions Reference Scenario Low Growth Scenario 1 Low Growth Scenario 2 Home size ~ 1% per year growth Capped at 110% of existing home size Capped at 110% of existing home size Per capita income growth 1.6% 2011–2015; 2.2% 2016–2020; 2.1% thereafter 1.6% after 2016 1.6% after 2016 Residential sector market growth 1.30% after 2015 (WA) 1.25% after 2015 (ID) no change 1.0% after 2015 (WA & ID) Commercial sector market growth, WA & ID ~ 2.0% (varies by segment) no change 1.0% all segments Table ES -11 shows that as economic and customer growth decreases, the ability of conservation to offset growth increases. In the reference scenario, energy efficiency offsets 52% of growth in consumption, while in the lower growth scenarios, EE offsets 54% and 76% of growth respectively. This is the case because with reduced new construction, load growth and achievable potential drop, but savings due to the retrofit of existing buildings constitute a greater proportion of load growth. $0.00 $0.05 $0.10 $0.15 $0.20 $0.25 0%5%10%15%20% Co s t p e r k W h s a v e d % Reduction from Baseline in 2032 100% avoided costs scenario 75% avoided costs scenario 125% avoided costs scenario 150% avoided costs scenario ∆ Portfolio average cost for each scenario Avista 2011 Electric Integrated Resource Plan 593 Avista Conservation Potential Assessment Study Executive Summary xxii www.gepllc.com Table ES -11 Varying Growth Scenario Results Reference Scenario Low Growth Scenario 1 Low Growth Scenario 2 Baseline forecast 2012 (MWh) 8,799,039 8,799,039 8,799,033 Baseline forecast 2032 (MWh) 12,851,760 12,523,843 11,178,008 Load growth 2012-2032 (MWh) 4,052,720 3,724,803 2,378,975 Realistic achievable potential forecast 2032 (MWh) 10,745,176 10,500,088 9,366,471 Realistic achievable potential savings 2032 (MWh) 2,106,584 2,023,754 1,811,538 Percentage of growth offset 52% 54% 76% Note: Value of 2,106,548 MWh for 2032 realistic achievable potential was based on interim results and thus is different from the value shown elsewhere in this report. Pumping Potential As displayed in Table ES -12, pumping accounts represent 2.2% of Avista’s total electricity sales and 0.8% of peak demand. Because pumping represents a relatively small percentage of Avista’s total sales, the project team decided to use the NWPCC Sixth Plan calculator to estimate pumping energy efficiency potential. Table ES -12 Pumping Rate Classes, Electricity Sales and Peak Demand 2009 Sector Rate Schedule(s) Number of meters (customers) 2009 Electricity sales (MWh) Peak demand (MW) Pumping, Washington 031, 032 2,361 135,999 10 Pumping, Idaho 031, 032 1,312 58,885 4 Pumping, Total 3,673 194,884 14 Percentage of System Total 2.2% 0.8% The Sixth Plan Calculator estimates agricultural conservation targets through 2019, based on 2007 sales. We trended the data through 2022 to provide annual savings estimates for the ten- year period 2012–2022, with the results provided in Table ES -13 and Table ES -14. Table ES -13 Sixth Plan Calculator Agriculture Incremental Annual Potential, Selected Years (MWh) Segment 2012 2013 2014 2015 Pumping, Washington 1,567 1,484 1,402 1,835 Pumping, Idaho 690 654 618 809 Pumping, Total 2,257 2,138 2,020 2,643 Table ES -14 Sixth Plan Calculator Agriculture Cumulative Potential, Selected Years (MWh) Measure 2012 2017 2022 Pumping, Washington 1,567 9,979 18,892 Pumping, Idaho 690 4,397 8,324 Pumping, Total 2,257 14,375 27,217 Avista 2011 Electric Integrated Resource Plan 594 Executive Summary Avista Conservation Potential Assessment Study Global Energy Partners xxiii An EnerNOC Company Report Organization The body of the report is organized as follows: Chapter 1, Introduction Chapter 2, Study Approach for Energy Efficiency Analysis Chapter 3, Market Assessment and Market Profiles Chapter 4, Baseline Forecast Chapter 5, Energy Efficiency Measure Analysis Chapter 6, Energy Efficiency Potential Results Appendix A, Washington Results Appendix B, Idaho Results Appendix C, Residential Energy Efficiency Equipment and Measure Data Appendix D, Commercial Energy Efficiency Equipment and Measure Data Appendix E, Study References Results of the demand response analysis and the natural gas potential assessment will be presented in separate forthcoming documents. Avista 2011 Electric Integrated Resource Plan 595 Avista 2011 Electric Integrated Resource Plan 596 Global Energy Partners xxv An EnerNOC Company CONTENTS EXECUTIVE SUMMARY 1 INTRODUCTION .................................................................................................... 1-1 1.1 Background ......................................................................................... 1-1 1.2 Objectives ........................................................................................... 1-1 1.3 Report Organization ............................................................................. 1-2 2 STUDY APPROACH FOR ENERGY EFFICIENCY ANALYSIS .................................... 2-1 2.1 Market Assessment and Market Profiles .................................................. 2-2 2.2 Baseline Forecast ................................................................................. 2-4 2.2.1 Modeling Approach .................................................................... 2-5 2.3 Energy Efficiency Measures Analysis ...................................................... 2-6 2.4 Assessment of Energy-Efficiency Potential .............................................. 2-7 2.4.1 Modeling Approach .................................................................... 2-8 3 MARKET ASSESSMENT AND MARKET PROFILES .................................................. 3-1 3.1 Residential Sector ................................................................................. 3-2 3.1.1 Market Characterization ............................................................. 3-3 3.1.2 Residential Market Profiles .......................................................... 3-5 3.2 Commercial and Industrial Sectors ......................................................... 3-8 3.2.1 C&I Market Characterization ....................................................... 3-8 3.2.2 C&I Market Profiles .................................................................... 3-9 4 BASELINE FORECAST ............................................................................................ 4-1 4.1 Residential Sector ................................................................................. 4-1 4.1.1 Residential Baseline Forecast Drivers ........................................... 4-1 4.1.2 Residential Baseline Forecast Results........................................... 4-2 4.2 Commercial and Industrial Sector .......................................................... 4-7 4.2.1 C&I Baseline Forecast Drivers ..................................................... 4-7 4.2.2 C&I Baseline Forecast Results ..................................................... 4-8 4.3 Baseline Forecast Summary.................................................................. 4-12 4.3.1 Comparison of Baseline Forecast with Avista 2009 IRP ................. 4-13 5 ENERGY-EFFICIENCY MEASURE ANALYSIS .......................................................... 5-1 5.1 Selection of Energy Efficiency Measures ................................................. 5-1 5.1.1 Residential Measures ................................................................. 5-2 5.1.2 Commercial and Industrial Measures ........................................... 5-2 5.2 Measure Characteristics ....................................................................... 5-12 Avista 2011 Electric Integrated Resource Plan 597 xxvi www.gepllc.com 5.2.1 Measure Cost Data Development ............................................... 5-13 5.2.2 Representative Measure Data Inputs ......................................... 5-13 5.2.3 Conversion to Natural Gas ........................................................ 5-14 5.3 Application of measures for technical potential ...................................... 5-15 5.4 Application of measures for Economic Potential ..................................... 5-15 5.4.1 Equipment Measures Economic Screening .................................. 5-17 5.4.2 Non-equipment Measures Economic Screening ........................... 5-18 5.5 Total Measures Evaluated .................................................................... 5-18 6 ENERGY EFFICIENCY POTENTIAL RESULTS ......................................................... 6-1 6.1 DefInitions of Potential .......................................................................... 6-1 6.2 Overall Energy Efficiency Potential ......................................................... 6-1 6.3 Residential Sector ................................................................................. 6-6 6.3.1 Residential Potential by Market Segment ...................................... 6-7 6.3.2 Residential Potential by End Use, Technology, and Measure Type .. 6-9 6.4 Commercial and Industrial Sector Potential ........................................... 6-14 6.4.1 Commercial Potential by Market Segment and State.................... 6-16 6.4.2 C&I Potential by End Use, Technology, and Measure Type .......... 6-17 6.5 Sensitivity Analysis .............................................................................. 6-23 6.5.1 Sensitivity of Potential to Avoided Cost ...................................... 6-23 6.5.2 Sensitivity of Potential to Customer and Economic Growth ........... 6-24 6.6 Pumping Potential............................................................................... 6-25 Avista 2011 Electric Integrated Resource Plan 598 Global Energy Partners xxvii An EnerNOC Company LIST OF FIGURES Figure ES-1 Analysis Approach Overview vi Figure ES-2 Residential Electricity Use by End Use per Household, 2009 (kWh and %) viii Figure ES-3 Residential Baseline Forecast by End Use viii Figure ES-4 Commercial and Industrial Electricity Consumption by End Use, 2009 x Figure ES-5 C&I Baseline Electricity Forecast by End Use x Figure ES-6 Baseline Forecast Summary by Sector and State xi Figure ES-7 Energy Efficiency Potential Forecasts, All Sectors xiii Figure ES-8 Summary of Energy Efficiency Potential Savings, All Sectors xiv Figure ES-9 Realistic Achievable Cumulative Potential by Sector xv Figure ES-10 Incremental Annual Realistic Achievable Energy-efficiency (MWh) vs. Avoided Energy Cost xvi Figure ES -11 Energy Savings, Economic Potential Case by Avoided Costs Scenario (MWh) xx Figure ES -12 Supply Curves for Evaluated EE Measures and Avoided Cost Scenarios xxi Figure 2-1 Analysis Approach Overview 2-1 Figure 2-2 LoadMAP Baseline and Potential Modeling 2-9 Figure 3-1 Electricity Sales by Rate Class, Washington 2009 3-2 Figure 3-2 Electricity Sales by Rate Class, Idaho 2009 3-2 Figure 3-3 Residential Sector Allocation by Segments, Percentage of Customers 3-3 Figure 3-4 Residential Electricity Use by Customer Segment, Percentage of Sales 2009 3-4 Figure 3-5 Residential Electricity Use by End Use per Household, 2009 (kWh and %) 3-6 Figure 3-6 End-Use Shares of Total Electricity Use by Housing Type, 2009 3-8 Figure 3-7 Commercial and Industrial Electricity Consumption by End Use, 2009 3-10 Figure 3-8 Commercial End Use Consumption, 2009 3-11 Figure 3-9 Extra Large Industrial End Use Consumption, 2009 3-11 Figure 4-1 Residential Baseline Forecast by End Use 4-3 Figure 4-2 Residential Baseline Electricity Use per Household by End Use 4-4 Figure 4-3 C&I Baseline Electricity Forecast by End Use 4-8 Figure 4-4 Baseline Forecast Summary by Sector and State 4-12 Figure 5-1 Approach for Measure Assessment 5-1 Figure 5-2 Avoided Costs for Energy and Capacity 5-17 Figure 6-1 Summary of Energy Efficiency Potential Savings, All Sectors 6-2 Figure 6-2 Energy Efficiency Potential Forecasts, All Sectors 6-2 Figure 6-3 Realistic Achievable Cumulative Potential by Sector 6-4 Figure 6-4 Incremental Annual Realistic Achievable Energy-efficiency (MWh) vs. Avoided Energy Cost 6-5 Figure 6-5 Energy Efficiency Potential Savings, Residential Sector 6-6 Figure 6-6 Energy Efficiency Potential Forecast, Residential Sector 6-6 Avista 2011 Electric Integrated Resource Plan 599 xxviii www.gepllc.com Figure 6-7 Residential Realistic Achievable Potential by End Use, Selected Years 6-11 Figure 6-8 Energy Efficiency Potential Savings, Commercial and Industrial Sector 6-14 Figure 6-9 Energy Efficiency Potential Forecast, Commercial and Industrial Sector 6-15 Figure 6-10 C&I Realistic Achievable Potential by End Use, Selected Years 6-19 Figure 6-11 Energy Savings, Economic Potential Case by Avoided Costs Scenario (MWh) 6-23 Figure 6-12 Supply Curves for Evaluated EE Measures and Avoided Cost Scenarios 6-24 Figure 6-13 Sixth Plan Calculator Agriculture Incremental Annual Potential 6-26 Avista 2011 Electric Integrated Resource Plan 600 Global Energy Partners xxix An EnerNOC Company LIST OF TABLES Table ES-1 Residential Electricity Usage and Intensity by Segment and State, 2009 vii Table ES-2 Commercial Sector Market Characterization Results, Washington 2009 ix Table ES-3 Commercial Sector Market Characterization Results, Idaho 2009 ix Table ES-4 Baseline Forecast Summary by Sector and State xi Table ES-5 Summary of Energy Efficiency Potential, All Sectors xiv Table ES-6 Realistic Achievable Cumulative Energy-efficiency Potential by Sector, MWh xv Table ES-7 Incremental Annual Realistic Achievable Energy-efficiency Potential by Sector, MWh xv Table ES-8 Energy Efficiency Potential, Residential Sector xvii Table ES-9 Energy Efficiency Potential, Commercial and Industrial Sector xix Table ES-10 Varying Growth Scenario Descriptions xxi Table ES -11 Varying Growth Scenario Results xxii Table ES -12 Pumping Rate Classes, Electricity Sales and Peak Demand 2009 xxii Table ES -13 Sixth Plan Calculator Agriculture Incremental Annual Potential, Selected Years (MWh) xxii Table ES -14 Sixth Plan Calculator Agriculture Cumulative Potential, Selected Years (MWh) xxii Table 2-1 Segmentation Framework for Electricity 2-2 Table 2-2 Data Needs for the Market Profiles 2-3 Table 2-3 Data Needs for the Baseline Forecast and Potentials Estimation in LoadMAP 2-6 Table 3-1 Electricity Sales and Peak Demand by Rate Class, Washington 2009 3-1 Table 3-2 Electricity Use and Peak Demand by Rate Class, Idaho 2009 3-1 Table 3-3 Residential Sector Allocation by Segments 3-3 Table 3-4 Residential Electricity Usage and Intensity by Segment and State, 2009 3-4 Table 3-5 Average Residential Sector Market Profile 3-7 Table 3-6 Commercial Sector Market Characterization Results, Washington 2009 3-9 Table 3-7 Commercial Sector Market Characterization Results, Idaho 2009 3-9 Table 3-8 Small/Medium Commercial Segment Market Profile, Washington, 2009 3-12 Table 4-1 Residential Market Size Forecast (number of households) 4-1 Table 4-2 Residential Baseline Forecast Electricity Consumption by End Use (MWh) 4-5 Table 4-3 Residential Baseline Electricity Forecast by End Use and Technology (MWh) 4-6 Table 4-4 Commercial Market Size Growth and Electricity Price Forecast 4-7 Table 4-5 C&I Electricity Consumption by End Use (MWh) 4-9 Table 4-6 C&I Baseline Electricity Forecast by End Use and Technology (MWh) 4-10 Table 4-7 Baseline Forecast Summary by Sector and State 4-12 Table 4-8 Comparison of LoadMAP Baseline, Avista IRP, and Sixth Plan Energy Forecasts (MWh) 4-13 Table 4-9 Comparison of Retail Electricity Prices 4-13 Avista 2011 Electric Integrated Resource Plan 601 xxx www.gepllc.com Table 5-1 Summary of Residential Equipment Measures 5-3 Table 5-2 Summary of Residential Non-equipment Measures 5-5 Table 5-3 Summary of Commercial and Industrial Equipment Measures 5-6 Table 5-4 Summary of Commercial and Industrial Non-equipment Measures 5-10 Table 5-5 Sample Equipment Measures for Central Air Conditioning — Single Family Home Segment 5-13 Table 5-6 Sample Non-Equipment Measures – Single Family Homes, Existing 5-14 Table 5-7 Sample Non-Equipment Water Heating Measures – Single Family Homes, Existing, Washington 5-15 Table 5-8 Economic Screen Results for Selected Residential Equipment Measures 5-18 Table 5-9 Number of Measures Evaluated 5-18 Table 6-1 Summary of Energy Efficiency Potential, All Sectors 6-3 Table 6-2 Realistic Achievable Cumulative Energy-efficiency Potential by Sector, MWh 6-3 Table 6-3 Incremental Annual Realistic Achievable Energy-efficiency Potential by Sector, MWh 6-4 Table 6-4 Energy Efficiency Potential, Residential Sector 6-7 Table 6-5 Residential Sector, Baseline and Realistic Achievable Potential by Segment 6-8 Table 6-6 Residential Realistic Achievable Potential by Housing Type, 2022 6-8 Table 6-7 Residential Cumulative Savings by End Use and Potential Type (MWh) 6-10 Table 6-8 Residential Potential by End Use and Market Segment, 2022 (MWh) 6-11 Table 6-9 Residential Cumulative Realistic Achievable Potential by End Use and Equipment Measures, Selected Years (MWh) 6-12 Table 6-10 Residential Realistic Achievable Savings from Conversion to Natural Gas (MWh)6-12 Table 6-11 Residential Realistic Achievable Savings for Non-equipment Measures (MWh), Selected Years 6-13 Table 6-12 Energy Efficiency Potential, Commercial and Industrial Sector 6-15 Table 6-13 C&I Sector, Baseline and Realistic Achievable Potential by Segment 6-16 Table 6-14 C&I Realistic Achievable Potential by Segment, 2022 6-16 Table 6-15 C&I Cumulative Savings by End Use and Potential Type, Selected Years, (MWh)6-18 Table 6-16 C&I Realistic Achievable Potential by End Use and Market Segment, 2022 (MWh) 6-19 Table 6-17 C&I Cumulative Realistic Achievable Potential by End Use and Equipment Measures, Selected Years (MWh) 6-20 Table 6-18 C&I Cumulative Realistic Achievable Savings for Non-equipment Measures, Selected Years (MWh) 6-21 Table 6-19 Realistic Achievable Potential with Varying Avoided Costs 6-24 Table 6-20 Varying Growth Scenario Descriptions 6-25 Table 6-21 Varying Growth Scenario Results 6-25 Table 6-22 Pumping Rate Classes, Electricity Sales and Peak Demand 2009 6-26 Table 6-23 Sixth Plan Calculator Agriculture Incremental Annual Potential, Selected Years (MWh) 6-26 Table 6-24 Sixth Plan Calculator Agriculture Cumulative Potential, Selected Years (MWh) 6-27 Avista 2011 Electric Integrated Resource Plan 602 Global Energy Partners, LLC 1-1 An EnerNOC Company CHAPTER 1 INTRODUCTION 1.1 BACKGROUND Avista Corporation (Avista) engaged Global Energy Partners (Global) to conduct a Conservation Potential Assessment (CPA) Study. The CPA is a 20-year potentials study for energy efficiency (EE) and demand response (DR) to provide data on demand-side resources for developing Avista’s 2011 Integrated Resource Plan (IRP), and in accordance with Washington I-937. The study used 2009, the first year for which complete billing data was available, as the baseline year and then developed potential estimates for the period 2012-2032. Although the final report will address electricity and natural gas, this interim report provides results of the electricity potential study only. 1.2 OBJECTIVES Key objectives for the study include: Conduct a conservation potential study for electricity for Washington and Idaho, and natural gas for Washington, Idaho, and Oregon. The study will account for: o Impacts of existing Avista conservation programs o Avista’s load forecasts and load shapes o Impacts of codes and standards o Technology developments and innovation o The economy and energy prices o Naturally occurring energy savings Assess and analyze cost-effective EE and DR potentials in accordance with the Northwest Power and Conservation Council’s (NWPPC) 6th Power Plan and Washington I-937 requirements. Obtain supply curves showing the incremental costs associated with achieving higher levels of EE and DR and stacking EE and DR resources by cost of conserved energy. Analyze various market penetration rates associated with technical, economic, achievable, and naturally occurring potential estimates. Avista 2011 Electric Integrated Resource Plan 603 Introduction Avista Conservation Potential Assessment Study 1-2 www.gepllc.com 1.3 REPORT ORGANIZATION The remainder of this report presents the results of the electricity conservation potential assessment for Avista’s Washington and Oregon service territory. In most cases, resu lts for Avista’s overall electric system are presented in the body of the report, and Washington- and Oregon-specific results are presented in Appendices A and B respectively. The report is organized as follows: Chapter 2, Study Approach for Energy Efficiency Analysis Chapter 3, Market Assessment and Market Profiles Chapter 4, Baseline Forecast Chapter 5, Energy Efficiency Measure Analysis Chapter 6, Energy Efficiency Potential Results Appendix A, Washington Results Appendix B, Idaho Results Appendix C, Residential Energy Efficiency Equipment and Measure Data Appendix D, Commercial Energy Efficiency Equipment and Measure Data Appendix E, Study References Results of the demand response analysis and the natural gas potential assessment will be presented in separate forthcoming documents. Avista 2011 Electric Integrated Resource Plan 604 Global Energy Partners, LLC 2-1 An EnerNOC Company CHAPTER 2 STUDY APPROACH FOR ENERGY EFFICIENCY ANALYSIS To execute this project, Global took the following steps, which are also shown in Figure 2-1. 1. Performed a market assessment to describe base year energy consumption for the residential and C&I sectors. This included using utility data and secondary data to understand customers in Avista’s service territory and how these customers currently use electricity. Based on the market assessment, we developed energy market profiles for the study’s base year, 2009. 2. Developed a baseline energy forecast by sector and end use for the twenty-year study period. 3. Identified and analyzed energy-efficiency measures appropriate for the Avista service area. 4. Estimated four levels of energy-efficiency potential, Technical, Economic, Maximum Achievable, and Realistic Achievable. The steps are described in further detail throughout the remainder of this section. Figure 2-1 Analysis Approach Overview Avista 2011 Electric Integrated Resource Plan 605 Study Approach For Energy Efficiency Analysis Avista Conservation Potential Assessment Study 2-2 www.gepllc.com 2.1 MARKET ASSESSMENT AND MARKET PROFILES It is absolutely critical to develop a good understanding of where Avista is today in terms of energy use and customer behavior before developing projections of potential EE savings. The purpose of the market assessment is to develop market profiles that describe current electricity use in terms of sector, customer segment, and end use. The base year for this study is 2009, the most recent year for which complete billing data was available at the start of the study. We began the market assessment by defining the market segments (building types, end uses and other dimensions) that are relevant in the Avista service territory. The segmentation scheme employed for this project, as presented in Table 2-1, is based on Avista rate schedules. For the pumping rate classes, we determined to use the Northwest Power and Conservation Council (NWPCC) Sixth Plan calculator to determine future EE potential. Table 2-1 Segmentation Framework for Electricity Market Dimension Segmentation Design Dimension Examples Dimension 1 Geographic Region Washington, Idaho Dimension 2 Sector / Rate Class Residential — Rate Class 001 C&I General Service — Rate Class 011, 012 C&I Large General Service — Rate Classes 021, 022 Comm. Extra Large General Service — Rate Class 025 Ind. Extra Large General Service — Rate Classes 025, 025P Pumping — Rate Classes 030, 031, 032 Dimension 3 Building Type Residential: single-family, multi-family, mobile home, limited income No further segmentation of C&I and pumping, except for XLarge General Service, which was divided into commercial and industrial segments Dimension 4 Vintage Existing and new construction (as appropriate for residential and commercial sectors) Dimension 5 End Uses Cooling, lighting, water heat, motors, etc. (as appropriate by sector) Dimension 6 Appliances/End Uses and Technologies Cooling, lighting, water heat, motors, etc. (as appropriate by sector); Technologies such as types of lamps, chillers, color TVs, etc. Dimension 7 Equipment Efficiency Levels Old, Standard (minimum standard), Maximum Efficiency With the segmentation scheme defined, we set out to populate the market profiles. The first step was to identify the electricity sales in the base year for each segment using Avista’s 2009 historical customer billing data by rate class. In order to further divide the residential sector, we relied upon regional demographic and economic data from secondary sources (see below). Then, we developed the data for the remaining market profile elements, which include market size, annual electricity use, electric appliance and equipment saturations, technology shares, and end-use consumption estimates (unit energy consumption or UEC for residential customers and energy use index or EUI for C&I customers). We calibrated the elements of the market profile for each segment to match the segment and sector-level sales we developed in the previous step. We developed market profiles for the entire existing market, as well as new construction in each segment. Avista 2011 Electric Integrated Resource Plan 606 Avista Conservation Potential Assessment Study Study Approach For Energy Efficiency Analysis Global Energy Partners, LLC 2-3 An EnerNOC Company While this study did not involve any primary market research, a wealth of primary data is available for the Pacific Northwest region from NEEA and a recent customer saturation survey from Inland Power and Light, a neighboring utility. In addition, data were available from a residential survey conducted as part of Inland Power’s December 2009 CPA. We used these sources together with other secondary data, including the Energy Information Agency’s Residential Energy Consumption Survey (RECS), the Annual Energy Outlook (AEO), th e California’s Residential Appliance Saturation Survey (RASS), and the California Commercial End Use Survey (CEUS), to develop the market profiles. In addition to information about annual electricity use, we also needed estimates of peak demand by segment and end use in order to calculate peak-demand savings from EE measures. We developed a set of peak factors, factors that represent the fraction of annual energy use that occurs during the peak hour, and apply them to annual electricity use to calculate peak demand by end use. Peak factors for this study were developed for each sector, customer segment and end use using Global’s EnergyShapeTM database and information from Avista regarding its load shapes and peak demand.2 Table 2-2 summarizes the data required for the market profiles. This information is required for each segment within each sector, as well as for new construction and existing dwellings/buildings. Additional details regarding sources appear in Appendix E. Table 2-2 Data Needs for the Market Profiles Model Inputs Description Key Sources Base-year data Market size Base-year residential dwellings and C&I floor space Avista billing data, NEEA Reports Appliance/equipment saturations Fraction of dwellings with an appliance/technology; Percentage of C&I floor space with equipment/technology NEAA reports, Inland Power & Light residential saturation survey, RECS, and other secondary data UEC/EUI for each end- use technology UEC: Annual electricity use for a technology in dwelling that have the technology; EUI: Annual electricity use per square foot for a technology in floor space that has the technology NEAA reports, RASS, CEUS, engineering analysis, prototype simulations, engineering analysis Appliance/equipment vintage distribution Age distribution for each technology NEEA reports, RASS, CEUS, secondary data (DEEM, EIA, EPRI, DEER, etc.) Efficiency options for each technology List of available efficiency options and annual energy use for each technology Prototype simulations, engineering analysis, appliance/equipment standards, secondary data (DEEM, EIA, EPRI, DEER, etc.) Peak factors Share of technology energy use that occurs during the peak hour Avista data; Global’s EnergyShape database The quality of data inputs is critical. To ensure the best results, we pursued the following course during the data-development process. 2 The peak factors were used to compute peak demand savings only and they were not used to develop a stand-alone peak-demand forecast. Avista 2011 Electric Integrated Resource Plan 607 Study Approach For Energy Efficiency Analysis Avista Conservation Potential Assessment Study 2-4 www.gepllc.com 1. Used NEEA reports, the Inland Power & Light survey of its residential customers, and RECS to provide information about market size for customer segments, appliance and equipment saturations, appliance and equipment characteristics, UECs, building characteristics, customer behavior, operating characteristics, and energy-efficiency actions already taken. 2. Incorporated secondary data sources to supplement and corroborate the research in items 1 and 2 above. 3. Compared and cross-checked with data obtained as part of other northwest utility studies, the EPRI National Potential Study, and other regional sources. 4. Ensured calibration to control totals such as total usage values by segment, available through the billing data. 5. Worked with the Avista staff and the extended project team to vet the data against their knowledge and experience. The market assessment, market segmentation, and resulting market profiles are presented in Chapter 3. 2.2 BASELINE FORECAST The next step of the energy efficiency potential study was to develop the baseline forecast which is the metric against which savings from energy-efficiency measures are compared. The baseline case forecasts annual electricity use and peak demand by customer segment and end use under a ―business as usual‖ (without new utility programs) scenario for the 20-year planning horizon starting in 2012. This process is crucial as it allows for projections to be determined in the absence of future conservation programs. This puts the changes in market conditions and customer potentials estimates in context of total energy use in the future and also allows us to project where the energy-efficiency savings will come from. The end-use forecast also includes the expected impacts of codes and standards, which affect what is possible through utility programs. Given the recent extensive attention to energy efficiency at the national level through Smart Grid and American Reinvestment and Recovery Act (ARRA) stimulus efforts and promulgated through the implementation of more stringent codes and standards both nationally and in local jurisdictions, we have taken steps in our modeling framework to capture the effects of market influences in our baseline forecast assessments. This is an important issue for this study, as the adoption of future codes and standards will have a direct bearing on how much utility program EE potential there can be over and above the effects of those efforts. This study includes standards in effect as of late 2010, which were not taken into account during the development of the Sixth Plan. Inputs to the baseline forecast include: Current economic growth forecasts New construction forecasts Appliance and equipment standards Existing and approved changes to building codes and standards Forecasted changes in fuel share and equipment saturation The (future) effects of utility programs offered prior to 2010 Avista’s electricity price and sales forecasts Avista 2011 Electric Integrated Resource Plan 608 Avista Conservation Potential Assessment Study Study Approach For Energy Efficiency Analysis Global Energy Partners, LLC 2-5 An EnerNOC Company 2.2.1 Modeling Approach We used the Load Management Analysis and Planning tool (LoadMAPTM) to develop the baseline forecast, as well as forecasts of energy-efficiency potential. Global developed LoadMAP in 2007 and has used it for the EPRI National Potential Study and numerous utility-specific forecasting and potential studies. Built in Excel, the LoadMAP framework is both accessible and transparent and has the following key features. Embodies the basic principles of rigorous end-use models (such as EPRI’s REEPS and COMMEND) but in a more simplified, accessible form. Includes stock-accounting algorithms that treat older, less efficient appliance/equipment stock separately from newer, more efficient equipment. Equipment is replaced according to the measure life defined by the user. Balances the competing needs of simplicity and robustness by incorporating important modeling details related to equipment saturations, efficiencies, vintage, and the like, where market data are available, and treats end uses separately to account for varying importance and availability of data resources. Isolates new construction from existing equipment and buildings and treats purchase decisions for new construction, replacement upon failure, early replacement, and non-owner acquisition separately. Uses a simple logic for appliance and equipment decisions. Other models available for this purpose embody complex decision choice algorithms or diffusion assumptions, and the model parameters tend to be difficult to estimate or observe and sometimes produce anomalous results that require calibration or even overriding. The LoadMAP approach allows the user to drive the appliance and equipment choices year by year directly in the model. This flexible approach allows users to import the results from diffusion models or to input individual assumptions. The framework also facilitates sensitivity analysis. Includes appliance and equipment models customized by end use. For example, the logic for lighting equipment is distinct from refrigerators and freezers. Can accommodate various levels of segmentation. Analysis can be performed at the sector level (e.g., total residential) or for customized segments within sectors (e.g., housing type or income level). Consistent with the segmentation scheme and the market profiles we describe above, the LoadMAP model provides forecasts of baseline energy use by sector, segment, end use and technology for existing and new buildings. It provides forecasts of total energy use and energy- efficiency savings associated with the four types of potential. It also provides forecasts of peak- demand savings for each type of potential.3 Table 2-3 summarizes the LoadMAP model inputs required for the baseline forecast. These inputs are required for each segment within each sector, as well as for new construction and existing dwellings/buildings. 3 The model computes a peak-demand forecast for each type of potential for each end use as an intermediate calculation. Peak- demand savings are calculated as the difference between the peak-demand value in the potential forecast (e.g., technical potential) and the peak-demand value in the baseline forecast. Avista 2011 Electric Integrated Resource Plan 609 Study Approach For Energy Efficiency Analysis Avista Conservation Potential Assessment Study 2-6 www.gepllc.com Table 2-3 Data Needs for the Baseline Forecast and Potentials Estimation in LoadMAP Model Inputs Description Key Sources Customer growth forecasts Forecasts of new construction in residential and C&I sectors Avista 2009 IRP, Sixth Power Plan, Regional census data Equipment purchase shares for baseline forecast For each equipment/technology, purchase shares for each efficiency level; specified separately for equipment replacement (replace-on- burnout), non-owner acquisition, and new construction Shipments data, AEO forecast assumptions, appliance/efficiency standards analysis Electricity prices Forecast of average electricity prices Avista price forecast data Utilization model parameters Price elasticities, elasticities for other variables (income, weather) EPRI’s REEPS and COMMEND models; Avista forecasting data We present the results of the baseline forecast development in Chapter 4. As with the development of the market profiles, we reviewed the baseline forecast results with the Avista staff. 2.3 ENERGY EFFICIENCY MEASURES ANALYSIS The framework for assessing savings, costs, and other attributes of energy-efficiency measures involves identifying the list of measures to include in the analysis, determining their applicability to each market sector and segment, fully characterizing each measure, and performing cost- effectiveness screening. Potential measures include the replacement of a unit that has failed or is at the end of its useful life with an efficient unit, retrofit/early replacement of equipment, improvements to the building envelope and other actions resulting in improved energy efficiency, and the application of controls to optimize energy use. We compiled a robust listing of energy efficiency measures for each customer sector, drawing upon a variety of secondary sources: The Sixth Power Plan database of EE measure costs and savings NEEA’s Regional Technical Forum Database for Energy Efficient Resources (DEER). The California Energy Commission and California Public Utilities Commission (CPUC) sponsor this database, which is designed to provide well-documented estimates of energy and peak demand savings values, measure costs, and effective useful life (EUL) all with one data source for the state of California. Global’s Database of Energy Efficiency Measures (DEEM). In 2004, Global prepared a database of energy efficiency measures for residential and commercial segments across the U.S. This is analogous to the DEER database developed for California. Global updates the database on a regular basis as it conducts new energy efficiency potential studies. EPRI National Potential Study (2009). In 2009, Global conducted an assessment of the national potential for energy efficiency, with estimates derived for the four DOE regions (including the Pacific region that includes California). Based on this compilation of information, Global assembled a broad and inclusive universal list of EE measures, covering all major types of end-use equipment, as well as devices and actions to reduce energy consumption. If considered today, many of these measures would not pass the economic screens, but may ultimately be part of Avista’s EE program portfolios. Once we assembled the list of EE measures, the project team assessed their energy-saving characteristics. For energy-saving measures not already specified in the databases above, we Avista 2011 Electric Integrated Resource Plan 610 Avista Conservation Potential Assessment Study Study Approach For Energy Efficiency Analysis Global Energy Partners, LLC 2-7 An EnerNOC Company used Global’s Building Energy Simulation Tool (BEST), a derivative of the DOE 2.2 building simulation model, to estimate measure savings. We used building prototypes for the Northwest region to estimate energy savings. For each measure we also characterized incremental cost, service life, and other performance factors. Following the measure characterization, we performed an economic screening of each measure, which serves as the basis for developing the economic potential . We provide further descriptions of EE measures analysis and the economic screening process in Chapter 5. 2.4 ASSESSMENT OF ENERGY-EFFICIENCY POTENTIAL A key objective of this study is to estimate the potential for energy savings through energy efficiency activities in the Avista electric service territory. The potential impact of EE activities is the cumulative total of all energy-related projects. The approach we used for this study adheres to the approaches and conventions outlined in the National Action Plan for Energy-Efficiency (NAPEE) Guide for Conducting Potential Studies (November 2007).4 The NAPEE Guide represents the most credible and comprehensive industry practice for specifying energy-efficiency potential. Specifically, four types of potentials were developed as part of this study. Technical potential is calculated by applying the most efficient option commercially available to each purchase decision, regardless of cost. It is a theoretical case that provides the broadest and highest definition of savings potential since it quantifies the savings that would result if all current equipment, processes, and practices in all sectors of the market were replaced by the most efficient feasible type. Technical potential does not take into account the cost-effectiveness of the measures. Further, technical potential is specifically defined as ―phase-in technical potential,‖ which assumes that only the portion of the current stock of equipment that has reached the end of its useful life and is due for turnover is changed out by the most efficient measures available (i.e., replacement). Non-equipment measures, such as controls and other devices (e.g., programmable thermostats) are not adopted all at once but are phased-in over time, just like the equipment measures. Lighting retrofits, which are in effect early replacements of existing lighting systems, are considered a non-equipment measure. Economic potential results from the purchase of the most efficient cost-effective option available for a given equipment or non-equipment measure. Cost effectiveness is determined by applying an economic test. In this report, the total resource cost (TRC) test5 was used to assess the cost-effectiveness of individual measures. Measures that passed the economic screen were then represented in the aggregate for economic potential. As with technical potential, economic potential is a phased-in approach. Economic potential is still a hypothetical upper-boundary of savings potential as it represents only measures that are economic but does not yet consider customer acceptance and other factors. Achievable potential refines the economic potential by taking into account penetration rates of efficient technologies, expected program participation, and customer preferences and likely behavior. Two types of achievable potential were evaluated for this study: Maximum achievable potential (MAP) establishes an upper boundary of potential savings a utility could achieve through its energy efficiency programs. MAP presumes incentives that are sufficient to ensure customer adoption. It also considers a maximum 4 National Action Plan for Energy Efficiency (2007). National Action Plan for Energy Efficiency Vision for 2025: Developing a Framework for Change. www.epa.gov/eeactionplan. 5 While there are other tests that can be used to represent the economic potential (e.g., Participant or Utility Cost), the TRC is generally seen as the most appropriate representation of economic potential since it tends to be most representative of the net benefits of energy efficiency to society as a whole. The TRC is used in the economic screen as a proxy for moving forward and representing achievable energy efficiency savings potential for those measures that are most widely cost-effective. Avista 2011 Electric Integrated Resource Plan 611 Study Approach For Energy Efficiency Analysis Avista Conservation Potential Assessment Study 2-8 www.gepllc.com participation rate by customers for the various energy efficiency programs that are designed to deliver the various measures. For this study, we developed market acceptance rate (MAR) factors, based on the ramp rate curves used in the Sixth Power Plan. These MAR factors were then applied to this study’s estimates of economic potential to estimate MAP. Realistic achievable potential (RAP) represents a lower boundary forecast of potentials resulting from likely customer behavior and penetration rates of efficient technologies. It uses a set of program implementation factors (PIFs) to take into account existing barriers that are likely to limit the amount of savings that might be achieved through energy efficiency programs. The RAP also takes into account recent utility experience and reported savings from past and present programs. 2.4.1 Modeling Approach We used LoadMAP to develop the estimates of technical, economic, and achievable potential. LoadMAP calculates results in terms of annual energy saved (kWh) and peak demand reduction (MW) for each level of potential by market segment, end use, and measure type. Figure 2-2 illustrates the LoadMAP process for developing both the baseline forecast the potentials forecasts. For the technical potential, LoadMAP ―chooses‖ the most efficient option for each purchase decision involving major end-use equipment (refrigerators, air conditioners) during the forecast period. It also phases in all non-equipment measures during the forecast period. For the economic potential, LoadMAP applies the TRC, which tests each measure in terms of its lifetime benefits (i.e., energy savings multiplied by the avoided cost) relative to the initial capital cost required to install the measure. If the benefit/cost ratio is greater than or equal to 1.0, then the measure passes the screen and it is included in the calculation of economic potential. If the B/C ratio is less than 1.0, the measure is screened out of economic potential. To allow for the changing characteristics of individual, new measures, we perform the economic screen during each year of the forecast period. Therefore, a measure than may not pass the screen in 2010 may pass in some future year. If more than one efficiency option passes the economic screen, for example if SEER 15 and SEER 16 both pass, then the most efficient option, SEER 16, is included in the calculation of economic potential. Economic potential still does not take into account the acceptance of those measures by customers, so it is still a hypothetical upper-boundary of EE potential. But again, this exercise is important as it provides useful insights as to how much potential is economic and oftentimes can be compared with other studies of economic potential. To develop estimates for maximum and realistic achievable potential, we specify market adoption rates and program implementation factors for each measure as described above. For this study, we based these factors on the Sixth Power Plan’s conservation curve ramp rates, and the past experience at Avista and at other utility EE programs. We also tapped into our recently completed market research for two EE potential studies in which we assessed customer acceptance rates taking into account some degree of financial intervention on the part of the utility to bring down customer paybacks to a level that motivates their participation in various EE programs. While there is a significant degree of uncertainty associated with these adoption rates, we believe that the approach is reasonable and is bounded by the experience gained from other utility EE efforts. Because the adoption rates are model inputs, they can be modified as new information becomes available. The LoadMAP model provides a forecast of annual electricity use and peak demand under the four types of potential. The energy and peak-demand savings from energy efficiency measures are calculated as the difference between the values for the baseline forecast and the potential forecast. Avista 2011 Electric Integrated Resource Plan 612 Avista Conservation Potential Assessment Study Study Approach For Energy Efficiency Analysis Global Energy Partners, LLC 2-9 An EnerNOC Company Figure 2-2 LoadMAP Baseline and Potential Modeling Results of the potentials assessment are presented in Chapter 6. Avista 2011 Electric Integrated Resource Plan 613 Avista 2011 Electric Integrated Resource Plan 614 Global Energy Partners, LLC 3-1 An EnerNOC Company CHAPTER 3 MARKET ASSESSMENT AND MARKET PROFILES Avista Utilities, headquartered in Spokane, Washington is an investor-owned utility with annual revenues of more than $1.3 billion. Avista provides electric and natural gas service to about 481,000 customers in a service territory of more than 30,000 square miles. Avista uses a mix of hydro, natural gas, coal and biomass generation delivered over 2,100 miles of transmission line, 17,000 miles of distribution line, and 6,100 miles of natural gas distribution mains. Avista currently operates a portfolio of electric and natural gas conservation programs in Washington, Idaho, and Oregon for residential, low-income, and non-residential customers that is funded by a non-bypassable systems benefits charge. The base year for this study is 2009, the most recent year for which complete billing data were available at the beginning of the study. Table 3-1 and Table 3-2 show the breakdown, for Washington and Idaho respectively, of 2009 electricity sales among the major sectors and rate classes, drawn from billing data provided by Avista. Peak demand data was taken from the 2009 System Load Research Project report.6 Figure 3-1and Figure 3-2 show similar data, but with the Extra Large General Service customers (rate class 025) further divided into commercial and industrial. In Figure 3-2 for Idaho, Extra Large General Service also includes Potlatch, rate class 25P. Table 3-1 Electricity Sales and Peak Demand by Rate Class, Washington 2009 Sector Rate Schedule(s) Number of meters (customers) 2009 Electricity sales (MWh) Peak demand (MW) Residential 001 200,134 2,451,687 710 General Service 011, 012 27,142 415,935 64 Large General Service 021, 022 3,352 1,556,929 232 Extra Large General Service 025 22 879,233 134 Pumping 031, 032 2,361 135,999 10 Total 233,011 5,439,850 1,150 Table 3-2 Electricity Use and Peak Demand by Rate Class, Idaho 2009 Sector Rate Schedule(s) Number of meters (customers) 2009 Electricity sales (MWh) Peak demand (MW) Residential 001 99,580 1,182,368 283 General Service 011, 012 19,245 322,570 61 Large General Service 021, 022 1,456 699,953 115 Extra Large General Service 025, 025P 10 266,044 40 Extra Large GS Potlatch 025P 1 892 101 Pumping 031, 032 1,312 58,885 4 Total 121,604 3,422,111 603 6 Avista Corp. System Load Research Project report, March 2010, prepared by KEMA. Avista 2011 Electric Integrated Resource Plan 615 Market Assessment and Market Profiles Avista Conservation Potential Assessment Study 3-2 www.gepllc.com Figure 3-1 Electricity Sales by Rate Class, Washington 2009 Figure 3-2 Electricity Sales by Rate Class, Idaho 2009 For this study, the project team decided not to explicitly model the EE potential for pumping customers but instead to use the Northwest Power and Conservation Council (NPCC) standard calculator to estimate EE potential. Results of that calculation appear in Chapter 6. Below we discuss the market characterization and development of market profiles for the Residential and C&I sectors. 3.1 RESIDENTIAL SECTOR This section characterizes the residential market at a high level, and then provides a profile of how customers in each residential segment use electricity by end use. Residential 45% General Service 8% Large General Service 29% Extra Large Commercial 5% Extra Large Industrial 11% Pumping 2% Residential 35% General Service 9%Large General Service 20% Extra Large Commercial 2% Extra Large Industrial 32% Pumping 2% Avista 2011 Electric Integrated Resource Plan 616 Avista Conservation Potential Assessment Study Market Assessment and Market Profiles Global Energy Partners, LLC 3-3 An EnerNOC Company 3.1.1 Market Characterization The total number of residential customers was 200,134 in Washington and 99,579 in Idaho, based on the average number of rate class 001 monthly customers for 2009 provided by Avista.7 We segmented these customers into four groups based on housing type and level of income: single family, multi family, mobile home, and limited income. The single family segment includes single-family detached homes, townhouses, and duplexes or row houses. The multi family segment includes apartments or condos in buildings with more than two units. The limited income segment is composed of all three housing types: single-family homes, multi-family homes, and mobile homes. Because Avista does not maintain information on housing type or income level, we relied on a variety of survey and demographic sources for segmenting the residential market, including the U.S. Census American Community Survey 2006-2008, a 2009 Inland Power customer survey, and other sources (see Appendix E). Avista defines the limited-income category as those customers with annual income less than or equal to two times the poverty level. For an average household size of 2.5 persons, two times the poverty level is $32,880. For the purpose of our analysis, we used a slightly higher income level cutoff of $35,000 to define this segment, which allowed us to take advantage of the data sources listed above. The resulting residential customer allocation by segment appears in Table 3-3 and in Figure 3-3. Table 3-3 Residential Sector Allocation by Segments Washington Idaho Segment Allocation of Customers % of Total Allocation of Customers % of Total Single Family 109,134 54% 59,205 59% Multi Family 18,219 9% 5,237 5% Mobile Home 5,248 3% 4,774 5% Limited Income 67,533 34% 30,363 31% Total 200,134 100% 99,579 100% Note: Minor difference with Idaho residential customer total 99,580 Table 3-2 due to calibration. Figure 3-3 Residential Sector Allocation by Segments, Percentage of Customers 7 Rate classes 12 and 22, although they include homes, are included with rates classes 11 and 21 respectively, which corresponds with how customer classes were combined for Avista’s System Load Research Project report. Single Family 54%Multi Family 9% Mobile Home 3% Limited Income 34% Washington, % of Customers Single Family 59%Multi Family 5% Mobile Home 5% Limited Income 31% Idaho, % of Customers Avista 2011 Electric Integrated Resource Plan 617 Market Assessment and Market Profiles Avista Conservation Potential Assessment Study 3-4 www.gepllc.com Next, to determine the residential whole building energy intensity (kWh/household) by segment, we drew upon data from the Energy Information Agency, a NEEA residential billing analysis report, and the Inland Power & Light 2009 Conservation Potential Assessment. Based on these sources, we developed the segment level energy intensities shown in Table 3-4. The selected energy intensity values multiplied by the number of households equal the annual sales for each segment. These values sum to the total annual energy use for the residential sector in each state. Figure 3-4 presents the resulting energy sales by segment. The single-family segment used just over half the total residential sector electricity in 2009. Table 3-4 Residential Electricity Usage and Intensity by Segment and State, 2009 Washington Segment Intensity (kWh/Household) Number of Customers % of Customers 2009 Electricity Sales (MWh) % of Sales Single Family 14,547 109,134 54% 1,587,572 65% Multi-Family 8,728 18,219 9% 159,019 6% Mobile Home 13,092 5,248 3% 68,708 3% Limited Income 9,424 67,533 34% 636,407 26% Total 12,250 200,134 100% 2,451,707 100% Idaho Segment Intensity (kWh/Household) Number of Customers % of Customers 2009 Electricity Sales (MWh) % of Sales Single Family 13,703 59,205 59% 811,302 69% Multi-Family 8,213 5,237 5% 43,013 4% Mobile Home 12,320 4,774 5% 58,815 5% Limited Income 8,868 30,363 31% 269,249 23% Total 11,874 99,580 100% 1,182,379 100% Note: Minor differences with totals in Table 3-1 and Table 3-2 due to calibration. Figure 3-4 Residential Electricity Use by Customer Segment, Percentage of Sales 2009 Single Family 65% Multi Family 6% Mobile Home 3% Limited Income 26% Washington, % of Sales Single Family 68% Multi Family 4% Mobile Home 5% Limited Income 23% Idaho, % of Sales Avista 2011 Electric Integrated Resource Plan 618 Avista Conservation Potential Assessment Study Market Assessment and Market Profiles Global Energy Partners, LLC 3-5 An EnerNOC Company 3.1.2 Residential Market Profiles As we describe in the previous chapter, the market profiles provide the foundation upon which we develop the baseline forecast. For each segment, we created a market profile, which includes the following elements: Market size represents the number of customers in the segment Saturations embody the fraction of homes with the electric technologies. (e.g., homes with electric space heating). We developed these using a combination of survey data from sources including Inland Power & Light, NEEA, and Puget Sound Energy (PSE). The results were cross-checked and validated against various other secondary sources. UEC (unit energy consumption) describes the amount of electricity consumed in 2009 by a specific technology in homes that have the technology (in kWh/household). As above, we used data from Inland Power & Light, NEEA, and PSE. We also used data from various utility potential studies that Global has recently completed. As needed, some minor adjustments were made to calibrate to whole-building intensities. Intensity represents the average use for the technology across all homes in 2009. It is computed as the product of the saturation and the UEC and is defined as kWh/household. Usage is the annual electricity use by a technology/end use in the segment. It is the product of the number of households and intensity and is quantified in GWh. Table 3-5 presents the average existing home market profile for the entire Avista residential sector. The table shows data captured directly from LoadMAP. Values in red are inputs to LoadMAP. The existing-home profile represents all the housing stock in the Avista service area in 2009. Market profiles for each of the residential segments in Washington and Idaho respectively appear in Appendix A and B. Figure 3-5 presents the end-use breakout for the residential sector as a whole. The appliance end use accounts for the largest share of the usage, closely followed by space heating, with water heating the third largest end use. The miscellaneous end use includes such devices as furnace fans, pool pumps, and other ―plug‖ loads (hair dryers, power tools, coffee makers, etc.). Interior and exterior lighting combined account for 12% of electricity use in 2009. The electronics end use, which includes personal computers, televisions, home audio, video game consoles, etc., also contributes significantly to household electricity usage. Cooling and combined heating and cooling through heat pumps make up the remainder. Avista 2011 Electric Integrated Resource Plan 619 Market Assessment and Market Profiles Avista Conservation Potential Assessment Study 3-6 www.gepllc.com Figure 3-5 Residential Electricity Use by End Use per Household, 2009 (kWh and %) Cooling, 601 , 5% Space Heating, 2,619 , 21% Heat & Cool, 714 , 6% Water Heating, 1,834 , 15% Appliances, 2,637 , 22% Interior Lighting, 1,279 , 10% Exterior Lighting, 213 , 2% Electronics, 1,053 , 9% Miscellaneous, 1,176 , 10% Avista 2011 Electric Integrated Resource Plan 620 Avista Conservation Potential Assessment Study Market Assessment and Market Profiles Global Energy Partners, LLC 3-7 An EnerNOC Company Table 3-5 Average Residential Sector Market Profile UEC Intensity Usage (kWh)(kWh/HH)(GWh) Cooling Central AC 29%1,613 470 141 Cooling Room AC 20%643 131 39 Combined Heating/Cooling Air Source Heat Pump 14%5,051 699 209 Combined Heating/Cooling Geothermal Heat Pump 0%3,715 15 4 Space Heating Electric Resistance 18%6,114 1,119 335 Space Heating Electric Furnace 22%6,779 1,492 447 Space Heating Supplemental 9%83 8 2 Water Heating Water Heater 66%2,796 1,834 550 Interior Lighting Screw-in 100%1,144 1,144 343 Interior Lighting Linear Fluorescent 66%121 80 24 Interior Lighting Pin-based 92%59 55 16 Exterior Lighting Screw-in 70%301 211 63 Exterior Lighting High Intensity/Flood 2%116 2 1 Appliances Clothes Washer 84%105 88 26 Appliances Clothes Dryer 80%621 498 149 Appliances Dishwasher 86%185 160 48 Appliances Refrigerator 100%746 746 224 Appliances Freezer 62%760 474 142 Appliances Second Refrigerator 35%787 277 83 Appliances Stove 86%299 257 77 Appliances Microwave 95%144 137 41 Electronics Personal Computers 121%263 317 95 Electronics TVs 222%311 688 206 Electronics Devices and Gadgets 100%48 48 14 Miscellaneous Pool Pump 10%1,328 130 39 Miscellaneous Furnace Fan 26%404 107 32 Miscellaneous Miscellaneous 100%940 940 282 12,125 3,634 - Average Market Profile - Residential Sector End Use Technology Saturation Total Avista 2011 Electric Integrated Resource Plan 621 Market Assessment and Market Profiles Avista Conservation Potential Assessment Study 3-8 www.gepllc.com Figure 3-6 presents the end-use shares of total electricity use for each housing type. Space heating is the largest single use in all housing types except single family homes where it is lower relative to other uses. Appliances are the largest energy consumer in the single family segment and are a significant energy use in the other segments as well. Figure 3-6 End-Use Shares of Total Electricity Use by Housing Type, 2009 3.2 COMMERCIAL AND INDUSTRIAL SECTORS The approach we used for the C&I sectors is analogous to the residential sector. It begins with segmentation, then defines market size and annual electricity use, and concludes with market profiles. 3.2.1 C&I Market Characterization We developed the non-residential energy use by segment using Avista 2009 billing data by rate class. Table 3-6 and Table 3-7 present the results for the market characterization for Washington and Idaho respectively. Although the General Service 011 and Large General Service 021 rate classes include a small percentage of industrial customers, we chose to model these as primarily commercial building types. For the General Service segment, we assumed facilities were small to medium buildings, dominated by retail facilities. For the Large General Service segment, we assumed the typical facility was an office building. When developing the market profiles, as further described below, we began with these assumed prototypical building types, but adjusted them to account for the diversity in each segment. For the Extra Large General Service rate class 025, we divided customers into separate commercial and industrial segments and included the Potlatch facility, Idaho rate class 025P, with the other Idaho Extra Large industrial customers. This grouping enabled better modeling of the industrial customers. We then used data from NEEA, the California Commercial End Use Study (CEUS), and other recently completed studies to develop estimates of floor space and annual intensities (in kWh/square foot) for each segment. Because of the heterogeneous nature of the C&I sectors and the wide variation in customer size (compared to residential homes), floor space is used as the unit of measure to quantify energy use and equipment inventories on a per-square-foot basis. Note that we are not concerned with absolute square footage, as the purpose of this study 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Single Family Multi Family Mobile Home Limited Income Cooling Space Heating Heat & Cool Water Heating Appliances Interior Lighting Exterior Lighting Electronics Miscellaneous Avista 2011 Electric Integrated Resource Plan 622 Avista Conservation Potential Assessment Study Market Assessment and Market Profiles Global Energy Partners, LLC 3-9 An EnerNOC Company is not to estimate C&I floor space, but with the relative size of each segment and its growth over time. Table 3-6 Commercial Sector Market Characterization Results, Washington 2009 Avista Rate Schedule LoadMAP Segment and Typical Building Electricity sales (MWh) Intensity (kWh/sq.ft.) General Service 011, 012 Small and Medium Commercial — Retail 415,935 17.5 Large General Service 021, 022 Large Commercial — Office 1,556,929 16.7 Extra Large General Service Commercial 025C Extra Large Commercial — University 265,686 13.9 Extra Large General Service Industrial 025I Extra Large Industrial 613,615 40.0 Total 2,852,165 Table 3-7 Commercial Sector Market Characterization Results, Idaho 2009 Avista Rate Schedule LoadMAP Segment and Typical Building Electricity sales (MWh) Intensity (kWh/sq.ft.) General Service 011, 012 Small and Medium Commercial — Retail 322,570 17.5 Large General Service 021, 022 Large Commercial — Office 699,953 16.7 Extra Large General Service Commercial 025C Extra Large Commercial — University 70,361 13.9 Extra Large General Service Industrial 025I, 025P Extra Large Industrial 1,087,974 40.0 Total 2,180,858 3.2.2 C&I Market Profiles For the C&I sector, the approach we used to develop market profiles is similar to what we described above for residential. Saturations are the percentage of floor space with each electric end use. For space heating, cooling and water heating, this embodies the electric fuel share. For space heating and cooling, it also embodies the fraction of conditioned space. The saturation values for each end use are from NEEA reports, supplemented with other secondary sources to develop the technology-level saturations. For the industrial segments, we drew upon U.S. Industrial Electric Motor Systems Market Opportunities Assessment from the US Department of Energy (US DOE) and the EIA Annual Energy Outlook. EUIs (end-use indices) represent the amount of electricity used per square foot of floor space in buildings where the equipment is present. Data from NEEA. US DOE, EIA, and other secondary sources provided EUIs by end use. We developed the technology-level EUIs using our engineering model BEST and other secondary sources. Finally, we adjusted the EUIs to calibrate to Avista’s overall building type intensity. Intensity is the average use across all floor space (computed as the product of saturation and EUI). For the industrial sector, we calibrate Annual use is the total consumption in 2009 for each end use (computed as the product of the intensity and the floor space for the segment. Figure 3-7 shows the breakdown of annual electricity usage by end use for the C&I sector as a whole. Lighting is the largest single end use in the sector, accounting for one fifth of total usage. Avista 2011 Electric Integrated Resource Plan 623 Market Assessment and Market Profiles Avista Conservation Potential Assessment Study 3-10 www.gepllc.com Figure 3-7 Commercial and Industrial Electricity Consumption by End Use, 2009 This information is further detailed in Figure 3-8, which shows the end-use breakdown for the composite of the three commercial segments — Small/Medium, Large, and Extra Large — and Figure 3-9, which shows similar information for the Extra Large Industrial segment. Observations include the following: Commercial buildings o Lighting is the largest single energy use across all of the commercial buildings, accounting for 29% of energy use. o Space conditioning, including heating, cooling, and ventilation, is close behind with 27% of energy use. o Miscellaneous and office equipment are the next largest energy uses. o Water heating, refrigeration, and food preparation are only a small portion of energy use in the commercial sector overall, though they are more significant in specific building types (supermarkets, restaurants, hospitals, lodging). Extra Large Industrial facilities o Machine drive and process loads dominate in this segment, together accounting for 65% of energy use. o HVAC and interior lighting consume 17% and 6% of energy respectively. Cooling 9% Space Heating 5% Heat & Cool 2% Ventilation 8% Water Heating 5% Food Preparation 2% Refrigeration 4%Interior Lighting 21% Exterior Lighting 3% Office Equipment 7% Miscellaneous 12% Machine Drive 15% Process 7% Avista 2011 Electric Integrated Resource Plan 624 Avista Conservation Potential Assessment Study Market Assessment and Market Profiles Global Energy Partners, LLC 3-11 An EnerNOC Company Figure 3-8 Commercial End Use Consumption, 2009 Figure 3-9 Extra Large Industrial End Use Consumption, 2009 Table 3-8 shows an example commercial average base year market profile, in this case for the Washington Small/Medium Commercial Segment. The table show data captured from LoadMAP, where values shown in red are inputs to the model. The market profiles for each of the Washington and Idaho C&I segments are shown in Appendices A and B respectively. Cooling 10% Space Heating 6% Heat & Cool 2% Ventilation 9% Water Heating 8% Food Preparation 3% Refrigeration 6% Interior Lighting 29% Exterior Lighting 5% Office Equipment 10% Miscellaneous 12% Cooling 6% Space Heating 3%Heat & Cool 0% Ventilation 8% Interior Lighting 6% Exterior Lighting 1% Miscellaneous 12% Machine Drive 45% Process 20% Avista 2011 Electric Integrated Resource Plan 625 Market Assessment and Market Profiles Avista Conservation Potential Assessment Study 3-12 www.gepllc.com Table 3-8 Small/Medium Commercial Segment Market Profile, Washington, 2009 EUI Intensity Usage EUI Intensity (kWh)(kWh/Sqft.)(GWh)(kWh)(kWh/Sqft.) Cooling Central Chiller 13.8%2.39 0.33 8 13.8%2.15 0.30 -10% Cooling RTU 63.1%2.46 1.55 37 63.1%2.22 1.40 -10% Cooling PTAC 3.3%2.44 0.08 2 3.3%2.20 0.07 -10% Combined Heating/Cooling Heat Pump 3.6%6.19 0.22 5 3.6%5.57 0.20 -10% Space Heating Electric Resistance 5.9%6.72 0.39 9 5.9%6.72 0.39 0% Space Heating Furnace 17.7%7.05 1.25 30 17.7%6.34 1.13 -10% Ventilation Ventilation 76.9%2.09 1.61 38 76.9%1.88 1.45 -10% Interior Lighting Interior Screw-in 100.0%1.00 1.00 24 100.0%0.90 0.90 -10% Interior Lighting HID 100.0%0.68 0.68 16 100.0%0.61 0.61 -10% Interior Lighting Linear Fluorescent 100.0%3.37 3.37 80 100.0%3.03 3.03 -10% Exterior Lighting Exterior Screw-in 82.6%0.20 0.16 4 82.6%0.18 0.15 -10% Exterior Lighting HID 82.6%0.76 0.63 15 82.6%0.68 0.56 -10% Exterior Lighting Linear Fluorescent 82.6%0.16 0.13 3 82.6%0.14 0.12 -10% Water Heating Water Heater 63.0%2.00 1.26 30 63.0%1.90 1.19 -5% Food Preparation Fryer 25.8%0.16 0.04 1 25.8%0.16 0.04 0% Food Preparation Oven 25.8%0.98 0.25 6 25.8%0.98 0.25 0% Food Preparation Dishwasher 25.8%0.06 0.01 0 25.8%0.06 0.01 0% Food Preparation Hot Food Container 25.8%0.31 0.08 2 25.8%0.31 0.08 0% Food Preparation Food Prep 25.8%0.01 0.00 0 25.8%0.01 0.00 0% Refrigeration Walk in Refrigeration 0.0%- - - 0.0%- - Refrigeration Glass Door Display 52.4%0.45 0.23 6 52.4%0.40 0.21 -10% Refrigeration Solid Door Refrigerator 52.4%0.50 0.26 6 52.4%0.45 0.24 -10% Refrigeration Open Display Case 52.4%0.04 0.02 1 52.4%0.04 0.02 -10% Refrigeration Vending Machine 52.4%0.30 0.16 4 52.4%0.30 0.16 0% Refrigeration Icemaker 52.4%0.34 0.18 4 52.4%0.34 0.18 0% Office Equipment Desktop Computer 99.9%0.48 0.48 11 99.9%0.48 0.48 0% Office Equipment Laptop Computer 99.9%0.06 0.06 1 99.9%0.06 0.06 0% Office Equipment Server 99.9%0.36 0.36 9 99.9%0.36 0.36 0% Office Equipment Monitor 99.9%0.25 0.25 6 99.9%0.25 0.25 0% Office Equipment Printer/copier/fax 99.9%0.24 0.24 6 99.9%0.24 0.24 0% Office Equipment POS Terminal 99.9%0.27 0.27 7 99.9%0.27 0.27 0% Miscellaneous Non-HVAC Motor 40.2%1.22 0.49 12 40.2%1.22 0.49 0% Miscellaneous Other Miscellaneous 100.0%1.43 1.43 34 100.0%1.43 1.43 0% 17.50 416 16.3 New Units Compared to Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 626 Global Energy Partners, LLC 4-1 An EnerNOC Company CHAPTER 4 BASELINE FORECAST Prior to developing estimates of energy-efficiency potential, a baseline end-use forecast was prepared to quantify how electricity is used by end use in the base year and what electricity is likely to be in the future in absence of new utility programs. The baseline forecast serves as the metric against which energy-efficiency potentials — technical, economic, and achievable — are compared. 4.1 RESIDENTIAL SECTOR 4.1.1 Residential Baseline Forecast Drivers In general, the baseline forecast incorporates assumptions about economic growth, electricity prices, appliance/equipment standards and building codes already mandated, and naturally occurring conservation. The key inputs we used to develop the forecast for Avista include: Customer growth: provided by Avista through 2015, and rate of growth assumed constant thereafter Forecasts of electricity prices: provided by Avista through 2015, with rate of increases thereafter based on the Annual Energy Outlook (AEO) Forecasts of household size: from Census data and the 6th Plan Forecast of income: from Washington state data Trends in end-use/technology saturations: developed from the AEO Equipment purchase decisions: developed from AEO Table 4-1 presents the assumptions used in the forecast regarding market size growth, household size, median household income, and electricity prices. The market size growth rate was applied equally to each of the four segments. Table 4-1 Residential Market Size Forecast (number of households) Driver 2009 2012 2017 2022 2027 2032 Average Growth (%/yr) Market Size WA (number of households) 200,134 204,530 217,921 232,414 247,871 264,356 1.21% Market Size ID (number of households) 99,579 102,077 108,592 115,553 122,960 130,842 1.19% Persons per household 2.50 2.50 2.50 2.50 2.50 2.50 – Electricity price WA (cents per kWh) $0.0721 $0.0796 $0.0804 $0.0825 $0.0845 $0.0867 0.80% Electricity price ID (cents per kWh) $0.0742 $0.0855 $0.0876 $0.0898 $0.0921 $0.0944 1.05% Per capita income ($ real, 2000) $34,506 $35,787 $39,202 $43,623 $48,400 $53,700 1.92% Avista 2011 Electric Integrated Resource Plan 627 Baseline Forecast Avista Conservation Potential Assessment Study 4-2 www.gepllc.com In addition to forecasts for household size, electricity price, and median household income, the model also requires elasticities for these variables. The elasticities for prices and persons per household are based on the REEPS model developed by the Electric Power Research Institute (EPRI). The income elasticity was provided by Avista. The values are as follows: –0.151 for electricity prices 0.75 for income for all end uses except for appliances, where we use 0.375 0.20 for persons per household In addition, we implemented the following assumptions for the residential sector8: In 2006, a Federal standard for central air conditioners and heat pumps went into effect, requiring all newly manufactured air conditioners and heat pumps to meet SEER 13 or better. This standard applies to replace-upon-burnout in existing construction and new construction. In 2016, the standard becomes SEER 149. In April 2010, DOE released updated water heater standards that go into effect April 16, 2015. The new standard for water heaters with volume at or below 55 gallons requires an energy factor (EF) equal to 0.96 minus 0.0003 times the rated storage volume in gallons. DOE is scheduled to make a final ruling on refrigerator and freezer standards on December 31, 2010. We incorporated this anticipated ruling into the forecast and assumed that refrigeration and freezer consumption will decrease by 20% in 201410. This forecast does not include anticipated standards for room air conditioners, clothes washers, clothes dryers and dishwashers because DOE rulings on the standards have not yet been set. Residential lighting is affected by the passage of the Energy Independence and Security Act (EISA) in 2007, which mandates higher efficacies for lighting technologies starting in 2012. Several lighting technologies are anticipated to meet this standard when it goes into effect, including compact fluorescent lamps (CFL) and white light-emitting diodes (LED). As a result, the share of incandescent lamps decreases while CFL and LED purchases increase. CFLs dominate over the forecast period, but LEDs account for about 20% of purchases by 2020. In November 2008, ENERGY STAR 3.0 for color televisions went into effect. This standard sets the rules for becoming ENERGY STAR qualified. One such criterion is that TVs must not exceed 1 watt of power in standby mode. 4.1.2 Residential Baseline Forecast Results Overall, residential use in both states and for all segments increases from 3,634,054 MWh in 2009 to 5,600,870 MWh in 2032, an average annual growth rate of 1.9%. This is slightly higher than the 1.5% annual growth rate in Avista’s 2009 IRP for the period 2009 through 2030. Because the IRP forecast includes future conservation activities and LoadMAP’s baseline forecast does not, we would generally expect LoadMAP’s baseline forecast to be somewhat higher . This increase is also more than double the AEO forecast of 0.8% average growth. 8 These assumptions reflect standards in effect as of late 2010 or scheduled to take effect over the course of the 20-year study period. Because some of these standards were not yet announced when the NWPCC Sixth Plan was developed, this study’s baseline incorporates reduced baseline energy usage compared with the Sixth Plan. 9 This assumption was included in the 2010 Annual Energy Outlook (AEO) forecast. The SEER 14 standard level used in the AEO forecast was established in a 2009 consensus agreement made between equipment manufacturers and energy efficiency advocacy organizations. DOE is required to publish the final rule on central air conditioners and heat pump standards in 2011. 10 This level is consistent with the standard recently agreed upon in a joint proposal by home appliance manufacturers and energy efficiency advocates which states that refrigeration and freezer consumption must decrease by 20-30% effective in 2014. Avista 2011 Electric Integrated Resource Plan 628 Avista Conservation Potential Assessment Study Baseline Forecast Global Energy Partners, LLC 4-3 An EnerNOC Company General observations about this forecast include the following: Overall, household growth is robust, with a nearly 32% increase between 2009 and 2032. The AEO forecast is somewhat lower, with a 26% increase in the number of households. The factors that impact usage — relatively low electricity prices and strong income growth — result in strong residential consumption growth over the forecast period. New homes are larger than existing homes, based on data from the AEO and other studies. However, equipment and appliances are more efficient, so the combined effect is slightly positive. Figure 4-1 presents the baseline forecast at the end-use level for the residential sector as a whole, in both Washington and Idaho. Figure 4-1 Residential Baseline Forecast by End Use End-use specific observations include: The drop in all space conditioning loads from 2009 to 2012 is due to the transition from actual weather in 2009 (589 cooling degree days and 6,976 heating degree days) to the normal weather forecast (434 cooling degree days and 6,657 heating degree days) thereafter. Cooling grows due to increasing saturation of central air conditioning in new homes and larger home sizes, as well as the addition of central air conditioning to existing homes. Space heating, combined heating and cooling, and water heating grow, but at a slightly moderate rate compared to cooling, again due to the growth in households and to larger home sizes. Beginning in 2012, the federal lighting standards cause a decline in electricity for interior lighting use of 29% and exterior lighting use by 41% over the forecast period. The AEO 2010 forecast projects a 26% decline in lighting energy use over the same period. The AEO reduction is less than that shown here, again due to increasing home size. Appliances decrease, reflecting efficiency gains, particularly in the refrigeration appliances due to standards that offset the small increases in saturations of dishwashers, clothes washers, and clothes dryers. Avista 2011 Electric Integrated Resource Plan 629 Baseline Forecast Avista Conservation Potential Assessment Study 4-4 www.gepllc.com Growth in electricity use in electronics is strong and reflects an increase in the saturation of electronics and the trend toward higher-powered computers and larger televisions. Growth in miscellaneous use is also substantial. This has been a long-term trend and we incorporate growth assumptions that are consistent with the AEO. Figure 4-2 presents the forecast of use per household. Most noticeable is that lighting use decreases significantly after 2010, as the lighting standard from EISA comes into effect and as LED lamps begin to gain traction in the later years of the forecast. Appliance use also decreases over the forecast period due to appliance standards. Use in electronics and miscellaneous increase over the forecast period, reflecting the trend that households continue to add various electronics to the home. Figure 4-2 Residential Baseline Electricity Use per Household by End Use Table 4-2 shows the forecast by end use, while Table 4-3 provides additional detail by technology within each end use. Central AC increases during the forecast as more households add air conditioning. Screw-in lighting decreases as a result of the EISA lighting standard. Over the forecast period there is strong growth in usage from electronics due to the increase in saturation. Avista 2011 Electric Integrated Resource Plan 630 Avista Conservation Potential Assessment Study Baseline Forecast Global Energy Partners, LLC 4-5 An EnerNOC Company Table 4-2 Residential Baseline Forecast Electricity Consumption by End Use (MWh) End Use 2009 2012 2017 2022 2027 2032 % Change ('09–'32) Avg. growth rate Cooling 180,022 164,865 197,394 239,439 292,044 355,171 97% 3.0% Space Heating 784,854 783,258 906,261 1,051,822 1,210,093 1,383,665 76% 2.5% Heat & Cool 213,860 201,410 229,160 258,676 295,177 341,644 60% 2.0% Water Heating 549,606 557,022 611,950 675,037 748,494 830,988 51% 1.8% Interior Lighting 790,377 776,482 795,594 835,023 894,245 989,025 25% 1.0% Exterior Lighting 383,305 371,610 246,575 256,864 262,823 271,374 -29% -1.5% Appliances 63,864 61,321 41,763 39,795 38,430 37,735 -41% -2.3% Electronics 315,599 336,152 394,727 459,538 529,485 616,688 95% 2.9% Miscellaneous 352,599 374,575 447,870 540,047 648,055 774,496 120% 3.4% Total 180,022 164,865 197,394 239,439 292,044 355,171 54% 1.9% Avista 2011 Electric Integrated Resource Plan 631 Baseline Forecast Avista Conservation Potential Assessment Study 4-6 www.gepllc.com Table 4-3 Residential Baseline Electricity Forecast by End Use and Technology (MWh) End Use Technology 2009 2012 2017 2022 2027 2032 % Change ('09–'32) Avg. Growth Rate Cooling Central AC 140,731 130,669 161,085 199,996 249,120 308,429 119% 3.4% Room AC 39,291 34,196 36,310 39,443 42,924 46,742 19% 0.8% Space Heating Electric Furnace 447,317 447,255 520,409 606,695 700,178 801,899 79% 2.5% Electric Resistance 335,280 333,732 383,172 441,947 506,164 577,358 72% 2.4% Supplemental 2,257 2,272 2,680 3,180 3,750 4,409 95% 2.9% Heat & Cool Air Source Heat Pump 209,371 197,111 224,050 252,476 287,663 332,619 59% 2.0% Geothermal Heat Pump 4,489 4,299 5,109 6,200 7,514 9,025 101% 3.0% Water Heating Water Heater 549,606 557,022 611,950 675,037 748,494 830,988 51% 1.8% Appliances Refrigerator 223,654 213,517 204,566 204,184 209,933 231,329 3% 0.1% Freezer 141,950 137,910 137,084 136,274 143,528 158,560 12% 0.5% Second Refrigerator 83,117 77,296 72,374 70,707 69,137 73,789 -11% -0.5% Clothes Washer 26,332 26,102 27,746 30,875 34,868 39,019 48% 1.7% Clothes Dryer 149,267 150,677 163,829 180,582 199,465 221,428 48% 1.7% Dishwasher 47,886 48,894 54,242 60,691 68,105 76,321 59% 2.0% Stove 77,079 79,792 89,107 99,966 111,884 125,081 62% 2.1% Microwave 41,092 42,294 46,647 51,744 57,325 63,498 55% 1.9% Interior Lighting Screw-in 342,923 329,329 198,253 200,264 196,856 194,811 -43% -2.5% Linear Fluorescent 24,025 25,171 29,266 34,273 39,944 46,451 93% 2.9% Pin-based 16,358 17,110 19,056 22,326 26,023 30,112 84% 2.7% Exterior Lighting Screw-in 63,165 60,629 41,255 39,254 37,834 37,069 -41% -2.3% High Intensity/Flood 698 692 508 540 596 666 -5% -0.2% Electronics Personal Computers 94,922 101,516 120,451 143,627 170,677 202,632 113% 3.3% TVs 206,326 219,527 256,515 294,816 333,825 384,485 86% 2.7% Devices and Gadgets 14,351 15,110 17,761 21,095 24,983 29,572 106% 3.1% Miscellaneous Furnace Fan 32,029 33,795 39,817 47,004 54,841 63,046 97% 2.9% Pool Pump 38,852 39,438 44,334 51,331 59,964 69,728 79% 2.5% Miscellaneous 281,718 301,342 363,719 441,712 533,250 641,722 128% 3.6% Grand Total 3,634,086 3,626,696 3,871,294 4,356,240 4,918,847 5,600,787 54% 1.9% Avista 2011 Electric Integrated Resource Plan 632 Avista Conservation Potential Assessment Study Baseline Forecast Global Energy Partners, LLC 4-7 An EnerNOC Company 4.2 COMMERCIAL AND INDUSTRIAL SECTOR 4.2.1 C&I Baseline Forecast Drivers As is the case with the residential sector, the C&I baseline forecast incorporates assumptions about economic growth, electricity prices, equipment standards and building codes already mandated, and naturally occurring conservation. The key inputs we used to develop the forecast for Avista include: Floor space growth for Commercial segments derived from Avista customer and load growth projections through 2015 and from Avista IRP projections regarding expansion of existing Extra Large Customer facilities; after 2015 assumed constant growth rate of 2% based on Avista IRP11 Floor space growth for Extra Large Industrial segment derived from Avista customer and load growth projections through 2015; thereafter based on based on employment growth of 2.8% in Washington and 1.4% in Idaho12 Forecasts of electricity prices provided by Avista through 2015, with rate of increases thereafter based on the Annual Energy Outlook (AEO) Trends in end-use/technology saturations developed from the AEO Equipment purchase decisions developed from AEO13 Table 4-4 presents the growth and electricity price assumptions used in the C&I forecast. Market size growth is shown as an indexed value where 2009 equals 1.0 Table 4-4 Commercial Market Size Growth and Electricity Price Forecast Indexed Market Size 2009 = 1.0 2009 2012 2017 2022 2027 2032 Avg. Growth (%/yr) Small/Med. Comm., WA 1.00 1.04 1.14 1.26 1.39 1.53 1.85% Large Comm., WA 1.00 1.01 1.10 1.22 1.34 1.48 1.72% Extra Large Comm., WA 1.00 1.05 1.34 1.48 1.63 1.80 2.57% Extra Large Industrial, WA 1.00 1.16 1.31 1.51 1.73 1.99 2.99% Small/Med. Comm., ID 1.00 1.03 1.13 1.25 1.38 1.53 1.84% Large Comm., ID 1.00 1.03 1.15 1.27 1.40 1.54 1.88% Extra Large Comm., ID 1.00 1.04 1.25 1.38 1.52 1.68 2.26% Extra Large Industrial, ID 1.00 1.04 1.13 1.21 1.30 1.39 1.44% Electricity Price 2009 2012 2017 2022 2027 2032 Avg. Growth (%/yr) Electricity price, WA (cents per kWh) $0.0700 $0.0698 $0.0703 $0.0727 $0.0752 $0.0778 0.46% Electricity price, ID (cents per kWh) $0.0566 $0.0586 $0.0600 $0.0621 $0.0642 $0.0664 0.69% 11 Avista 2009 IRP, p. 2-10: Commercial usage per customer is forecast to increase for several years due to additional buildings either built or anticipated to be built by existing very large customers, such as Washington State University and Sacred Heart Hospital. Expected additions for very large customers are included in the forecast through 2015, and no additions are included in the forecast after 2015. 12 Avista 2009 IRP p. 2-6. 13 We developed baseline purchase decisions using the Energy Information Agency’s Annual Energy Outlook report (2010), which utilizes the National Energy Modeling System (NEMS) to produce a self-consistent supply and demand economic model. We calibrated equipment purchase options to match manufacturer shipment data for recent years and trended forward. Avista 2011 Electric Integrated Resource Plan 633 Baseline Forecast Avista Conservation Potential Assessment Study 4-8 www.gepllc.com 4.2.2 C&I Baseline Forecast Results Figure 4-3 and Table 4-5 present the baseline forecast at the end-use level for the C&I sector as a whole. Overall, C&I annual energy use increases from 5,033,023 MWh in 2009 to 7,239,694 MWh in 2032, a 43.8% increase. This reflects growth in floor space across all sectors. Table 4-6 presents the C&I forecast by technology. Interior screw-in lighting increases over the forecast period, but at a slower rate than other technologies as a result of the lighting standard. Figure 4-3 C&I Baseline Electricity Forecast by End Use - 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000 8,000,000 2009 2012 2017 2022 2027 2032 An n u a l U s e ( M W h ) Cooling Space Heating Heat & Cool Ventilation Water Heating Food Preparation Refrigeration Interior Lighting Exterior Lighting Office Equipment Miscellaneous Machine Drive Process Avista 2011 Electric Integrated Resource Plan 634 Avista Conservation Potential Assessment Study Baseline Forecast Global Energy Partners, LLC 4-9 An EnerNOC Company Table 4-5 C&I Electricity Consumption by End Use (MWh) End Use 2009 2012 2017 2022 2027 2032 % Change ('09–'32) Avg. growth rate Cooling 433,257 429,715 453,330 473,311 504,446 550,621 27.1% 1.04% Space Heating 250,919 224,970 249,918 273,638 300,093 330,065 31.5% 1.19% Heat & Cool 81,984 80,104 82,263 86,559 94,007 103,167 25.8% 1.00% Ventilation 421,805 426,987 457,118 487,582 534,845 588,427 39.5% 1.45% Water Heating 246,022 244,232 266,435 289,253 315,002 344,844 40.2% 1.47% Food Preparation 92,263 94,294 104,419 114,396 125,186 136,992 48.5% 1.72% Refrigeration 203,660 204,139 213,050 224,372 242,222 264,431 29.8% 1.14% Interior Lighting 1,079,050 1,106,035 1,175,567 1,274,090 1,388,871 1,513,165 40.2% 1.47% Exterior Lighting 179,595 183,933 202,023 219,529 239,546 261,703 45.7% 1.64% Office Equipment 344,351 363,758 387,164 421,052 458,189 498,560 44.8% 1.61% Miscellaneous 619,607 645,918 714,601 785,490 863,772 950,463 53.4% 1.86% Machine Drive 740,191 800,303 881,202 966,387 1,061,952 1,169,146 58.0% 1.99% Process 340,318 367,955 405,497 445,447 489,890 539,389 58.5% 2.00% Total 433,257 429,715 453,330 473,311 504,446 550,621 27.1% 1.04% Avista 2011 Electric Integrated Resource Plan 635 Baseline Forecast Avista Conservation Potential Assessment Study 4-10 www.gepllc.com Table 4-6 C&I Baseline Electricity Forecast by End Use and Technology (MWh) End Use Technology 2009 2012 2017 2022 2027 2032 % Change ('09–'32) Avg. Growth Rate Cooling Central Chiller 161,468 161,651 175,544 184,829 194,228 210,874 30.6% 1.16% PTAC 18,631 18,428 18,862 19,691 21,069 23,036 23.6% 0.92% RTU 253,158 249,637 258,925 268,791 289,149 316,711 25.1% 0.97% Space Heating Electric Resistance 102,223 191,387 212,950 234,235 257,713 283,617 177.5% 4.44% Furnace 148,697 33,583 36,969 39,403 42,380 46,447 -68.8% -5.06% Heat & Cool Heat Pump 81,984 80,104 82,263 86,559 94,007 103,167 25.8% 1.00% Ventilation Ventilation 421,805 426,987 457,118 487,582 534,845 588,427 39.5% 1.45% Water Heating Water Heater 246,022 244,232 266,435 289,253 315,002 344,844 40.2% 1.47% Food Preparation Dishwasher 5,561 5,675 6,260 6,889 7,580 8,341 50.0% 1.76% Fryer 10,938 11,160 12,267 13,442 14,715 16,107 47.3% 1.68% Oven 64,439 65,882 73,158 80,123 87,640 95,864 48.8% 1.73% Hot Food Container 10,600 10,838 11,915 13,043 14,260 15,590 47.1% 1.68% Food Prep 724 739 818 900 991 1,090 50.5% 1.78% Refrigeration Walk in Refrigeration 26,545 26,356 27,877 29,977 32,721 35,993 35.6% 1.32% Glass Door Display 29,998 29,887 31,549 33,927 37,032 40,736 35.8% 1.33% Solid Door Refrigerator 56,389 55,997 58,578 61,819 66,199 71,682 27.1% 1.04% Open Display Case 18,136 18,080 19,502 20,983 22,909 25,201 39.0% 1.43% Vending Machine 28,068 28,373 25,594 23,005 23,392 24,849 -11.5% -0.53% Icemaker 44,524 45,447 49,951 54,661 59,969 65,969 48.2% 1.71% Interior Lighting HID 175,721 181,398 198,158 215,929 235,578 257,305 46.4% 1.66% Linear Fluorescent 686,924 702,882 771,014 840,371 916,893 1,001,311 45.8% 1.64% Interior Screw-in 216,406 221,755 206,395 217,790 236,400 254,549 17.6% 0.71% Avista 2011 Electric Integrated Resource Plan 636 Avista Conservation Potential Assessment Study Baseline Forecast Global Energy Partners, LLC 4-11 An EnerNOC Company Table 4-6 C&I Baseline Electricity Forecast by End Use and Technology (MWh) (continued) End Use Technology 2009 2012 2017 2022 2027 2032 % Change ('09–'32) Avg. Growth Rate Exterior Lighting HID 132,407 135,795 150,576 164,140 179,105 195,616 47.7% 1.70% Linear Fluorescent 25,393 25,871 28,196 30,732 33,529 36,611 44.2% 1.59% Exterior Screw-in 21,795 22,266 23,250 24,657 26,912 29,475 35.2% 1.31% Office Equipment Monitor 41,029 53,265 46,532 50,891 55,743 61,060 48.8% 1.73% Server 74,853 76,495 84,537 93,022 102,358 112,632 50.5% 1.78% Desktop Computer 154,994 158,861 173,772 187,271 201,951 217,747 40.5% 1.48% Laptop Computer 13,081 13,425 14,794 15,996 17,306 18,722 43.1% 1.56% Printer/copier/fax 39,520 40,314 44,034 48,018 52,383 57,096 44.5% 1.60% POS Terminal 20,873 21,398 23,495 25,853 28,448 31,304 50.0% 1.76% Miscellaneous Other Miscellaneous 263,934 269,935 298,454 328,409 361,370 397,639 50.7% 1.78% Miscellaneous 208,493 225,425 248,425 272,900 300,128 330,453 58.5% 2.00% Non-HVAC Motor 147,180 150,558 167,722 184,182 202,275 222,371 51.1% 1.79% Machine Drive Less than 5 HP 35,529 38,415 41,579 44,045 47,585 52,286 47.2% 1.68% 5-24 HP 76,980 83,231 91,723 100,760 110,813 122,010 58.5% 2.00% 25-99 HP 188,009 203,277 224,017 246,087 270,640 297,986 58.5% 2.00% 100-249 HP 106,588 115,244 127,002 139,514 153,434 168,937 58.5% 2.00% 250-499 HP 116,950 126,448 139,349 153,078 168,351 185,361 58.5% 2.00% 500 and more HP 216,136 233,688 257,531 282,903 311,129 342,566 58.5% 2.00% Process Process Cooling/Refrigeration 102,095 110,387 121,649 133,634 146,967 161,817 58.5% 2.00% Process Heating 153,143 165,580 182,474 200,451 220,451 242,725 58.5% 2.00% Electrochemical Process 85,079 91,989 101,374 111,362 122,473 134,847 58.5% 2.00% Grand Total 5,033,023 5,172,344 5,592,586 6,061,107 6,618,022 7,250,973 44.1% 1.59% Avista 2011 Electric Integrated Resource Plan 637 Baseline Forecast Avista Conservation Potential Assessment Study 4-12 www.gepllc.com 4.3 BASELINE FORECAST SUMMARY Table 4-7 and Figure 4-4 provide an overall summary of the baseline forecast by sector and for the Avista system as a whole. Overall, the forecast for the next 20 years shows substantial growth, reflecting projected increases in customers and income. This forecast is the metric against which the energy-efficiency savings potential is compared. Table 4-7 Baseline Forecast Summary by Sector and State End Use 2009 2012 2017 2022 2027 2032 % Change ('09–'32) Avg. Growth Rate ('09–'32) Res. WA 2,451,707 2,448,104 2,617,630 2,947,427 3,329,882 3,792,486 54.7% 1.9% Res. ID 1,182,379 1,178,591 1,253,664 1,408,812 1,588,965 1,808,300 52.9% 1.8% C&I WA 2,852,165 2,955,156 3,209,083 3,509,816 3,869,176 4,280,649 50.1% 1.8% C&I ID 2,180,858 2,217,188 2,383,504 2,551,291 2,748,846 2,970,324 36.2% 1.3% Total 8,667,109 8,799,039 9,463,880 10,417,347 11,536,869 12,851,760 48.3% 1.7% Figure 4-4 Baseline Forecast Summary by Sector and State Avista 2011 Electric Integrated Resource Plan 638 Avista Conservation Potential Assessment Study Baseline Forecast Global Energy Partners, LLC 4-13 An EnerNOC Company 4.3.1 Comparison of Baseline Forecast with Avista 2009 IRP Table 4-8 compares the Avista 2009 IRP forecast, the LoadMAP baseline forecast for Washington and Idaho combined, and the regional forecast from the Sixth Plan. For the LoadMAP baseline and Avista forecast, the table shows data for the period 2009 through 2030, the last year of the IRP forecast. The Sixth Plan forecast is the medium case scenario for 2010 through 2030. Table 4-8 Comparison of LoadMAP Baseline, Avista IRP, and Sixth Plan Energy Forecasts (MWh) LoadMAP Baseline Avista IRP14 Sixth Plan15 Sector 2009 2030 Avg. Growth ('09-'30) 2009 2030 Avg. Growth ('09-'30) Avg. Growth ('10-'30) Residential 3,634,086 5,314,970 1.8% 3,700,000 5,048,000 1.5% 1.4% Commercial 3,331,433 4,457,968 1.4% 3,400,000 4,773,000 1.6% 1.6% Industrial 1,701,589 2,530,353 1.9% 1,900,000 3,029,000 2.2% 0.8% Total 8,667,109 12,303,291 1.7% 9,002,009 12,852,030 1.7% 1.4% The LoadMAP and IRP forecasts do not match exactly for the base year, likely due to the slightly different ways in which the study team selected rate classes to include and how we grouped them. Also, the IRP was prepared in September 2009, before final results for 2009 were available. Overall growth in energy usage agrees well between LoadMAP and the IRP, at approximately 1.7% annual average growth. However, Global’s forecast for the Residential sector produces greater growth than the IRP’s projections, while the opposite is true for Commercial and Industrial sectors. Because the LoadMAP baseline excludes future additional conservation activities, we would generally expect it to be somewhat higher than the IRP forecast, as is the case with the Residential sector. In general, the Sixth Plan forecast, which also excludes additional conservation, is lower than both the LoadMAP and Avista IRP forecasts, with the exception of the Commercial sector, where the Sixth Plan and the Avista IRP agree. Retail Electricity Prices Table 4-9 compares retail electricity prices used in the LoadMAP model and those projected in the IRP. Table 4-9 Comparison of Retail Electricity Prices LoadMAP Avista IRP16 Sector 2009 ($/kWh) 2018 ($/kWh) Avg. Growth ('09-'18) 2019 ($/kWh) 2032 ($/kWh) Avg. Growth ('19-'32) Avg. Growth ('19-'32) Avg. Growth ('19-'30) Res. WA $0.072 $0.080 1.2% $0.0818 $0.087 0.5% 10.0% Inflation Res. ID $0.074 $0.088 1.8% $0.089 $0.094 0.5% 10.0% Inflation C&I WA $0.0700 $0.0703 0.1% $0.0713 $0.0778 0.7% 10.0% Inflation C&I ID $0.0566 $0.0600 0.6% $0.0608 $0.0664 0.7% 10.0% inflation 14 Avista forecast from 2009 IRP, Figure 2.10 and p. 2-12. 15 NPCC Sixth Northwest Conservation and Electric Power Plan, p. C-6, table C-3. 16 Avista 2009 IRP, p. 2-9. Avista 2011 Electric Integrated Resource Plan 639 Baseline Forecast Avista Conservation Potential Assessment Study 4-14 www.gepllc.com Avista’s IRP forecast ―is based on retail prices increasing an average of 10 percent annually from 2010 to 2018, followed by increases at the rate of inflation thereafter.‖ However, Avista’s most recent load forecast for 2011–2015 shows lower annual rate increases. For this study, Global used the rates from the 2011–2015 load forecast and thereafter, based on data from the AEO, increased rates by 0.50% and 0.68% respectively for residential and C/I customers. Residential Energy Use per Household As mentioned above, the LoadMAP residential baseline energy use forecast is higher than the IRP residential forecast. Furthermore, the baseline forecast of energy use per household is notably different, with average growth of 0.6% compared with Avista IRP showing that energy use per household decreases over time.17 Long-Term Weather This study used the 30-year normal weather data. In contrast, the IRP mentions warming trends in recent weather. Although the model does not directly account for climate changes, the residential market profiles show an increase in air conditioning saturation over time, which indirectly reflects weather trends. 17 Avista 2009 IRP Figure 2.9, p. 2-11. Avista 2011 Electric Integrated Resource Plan 640 Global Energy Partners, LLC 5-1 An EnerNOC Company CHAPTER 5 ENERGY-EFFICIENCY MEASURE ANALYSIS This section describes the framework used to assess the savings, costs, and other attributes of energy-efficiency measures. These characteristics form the basis for measure-level cost- effectiveness analyses as well as for determining measure-level savings. For all measures, Global assembled information to reflect equipment performance, incremental costs, and equipment lifetimes. We used this information, along with the avoided costs, in the economic screen to determine economically feasible measures. Figure 5-1 outlines the framework for measure analysis. Figure 5-1 Approach for Measure Assessment 5.1 SELECTION OF ENERGY EFFICIENCY MEASURES The first step of the energy efficiency measure analysis was to identify the list of all relevant energy efficiency measures that should be considered for the Avista CPA. Sources consulted to develop the list for this study included: Avista’s existing conservation programs The Sixth Power Plan database of EE measure costs and savings NEEA’s Regional Technical Forum Database for Energy Efficient Resources (DEER): The California Energy Commission and California Public Utilities Commission (CPUC) sponsor this database, which is designed to provide well-documented estimates of energy and peak demand savings values, measure costs, and effective useful life (EUL) all with one data source for the state of California. Avista 2011 Electric Integrated Resource Plan 641 Energy-Efficiency Measure Analysis Avista Conservation Potential Assessment Study 5-2 www.gepllc.com Global’s Database of Energy Efficiency Measures (DEEM). In 2004, Global prepared a database of energy efficiency measures for residential and commercial segments across the U.S., analogous to the DEER database developed for California. Global updates the database on a regular basis as it conducts new energy efficiency potential studies. EPRI National Potential Study (2009). Global’s assessment of the national potential for energy efficiency derived for the four DOE regions (including the Pacific region. Other recent Global potential studies Measures can be categorized into one of two types, equipment measures and non-equipment measures, according to the LoadMAP taxonomy: Equipment measures, or efficient energy-consuming equipment, save energy by providing the same service with a lower energy requirement. An example is the replacement of a standard efficiency refrigerator with an ENERGY STAR model. For equipment measures, many efficiency levels are available for a specific technology that range from the baseline unit (often determined by code or standard) up to the most efficient product commercially available. For instance, in the case of central air conditioners, this list begins with the federal standard SEER 13 unit and spans a broad spectrum of efficiency, with the highest efficiency level represented by a ductless mini- split system with variable refrigerant flow (at SEER levels of 18 or greater). Non-equipment measures save energy by reducing the need for delivered energy but do not involve replacement or purchase of major end-use equipment (such as a refrigerator or air conditioner). An example would be a programmable thermostat that is pre-set, for example, to run the air conditioner only when people are home. Non-equipment measures fall into one of the following categories: Building shell (windows, insulation, roofing material) Equipment controls (thermostat, occupancy sensors) Equipment maintenance (cleaning filters, changing setpoints) Whole-building design (natural ventilation, passive solar lighting) Lighting retrofits (included as a non-equipment measure because retrofits are performed prior to the equipment’s normal end of life) Displacement measures (ceiling fan instead of central air conditioner) Non-equipment measures can apply to more than one end use. For example, insulation levels will affect both cooling and space heating energy consumption. Global prepared a preliminary list of measures for Avista’s review and revised the list based on Avista’s input. 5.1.1 Residential Measures Table 5-1 and Table 5-2 show the residential equipment and non-equipment measure options respectively and the segments for which they were modeled. Residential measures are described in Appendix C. 5.1.2 Commercial and Industrial Measures Table 5-3and Table 5-4 list the C&I equipment and non-equipment measures, respectively. Measures were modeled for nearly all C&I building types, both new and existing, with only a few exceptions as shown. For all C&I segments, a custom measure category was included to serve as a ―catch all‖ for measures for which costs and savings are not easily quantified and that could be part of a program such as Avista’s existing Site-Specific incentive program. In addition, because the Small/Medium Commercial and Large Commercial segments also include some industrial customers, we included a non-equipment measure called Industrial Process Improvements to capture potential savings from these customers. C&I Measures are described in Appendix D. Avista 2011 Electric Integrated Resource Plan 642 Avista Conservation Potential Assessment Study Energy-Efficiency Measure Analysis Global Energy Partners, LLC 5-3 An EnerNOC Company Table 5-1 Summary of Residential Equipment Measures End Use Technology Efficiency Option Eff i c i e n c y Lif e t i m e On M a r k e t Off M a r k e t Sin g l e F a m i l y (e x i s t i n g & n e w ) Mu l f i F a m i l y (e x i s t i n g & n e w ) Mo b i l e H o m e (e x i s t i n g & n e w ) Lo w I n c o m e (e x i s t i n g & n e w ) End Use Technology Efficiency Option Cooling Central AC SEER 13 100%15 2009 2014 Central AC SEER 14 (ENERGY STAR)92%15 2009 2032 Central AC SEER 15 (CEE Tier 2)89%15 2009 2032 Central AC SEER 16 (CEE Tier 3)86%15 2009 2032 Central AC Ductless Mini-Split System 75%20 2009 2032 Room AC EER 9.8 100%10 2009 2032 Room AC EER 10.8 (ENERGY STAR)91%10 2009 2032 Room AC EER 11 89%10 2009 2032 Room AC EER 11.5 85%10 2009 2032 Air Source Heat Pump SEER 13 100%15 2009 2014 Air Source Heat Pump SEER 14 (ENERGY STAR)92%15 2009 2032 Air Source Heat Pump SEER 15 (CEE Tier 2)89%15 2009 2032 Air Source Heat Pump SEER 16 (CEE Tier 3)86%15 2009 2032 Air Source Heat Pump Ductless Mini-Split System 75%20 2009 2032 Geothermal Heat Pump Standard 100%14 2009 2032 Geothermal Heat Pump High Efficiency 86%14 2009 2032 Electric Resistance Electric Resistance 100%20 2009 2032 Electric Furnace 3400 BTU/KW 100%15 2009 2032 Supplemental Supplemental 100%5 2009 2032 Water Heater Baseline (EF=0.90)100%15 2009 2015 Water Heater High Efficiency (EF=0.95)95%15 2009 2032 Water Heater Geothermal Heat Pump 32%15 2009 2032 Water Heater Solar 25%15 2009 2032 Screw-in Incandescent 100%4 2009 2014 Screw-in Infrared Halogen 81%5 2015 2020 Screw-in CFL 22%6 2009 2032 Screw-in LED 14%12 2009 2032 Linear Fluorescent T12 100%6 2009 2032 Linear Fluorescent T8 91%6 2009 2032 Linear Fluorescent Super T8 74%6 2009 2032 Linear Fluorescent T5 73%6 2009 2032 Linear Fluorescent LED 72%10 2009 2032 Pin-based Halogen 100%4 2009 2032 Pin-based CFL 23%6 2009 2032 Pin-based LED 16%10 2009 2032 Screw-in Incandescent 100%4 2009 2014 Screw-in Infrared Halogen 79%5 2015 2020 Screw-in CFL 20%6 2009 2032 Screw-in LED 14%12 2009 2032 High Intensity/Flood Incandescent 100%4 2009 2014 High Intensity/Flood Infrared Halogen 88%4 2015 2020 High Intensity/Flood CFL 29%5 2009 2032 High Intensity/Flood Metal Halide 27%5 2009 2032 High Intensity/Flood High Pressure Sodium 19%5 2009 2032 High Intensity/Flood LED 18%10 2009 2032 Cooling Heat & Cool Space Heating Water Heating Interior Lighting Exterior Lighting Avista 2011 Electric Integrated Resource Plan 643 Energy-Efficiency Measure Analysis Avista Conservation Potential Assessment Study 5-4 www.gepllc.com Table 5-1 Summary of Residential Equipment Measures (continued) End Use Technology Efficiency Option Eff i c i e n c y Lif e t i m e On M a r k e t Off M a r k e t Sin g l e F a m i l y (e x i s t i n g & n e w ) Mu l f i F a m i l y (e x i s t i n g & n e w ) Mo b i l e H o m e (e x i s t i n g & n e w ) Lo w I n c o m e (e x i s t i n g & n e w ) Appliances Clothes Washer Baseline 100%10 2009 2032 Clothes Washer ENERGY STAR (MEF > 1.8)70%10 2009 2032 Clothes Washer Horizontal Axis 42%10 2009 2032 Clothes Dryer Baseline 100%13 2009 2032 Clothes Dryer Moisture Detection 85%13 2009 2032 Dishwasher Baseline 100%9 2009 2032 Dishwasher ENERGY STAR 85%9 2009 2010 Dishwasher ENERGY STAR (2011)81%9 2011 2032 Refrigerator Baseline 100%13 2009 2013 Refrigerator ENERGY STAR 85%13 2009 2013 Refrigerator Baseline (2014)80%13 2014 2032 Refrigerator ENERGY STAR (2014)68%13 2014 2032 Freezer Baseline 100%11 2009 2013 Freezer ENERGY STAR 85%11 2009 2013 Freezer Baseline (2014)80%11 2014 2032 Freezer ENERGY STAR (2014)68%11 2014 2032 Second Refrigerator Baseline 100%13 2009 2013 Second Refrigerator ENERGY STAR 85%13 2009 2013 Second Refrigerator Baseline (2014)80%13 2014 2032 Second Refrigerator ENERGY STAR (2014)68%13 2014 2032 Stove Baseline 100%13 2009 2032 Stove Convection Oven 98%13 2009 2032 Stove Induction (High Efficiency)88%13 2009 2032 Microwave Microwave 100%9 2009 2032 Personal Computers Baseline 100%5 2009 2032 Personal Computers ENERGY STAR 65%5 2009 2032 Personal Computers Climate Savers 50%5 2009 2032 TVs Baseline 100%11 2009 2032 TVs ENERGY STAR 80%11 2009 2032 Devices and Gadgets Devices and Gadgets 100%5 2009 2032 Pool Pump Baseline Pump 100%15 2009 2032 Pool Pump High Efficiency Pump 90%15 2009 2032 Pool Pump Two-Speed Pump 60%15 2009 2032 Furnace Fan Baseline 100%18 2009 2032 Furnace Fan Furnace Fan with ECM 75%18 2009 2032 Miscellaneous Miscellaneous 100%5 2009 2032 Appliances Electronics Miscellaneous Avista 2011 Electric Integrated Resource Plan 644 Avista Conservation Potential Assessment Study Energy-Efficiency Measure Analysis Global Energy Partners, LLC 5-5 An EnerNOC Company Table 5-2 Summary of Residential Non-equipment Measures End Use Measure Sin g l e F a m i l y Ex i s t i n g Sin g l e F a m i l y Ne w C o n s t r u c t i o n Mu l f i F a m i l y Ex i s t i n g Mu l t i F a m i l y Ne w C o n s t r u c t i o n Mo b i l e H o m e Ex i s t i n g Mo b i l e H o m e Ne w C o n s t r u c t i o n Lo w I n c o m e Ex i s t i n g Lo w I n c o m e Ne w C o n s t r u c t i o n HVAC Central AC - Early Replacement Central AC - Maintenance and Tune-Up Room AC - Removal of Second Unit Air Source Heat Pump - Maintenance Furnace - Convert to Gas Attic Fan - Installation Attic Fan - Photovoltaic - Installation Ceiling Fan - Installation Whole-House Fan - Installation Thermostat - Clock/Programmable Insulation - Ceiling / Attic Insulation - Radiant Barrier Insulation - Infiltration Control Insulation - Ducting Repair and Sealing - Ducting Insulation - Foundation Insulation - Wall Cavity Insulation - Wall Sheathing Doors - Storm and Thermal Windows - Reflective Film Windows - High Efficiency/ENERGY STAR Roofs - High Reflectivity Trees for Shading Int. Lighting Interior Lighting - Occupancy Sensors Exterior Lighting - Photovoltaic Installation Exterior Lighting - Photosensor Control Exterior Lighting - Timeclock Installation Water Heater - Faucet Aerators Water Heater - Pipe Insulation Water Heater - Low Flow Showerheads Water Heater - Tank Blanket/Insulation Water Heater - Thermostat Setback Water Heater - Timer Water Heater - Hot Water Saver Water Heater - Drainwater Heat Recovery Water Heater - Convert to Gas Water Heater - Heat Pump Water Heater Refrigerator - Early Replacement Refrigerator - Remove Second Unit Freezer - Early Replacement Freezer - Remove Second Unit Electronics Electronics - Reduce Standby Wattage Misc.Pool - Pump Timer Home Energy Management System Advanced New Construction Designs Energy Efficient Manufactured Homes ENERGY STAR Homes Photovoltaic System HVAC Exterior Lighting Water Heating Appliances Multiple End Uses Avista 2011 Electric Integrated Resource Plan 645 Energy-Efficiency Measure Analysis Avista Conservation Potential Assessment Study 5-6 www.gepllc.com Table 5-3 Summary of Commercial and Industrial Equipment Measures End Use Technology Efficiency Option Sm a l l / M e d . C o m m . (e x i s t i n g & n e w ) La r g e C o m m . (e x i s t i n g & n e w ) Ex t r a L a r g e C o m m . (e x i s t i n g & n e w ) Ex t r a L a r g e I n d . (e x i s t i n g & n e w ) Cooling Central Chiller 1.5 kW/ton, COP 2.3 Central Chiller 1.3 kW/ton, COP 2.7 Central Chiller 1.26 kW/ton, COP 2.8 Central Chiller 1.0 kW/ton, COP 3.5 Central Chiller 0.97 kW/ton, COP 3.6 Central Chiller 0.75 kw/ton, COP 4.7 Central Chiller 0.60 kw/ton, COP 5.9 Central Chiller 0.58 kw/ton, COP 6.1 Central Chiller 0.55 kw/Ton, COP 6.4 Central Chiller 0.51 kw/ton, COP 6.9 Central Chiller 0.50 kw/Ton, COP 7.0 Central Chiller 0.48 kw/ton, COP 7.3 Central Chiller Variable Refrigerant Flow RTU EER 9.2 RTU EER 10.1 RTU EER 11.2 RTU EER 12.0 RTU Ductless VRF PTAC EER 9.8 PTAC EER 10.2 PTAC EER 10.8 PTAC EER 11 PTAC EER 11.5 Heat Pump EER 9.3, COP 3.1 Heat Pump EER 10.3, COP 3.2 Heat Pump EER 11.0, COP 3.3 Heat Pump EER 11.7, COP 3.4 Heat Pump EER 12, COP 3.4 Heat Pump Ductless Mini-Split System Heat Pump Geothermal* Electric Resistance Standard Furnace Standard Ventilation Constant Volume Ventilation Variable Air Volume * New construction only Cooling Heat & Cool Space Heating Ventilation Avista 2011 Electric Integrated Resource Plan 646 Avista Conservation Potential Assessment Study Energy-Efficiency Measure Analysis Global Energy Partners, LLC 5-7 An EnerNOC Company Table 5-3 Summary of Commercial and Industrial Equipment Measures (continued) End Use Technology Efficiency Option Sm a l l / M e d . C o m m . (e x i s t i n g & n e w ) La r g e C o m m . (e x i s t i n g & n e w ) Ex t r a L a r g e C o m m . (e x i s t i n g & n e w ) Ex t r a L a r g e I n d . (e x i s t i n g & n e w ) Interior Lighting Interior Screw-in Incandescents Interior Screw-in Infrared Halogen Interior Screw-in CFL Interior Screw-in LED HID Metal Halides HID High Pressure Sodium Linear Fluorescent T12 Linear Fluorescent T8 Linear Fluorescent Super T8 Linear Fluorescent T5 Linear Fluorescent LED Exterior Screw-in Incandescents Exterior Screw-in Infrared Halogen Exterior Screw-in CFL Exterior Screw-in Metal Halides Exterior Screw-in LED HID Metal Halides HID High Pressure Sodium HID Low Pressure Sodium Linear Fluorescent T12 Linear Fluorescent T8 Linear Fluorescent Super T8 Linear Fluorescent T5 Linear Fluorescent LED Water Heater Baseline (EF=0.90) Water Heater High Efficiency (EF=0.95) Water Heater Geothermal Heat Pump Water Heater Solar Fryer Standard Fryer Efficient Oven Standard Oven Efficient Dishwasher Standard Dishwasher Efficient Hot Food Container Standard Hot Food Container Efficient Food Prep Misc.Standard Food Prep Misc.Efficient Water Heating Food Preparation Exterior Lighting Interior Lighting Avista 2011 Electric Integrated Resource Plan 647 Energy-Efficiency Measure Analysis Avista Conservation Potential Assessment Study 5-8 www.gepllc.com Table 5-3 Summary of Commercial and Industrial Equipment Measures (continued) End Use Technology Efficiency Option Sm a l l / M e d . C o m m . (e x i s t i n g & n e w ) La r g e C o m m . (e x i s t i n g & n e w ) Ex t r a L a r g e C o m m . (e x i s t i n g & n e w ) Ex t r a L a r g e I n d . (e x i s t i n g & n e w ) Refrigeration Walk in Refrigeration Standard Walk in Refrigeration Efficient Glass Door Display Standard Glass Door Display Efficient Solid Door Refrigerator Standard Solid Door Refrigerator Efficient Open Display Case Standard Open Display Case Efficient Vending Machine Base Vending Machine Base (2012) Vending Machine High Efficiency Vending Machine High Efficiency (2012) Icemaker Standard Icemaker Efficient Desktop Computer Baseline Desktop Computer ENERGY STAR Desktop Computer Climate Savers Laptop Computer Baseline Laptop Computer ENERGY STAR Laptop Computer Climate Savers Server Standard Server ENERGY STAR Monitor Standard Monitor ENERGY STAR Printer/copier/fax Standard Printer/copier/fax ENERGY STAR POS Terminal Standard POS Terminal ENERGY STAR Non-HVAC Motor Standard Non-HVAC Motor Standard (2015) Non-HVAC Motor High Efficiency Non-HVAC Motor High Efficiency (2015) Non-HVAC Motor Premium Non-HVAC Motor Premium (2015) Other Miscellaneous Miscellaneous Other Miscellaneous Miscellaneous (2013) Refrigeration Office Equipment Miscellaneous Avista 2011 Electric Integrated Resource Plan 648 Avista Conservation Potential Assessment Study Energy-Efficiency Measure Analysis Global Energy Partners, LLC 5-9 An EnerNOC Company Table 5-3 Summary of Commercial and Industrial Equipment Measures (continued) End Use Technology Efficiency Option Sm a l l / M e d . C o m m . (e x i s t i n g & n e w ) La r g e C o m m . (e x i s t i n g & n e w ) Ex t r a L a r g e C o m m . (e x i s t i n g & n e w ) Ex t r a L a r g e I n d . (e x i s t i n g & n e w ) Machine Drive Less than 5 HP Standard Less than 5 HP High Efficiency Less than 5 HP Standard (2015) Less than 5 HP Premium Less than 5 HP High Efficiency (2015) Less than 5 HP Premium (2015) 5-24 HP Standard 5-24 HP High 5-24 HP Premium 25-99 HP Standard 25-99 HP High 25-99 HP Premium 100-249 HP Standard 100-249 HP High 100-249 HP Premium 250-499 HP Standard 250-499 HP High 250-499 HP Premium 500 and more HP Standard 500 and more HP High 500 and more HP Premium Process Cooling/Refrig.Standard Process Cooling/Refrig.Efficient Process Heating Standard Process Heating Efficient Electrochemical Process Standard Electrochemical Process Efficient Process Machine Drive Avista 2011 Electric Integrated Resource Plan 649 Energy-Efficiency Measure Analysis Avista Conservation Potential Assessment Study 5-10 www.gepllc.com Table 5-4 Summary of Commercial and Industrial Non-equipment Measures Note: Conversion of electric furnaces to gas was only modeled for Small/Medium Commercial segment. End Use Measure Co m m e r c i a l Ex i s t i n g B u i l d i n g s Co m m e r c i a l Ne w C o n s t r u c t i o n In d u s t r i a l Ex i s t i n g B u i l d i n g s In d u s t r i a l Ne w C o n s t r u c t i o n HVAC RTU - Maintenance RTU - Evaporative Precooler Chiller - Chilled Water Reset Chiller - Chilled Water Variable-Flow System Chiller - Condenser Water Temprature Reset Chiller - High Efficiency Cooling Tower Fans Chiller - Turbocor Compressor Chiller - VSD Cooling - Economizer Installation Heat Pump - Maintenance Insulation - Ducting Repair and Sealing - Ducting Insulation - Ceiling Insulation - Radiant Barrier Insulation - Wall Cavity Cooking - Exhaust Hoods with Sensor Control Fans - Energy Efficient Motors Fans - Variable Speed Control Pumps - Variable Speed Control Thermostat - Clock/Programmable Roofs - High Reflectivity Roofs - Green Windows - High Efficiency Retrocommissioning - HVAC Commissioning - HVAC Furnace - Convert to Gas Interior Fluorescent - Photocell Controlled T8 Dimming Ballasts Interior Fluorescent - Delamp and Install Reflectors Interior Fluorescent - Bi-Level Fixture w/Occupancy Sensor Interior Fluorescent - High Bay Fixtures Interior Screw-in - Task Lighting Central Lighting Controls Occupancy Sensors Time Clocks and Timers LED Exit Lighting Hotel Guestroom Controls Retrocommissioning - Lighting Commissioning - Lighting Daylighting Controls Photovoltaic Installation Cold Cathode Lighting Induction Lamps HVAC Exterior Lighting Interior Lighting Avista 2011 Electric Integrated Resource Plan 650 Avista Conservation Potential Assessment Study Energy-Efficiency Measure Analysis Global Energy Partners, LLC 5-11 An EnerNOC Company Table 5-4 Summary of Commercial and Industrial Non-equipment Measures (continued) Note: Conversion of electric water heaters to gas only modeled for Small/Medium Commercial segment. End Use Measure Co m m e r c i a l Ex i s t i n g B u i l d i n g s Co m m e r c i a l Ne w C o n s t r u c t i o n In d u s t r i a l Ex i s t i n g B u i l d i n g s In d u s t r i a l Ne w C o n s t r u c t i o n Water Heating Faucet Aerators/Low Flow Nozzles Hot Water Saver Pipe Insulation Tank Blanket/Insulation Thermostat Setback Convert to Gas Heat Pump Water Heater Floating Head Pressure Insulation - Bare Suction Lines Demand Defrost High Efficiency Case Lighting Evaporator Fan Controls Anti-Sweat Heater/Auto Door Closer Door Gasket Replacement Night Covers Strip Curtain Vending Machine - Controller Office Equipment ENERGY STAR Power Supply Laundry - High Efficiency Clothes Washer Miscellaneous - Energy Star Water Cooler Motors - Variable Frequency Drive Motors - Magnetic Adjustable Speed Drives Compressed Air - System Controls Compressed Air - System Optimization & Improvements Compressed Air - System Maintenance Compressed Air - Compressor Replacement Fan System - Controls Fan System - Optimization Fan System - Maintenance Pumping System - Controls Pumping System - Optimization Pumping System - Maintenance Pumps - Variable Speed Control Industrial Process Improvements Refrigeration - System Controls Refrigeration - System Maintenance Refrigeration - System Optimization Energy Management System Retrocommissioning - Comprehensive Advanced New Construction Designs Commissioning - Comprehensive Pumps - Variable Speed Control Custom Measures Machine Drive Industrial Process Miscellaneous Multiple End Uses Refrigeration Water Heating Avista 2011 Electric Integrated Resource Plan 651 Energy-Efficiency Measure Analysis Avista Conservation Potential Assessment Study 5-12 www.gepllc.com 5.2 MEASURE CHARACTERISTICS For each measure considered, the Global team developed the following data for input to the LoadMAP model: Energy Impacts: The energy-savings impacts represent the annual reduction in consumption attributable to each specific measure. Savings were developed as a percentage of the energy end use that the measure affects. This approach takes into account the efficiency of the equipment that is providing that end use. For example, savings due to increased insulation will be greater if heating is provided by electric resistance, and lower if heating is provided by a heat pump. For the residential and commercial sectors, the BEST simulation model was used to determine the savings impacts. The key advantage of utilizing BEST is that interactive effects between HVAC measures and other measures such as lighting and building construction are captured and quantified. In addition, the prototype modeling combines the primary market data with Spokane- specific Typical Meteorological Year (TMY) weather data to derive savings. For the industrial sector, secondary data resources such as the EPRI National Potential Study and DEEM were used to develop assessments of savings at the end-use level. Peak Demand Impacts: Savings during the peak demand periods are specified for each measure. These impacts relate to the energy savings and depend on each measure’s ―coincidence‖ with the system peak. To accurately express the peak impacts of the energy efficiency measures considered, the project used a combined approach of prototype simulation (BEST model) and Global’s proprietary end-use load shape database, EnergyShape. Costs: For equipment measures, the measure characterization includes the full cost of purchasing and installing the equipment on a per-unit or per-square-foot basis for the residential and C&I sectors, respectively. For non-equipment measures in existing buildings, the cost likewise represents the full installed cost. For non-equipment measures in new construction, the approach is slightly different; the costs may be either the full cost of the measure, for example a programmable thermostat, or as appropriate, it may be the incremental cost of upgrading from a standard level to a higher efficiency level, such as upgrading from R13 to R26 insulation. These costs were developed specifically for the Spokane area and drew upon sources including the Sixth Plan databases. Measure Lifetimes: These estimates were derived from the technical data and secondary data sources that support the measure demand and energy savings analysis. Values were obtained from the Sixth Plan database, DEER database, DEEM, and other secondary sources. Applicability: This factor is an estimate of the percentage of either dwellings in the residential sector or square feet in the C&I sectors where it is technically feasible for the specific measure to be implemented. These figures are based on secondary data sources such as NEEA reports, California’s DEER database, DEEM, and others. On Market and Off Market Availability: To account for the fact that some equipment will no longer be available for sale due to changes in appliance standards, or that some high-efficiency equipment is expected to enter the market during the study period, the project also developed on market and off market inputs, expressed as years, for the equipment measures. Avista 2011 Electric Integrated Resource Plan 652 Avista Conservation Potential Assessment Study Energy-Efficiency Measure Analysis Global Energy Partners, LLC 5-13 An EnerNOC Company 5.2.1 Measure Cost Data Development Costs for equipment and non-equipment measures include both material and labor costs associated with the measure’s installation. These costs draw upon national construction cost averages. The following references were used to develop the equipment and measure costs: Sixth Northwest Conservation and Electric Power Plan Conservation Supply Curves workbooks DEER – California Database for Energy Efficient Resources RS Means Facilities Maintenance and Repair Cost Data RS Means Mechanical Construction Costs RS Means Building Construction Cost Data USGBC — LEED New Construction & Major Renovation (2008) RS Means Green Buildings Project Planning & Cost Estimating Second Edition (2008) Grainger Catalog Volume 398, (2007-2008) 5.2.2 Representative Measure Data Inputs To provide an example of the measure data, Table 5-5 and Table 5-6 present samples of the detailed data inputs behind equipment and non-equipment measures, respectively, for the case of residential central air conditioning in single-family homes. Table 5-5 displays the various efficiency levels available as equipment measures, as well as the corresponding useful life, usage, and cost estimates. These values all contribute to the outcome of the stock accounting model, in which the purchase of an above-standard unit is first analyzed for cost-effectiveness (comparing incremental cost to lifetime benefits) and then, for the levels that pass the screen, incorporated into the new units purchased. Table 5-5 Sample Equipment Measures for Central Air Conditioning — Single Family Home Segment Efficiency Level Useful Life Equipment Cost Energy Usage(kWh/yr) On Market Off Market SEER 13 15 $3,794 1,619 2009 2014 SEER 14 (ENERGY STAR) 15 $4,072 1,485 2009 2032 SEER 15 (CEE Tier 2) 15 $4,350 1,435 2009 2032 SEER 16 (CEE Tier 3) 15 $4,628 1,393 2009 2032 Ductless Mini-split System 20 $8,193 1,214 2009 2032 Table 5-6 lists the non-equipment measures affecting an existing single-family home’s central air conditioning electricity use. These measures are also evaluated for cost-effectiveness based on the lifetime benefits relative to the cost of the measure. The total savings are calculated for each year of the model and depend on the base year saturation of the measure, the overall applicability of the measure, and the savings as a percentage of the relevant energy end uses. Residential central air conditioning provides energy savings, but no demand savings due to Avista’s existing heating season peak. In addition to the Applicability factor, a Feasibility factor is applied to account for the feasibility of installing the measure. Avista 2011 Electric Integrated Resource Plan 653 Energy-Efficiency Measure Analysis Avista Conservation Potential Assessment Study 5-14 www.gepllc.com Table 5-6 Sample Non-Equipment Measures – Single Family Homes, Existing End Use Measure Satura- tion in 200918 Applica- bility Feasi- bility Lifetime (years) Measure Installed Cost Energy Savings (%) Demand Savings (%) Cooling Central AC — Early Replacement 0% 80% 10% 15 $2,895 10.0% 0% Cooling Central AC — Maintenance and Tune-Up 41% 100% 100% 4 $125 10.0% 0% Cooling Attic Fan — Installation 11% 50% 45% 18 $116 0.7% 0% Cooling Attic Fan — Photovoltaic 13% 100% 45% 19 $350 1.4% 0% Cooling Ceiling Fan 52% 100% 75% 15 $160 11.0% 0% Cooling Whole-House Fan 7% 25% 75% 18 $200 9.0% 0% Cooling Insulation — Ducting 15% 100% 75% 18 $500 3.0% 0% Cooling Repair and Sealing — Ducting 12% 100% 50% 18 $500 10.0% 0% Cooling Doors — Storm and Thermal 38% 100% 75% 11 $320 1.0% 0% Cooling Insulation — Infiltration Control 46% 100% 90% 12 $266 3.0% 0% Cooling Insulation — Ceiling 68% 90% 80% 20 $594 3.0% 0% Cooling Insulation — Radiant Barrier 5% 100% 90% 12 $923 5.0% 0% Cooling Roofs — High Reflectivity 5% 100% 10% 15 $1,550 6.1% 0% Cooling Windows — Reflective Film 5% 50% 90% 10 $267 7.0% 0% Cooling Windows — High Efficiency/ENERGY STAR 83% 100% 90% 25 $7,500 12.0% 0% Cooling Thermostat — Clock/Programmable 55% 75% 75% 11 $114 8.0% 0% Cooling Home Energy Management System 20% 50% 75% 20 $300 10.0% 0% Cooling Photovoltaics 0% 80% 60% 15 $17,000 50.0% 0% Cooling Trees for Shading 10% 90% 75% 20 $40 1.1% 0% 5.2.3 Conversion to Natural Gas Conversion to natural gas (fuel switching) for both space heating and water heating was evaluated as a special case. These options were evaluated as non-equipment measures, though of course, they are in fact equipment changes. Modeling conversion to gas as a non-equipment measure allowed using the applicability and feasibility factors to better account for customers’ real ability to implement these technologies. For conversion of water heaters to natural gas, an applicability factor was developed based on Avista GIS data combined with the market profiles to indicate that approximately 63% of Washington homes and 57% of Idaho homes with electric water heating are within 500 feet of a gas main. The feasibility factor of 80% assumes that other factors, such as inability to accommodate venting, would prevent 20% of customers from making the switch to gas water heating. For heat pump water heaters, we assumed the technology is applicable to the remaining customers (100% – (63% * 80%) = 50% in Washington and 54% using a similar calculation for 18 Note that saturation levels reflected for 2009 change over time as more measures are adopted. Avista 2011 Electric Integrated Resource Plan 654 Avista Conservation Potential Assessment Study Energy-Efficiency Measure Analysis Global Energy Partners, LLC 5-15 An EnerNOC Company Idaho). However, the feasibility factor is 50% for single family homes because only about half of these customers have water heating systems with tanks larger than 55 gallons that are suitable for heat pump water heaters. For the other housing types, the feasibility factors were lower due to the still lower saturation of larger than 55 gallon water heating systems. Conversion of electric furnaces to gas was modeled using similar assumptions. Table 5-7 shows assumptions for water heating non-equipment measures in Washington single- family homes, including the conversion to gas and heat pump measures discussed above. Table 5-7 Sample Non-Equipment Water Heating Measures – Single Family Homes, Existing, Washington End Use Measure Satura- tion in 200919 Applica- bility Feasi- bility Lifetime (years) Measure Installed Cost Energy Savings (%) Demand Savings (%) Water Heating Faucet Aerators 53% 100% 90% 25 $24 3.7% 1.9% Water Heating Pipe Insulation 17% 100% 38% 13 $180 5.7% 2.9% Water Heating Low Flow Showerheads 75% 100% 80% 10 $96 17.1% 8.6% Water Heating Tank Blanket/Insulation 17% 100% 75% 10 $15 9.1% 4.6% Water Heating Thermostat Setback 17% 100% 75% 5 $40 9.1% 4.6% Water Heating Timer 17% 100% 40% 10 $194 8.0% 4.0% Water Heating Hot Water Saver 5% 100% 50% 5 $35 8.8% 4.4% Water Heating Convert to Gas 0% 63% 80% 15 $3,675 100.0% 100.0% Water Heating Heat Pump 0% 50% 50% 15 $1,500 30.0% 15.0% The equipment measure data tables for all energy efficiency measures assessed in this study are presented in Appendix C for the residential sector and Appendix C for the C&I sectors. 5.3 APPLICATION OF MEASURES FOR TECHNICAL POTENTIAL Technical potential, as we defined it in Chapter 2, is a theoretical construct that assumes the highest efficiency measures that are technically feasible to install are adopted by customers, regardless of cost or customer preferences. Thus, determining the technical potential is relatively straightforward; LoadMAP uses the energy use associated with the most efficient equipment options for each end use and technology, as well as the energy savings for all defined non- equipment measures that apply to that end use and technology, to calculate energy use at the technical potential level. For example, for residential central air conditioning, as shown in Table 5-5, the most efficient option is a ductless mini-split system. The multiple non-equipment measures shown in Table 5-7 are then applied to the energy used by the ductless mini-split system to further reduce CAC energy use. LoadMAP applies the savings due to the non- equipment measures one-by-one to avoid double counting of savings. The measures are evaluated in order of their B/C ratio, with the measure with the highest B/C ratio applied first. Each time a measure is applied, the baseline energy use for the end use is reduced and the percentage savings for the next measure is applied to the revised (lower) usage. 5.4 APPLICATION OF MEASURES FOR ECONOMIC POTENTIAL Next, to determine the economic level of efficiency potential, it is necessary to perform an economic screen on each individual measure. The economic screen applied in this study for non- 19 Note that saturation levels reflected for 2009 change over time as more measures are adopted. Avista 2011 Electric Integrated Resource Plan 655 Energy-Efficiency Measure Analysis Avista Conservation Potential Assessment Study 5-16 www.gepllc.com equipment measures is a total resource cost (TRC) test that compares the lifetime benefits (both energy and peak demand) of each applicable measure with installed cost (including material, labor, and administration of a delivery mechanism, such as an energy efficiency program).20 The lifetime benefits are obtained by multiplying the annual energy and demand savings for each measure by all appropriate avoided costs for each year, and discounting the dollar savings to the present value equivalent. Global assigns each measure values for savings, costs, and lifetimes as part of our measure characterization process. For economic screening of measures, incentives are not included because they represent a simple transfer from one party to another but have no effect on the overall measure cost. The lifetime benefits of each energy efficiency measure depend on the forecast of Avista avoided costs. Avista provided projected avoided costs for energy and capacity over the study period. Figure 5-2 shows the avoided energy costs for the residential and C&I segments, which are 2009 real $/MWh and include Avista’s adjustments for risk and the 10% Power Act premium. The avoided energy costs differ by segment due to the segments’ differing load shapes. Figure 5-2 also shows the avoided capacity costs for Avista’s overall system in 2009 real $/kW. The LoadMAP model performs the economic screening dynamically, taking into account changing savings and cost data over time. Thus, some measures pass the economic screen for some — but not all — of the years in the forecast. It is important to note the following about the economic screen: The economic evaluation of every measure in the screen is conducted relative to a baseline condition. For instance, in order to determine the kilowatt-hour (kWh) savings potential of a measure, kWh consumption with the measure applied must be compared to the kWh consumption of a baseline condition. The economic screening was conducted only for measures that are applicable to each building type and vintage; thus if a measure is deemed to be irrelevant to a particular building type and vintage, it is excluded from the respective economic screen table. 20 Note that the TRC test is typically the industry standard for evaluating measure-level cost-effectiveness. There are other test perspectives that are often considered in energy efficiency potential studies. The Participant test measures the benefits and costs from the perspective of program participants as a whole. The Ratepayer Impact Measure (RIM) test measures the difference between the change in total revenues paid to a utility and the change in total costs to a utility resulting from the energy efficiency and demand response programs. The Utility Cost (UC) test measures the costs and benefits from the perspective of the utility administering the program. Neither the RIM nor UC tests are typically applied in the context of measure-level economic screens, but rather in the broader context of energy efficiency programs and initiatives put into place to deliver the energy efficiency measures. Avista 2011 Electric Integrated Resource Plan 656 Avista Conservation Potential Assessment Study Energy-Efficiency Measure Analysis Global Energy Partners, LLC 5-17 An EnerNOC Company Figure 5-2 Avoided Costs for Energy and Capacity 5.4.1 Equipment Measures Economic Screening For equipment measures, LoadMAP evaluates the cost-effectiveness of each measure option, compared to the efficiency option that immediately precedes it. Continuing with the example of residential central air conditioning, as shown in Table 5-5, the standard efficiency option in 2010 is SEER 13. LoadMAP calculates the lifetime benefits and costs associated with each of the higher efficiency options to select the option with the highest net present value. Table 5-8 shows the results of the economic screen for CAC for selected years, as well as results for two interior lighting technologies. In 2010, the most cost-effective option is SEER 14, while in 2012, due to rising energy costs, it changes to SEER 15. However, in 2015, due to federal energy efficiency standards, the SEER 13 unit goes off the market and SEER 14 becomes the standard efficiency unit. In 2015 and beyond, the economic screen selects the SEER 14 option because the marginal savings between the standard efficiency SEER 14 unit and the higher-efficiency options are not sufficient to make the higher-efficiency units economical. The table also shows how the economic choice for two of the lighting technology options varies over the study period. $40 $45 $50 $55 $60 $65 $70 $75 $80 $85 $90 Av o i d e d C o s t s , E n e r g y , $ / M W h Residential C&I $- $20 $40 $60 $80 $100 $120 $140 $160 $180 Av o i d e d C o s t s , C a p a c i t y , $ / k W Avista 2011 Electric Integrated Resource Plan 657 Energy-Efficiency Measure Analysis Avista Conservation Potential Assessment Study 5-18 www.gepllc.com Table 5-8 Economic Screen Results for Selected Residential Equipment Measures Technology 2012 2017 2022 2027 2032 Central AC SEER 13 SEER 14 SEER 14 SEER 14 SEER 14 Interior Lighting Screw-in CFL CFL CFL LED LED Interior Lighting Linear Fluorescent T8 T8 T8 Super T8 Super T8 5.4.2 Non-equipment Measures Economic Screening For non-equipment measures, LoadMAP evaluates the cost-effectiveness of each measure. The kWh savings are computed as the percent savings from the measure applied to the relevant end- use energy. If the measure passes the screen (has a B/C ratio greater than or equal to 1.0), the measure is included in economic potential. Otherwise, it is screened out for that year. 5.5 TOTAL MEASURES EVALUATED Table 5-9 summarizes the number of equipment and non-equipment measures evaluated for each sector. In total, the project evaluated 4,332 energy efficiency measures. Table 5-9 Number of Measures Evaluated Residential C&I Total Number of Measures Equipment Measures Evaluated 1,284 608 1,892 Non-Equipment Measures Evaluated 1,524 916 2,440 Total Measures Evaluated 2,808 1,524 4,332 Appendix C shows the results of the economic screening process by segment, vintage, end use and measure for the residential sector. Appendix D shows the equivalent information for the commercial and industrial sectors. Avista 2011 Electric Integrated Resource Plan 658 Global Energy Partners, LLC 6-1 An EnerNOC Company CHAPTER 6 ENERGY EFFICIENCY POTENTIAL RESULTS This chapter presents the results of the energy-efficiency analysis. Before we provide the overall and sector-level results, we review the four levels of potential developed for this study. 6.1 DEFINITIONS OF POTENTIAL In this study, we estimated four types of potential: technical; economic; and achievable potential, which is further divided into maximum achievable, and realistic achievable. Technical and economic potential are both theoretical limits to efficiency savings. Achievable potential embodies a set of assumptions about the decisions consumers make regarding the efficiency of the equipment they purchase, the maintenance activities they undertake, the controls they use for energy-consuming equipment, and the elements of building construction. Two types of achievable potential were developed for this study, maximum achievable and realistic achievable, to bound the range of achievable potential. For details on the types of potentials, see Chapter 2. As with the baseline forecast, we developed the estimates of energy-efficiency potential using the LoadMAP model. We present high-level results in the rest of this chapter for the overall Avista electricity system. Separate results for Washington and Idaho are presented in Appendices A and B. 6.2 OVERALL ENERGY EFFICIENCY POTENTIAL Maximum achievable potential across all sectors is 88,760 MWh (10.1 aMW) in 2012 and increases to a cumulative value of 2,905,702 MWh (331.7 aMW) by 2032. These savings represents 1.0% of the baseline forecast in 2012 and 22.6% in 2032. Realistic achievable potential in 2012 is 50,261 MWh (5.7 aMW) and reaches a cumulative value of 2,155,133 MWh (246.0 aMW) by 2032, for savings that are 0.6% and 16.8% of the baseline in 2012 and 2032 respectively. Between 2012 and 2032, the baseline forecast shows overall electricity consumption growth of 46%, but the realistic achievable potential forecast reduces growth by half to 23%. Technical potential by 2032 is 37.8% of the baseline and economic potential savings are 26.4% of the baseline, or roughly 70% of technical potential savings. MAP and RAP savings in 2012 are 86% and 64% respectively of the economic potential savings. Figure 6-1 summarizes the energy-efficiency savings for the four potential levels relative to the baseline forecast for selected years. Figure 6-2 displays the energy use forecast for the four potential levels versus the baseline forecast. Table 6-1 presents the energy consumption and peak demand for the potential levels across sectors. Avista 2011 Electric Integrated Resource Plan 659 Energy Efficiency Potential Results Avista Conservation Potential Assessment Study 6-2 www.gepllc.com Figure 6-1 Summary of Energy Efficiency Potential Savings, All Sectors Figure 6-2 Energy Efficiency Potential Forecasts, All Sectors Realistic Achievable Maximum Achievable Economic Technical 0% 5% 10% 15% 20% 25% 30% 35% 40% 2012 2017 2022 2027 2032 En e r g y S a v i n g s ( % o f B a s e l i n e F o r e c a s t ) - 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000 14,000,000 En e r g y C o n s u m p t i o n ( M W h ) Baseline Realistic Achievable Maximum Achievable Economic Technical Avista 2011 Electric Integrated Resource Plan 660 Avista Conservation Potential Assessment Study Energy Efficiency Potential Results Global Energy Partners, LLC 6-3 An EnerNOC Company Table 6-1 Summary of Energy Efficiency Potential, All Sectors 2012 2017 2022 2027 2032 Baseline Forecast (MWh) 8,799,039 9,463,880 10,417,347 11,536,869 12,851,760 Baseline Peak Demand (MW) 1,780 1,880 2,080 2,306 2,566 Cumulative Energy Savings (MWh) Realistic Achievable 50,261 405,985 945,183 1,536,357 2,155,133 Maximum Achievable 88,760 1,035,470 1,952,473 2,476,694 2,905,702 Economic 244,292 1,493,608 2,411,399 2,937,775 3,387,203 Technical 329,513 2,087,061 3,435,475 4,250,217 4,852,362 Cumulative Energy Savings (% of Baseline) Realistic Achievable 0.6% 4.3% 9.1% 13.3% 16.8% Maximum Achievable 1.0% 10.9% 18.7% 21.5% 22.6% Economic 2.8% 15.8% 23.1% 25.5% 26.4% Technical 3.7% 22.1% 33.0% 36.8% 37.8% Peak Savings (MW) Realistic Achievable 14 84 183 306 431 Maximum Achievable 22 207 386 492 566 Economic 60 302 479 580 659 Technical 78 422 669 826 943 Peak Savings (% of Baseline) Realistic Achievable 0.8% 4.5% 8.8% 13.3% 16.8% Maximum Achievable 1.2% 11.0% 18.6% 21.3% 22.1% Economic 3.4% 16.0% 23.0% 25.2% 25.7% Technical 4.4% 22.4% 32.2% 35.8% 36.8% Table 6-2 and Figure 6-3 summarize cumulative realistic achievable potential by sector. Initially, the residential sector accounts for about 52% of the savings, but by the end of the study, the C&I sector becomes the source of 58% of the savings. Table 6-2 Realistic Achievable Cumulative Energy-efficiency Potential by Sector, MWh Segment 2012 2017 2022 2027 2032 Residential, WA 17,413 94,529 238,739 431,973 637,029 Residential, ID 8,692 43,922 97,705 172,179 260,003 C&I, WA 15,733 173,433 378,252 575,328 774,619 C&I, ID 8,423 94,102 230,487 356,878 483,482 Total 50,261 405,985 945,183 1,536,357 2,155,133 Avista 2011 Electric Integrated Resource Plan 661 Energy Efficiency Potential Results Avista Conservation Potential Assessment Study 6-4 www.gepllc.com Figure 6-3 Realistic Achievable Cumulative Potential by Sector Table 6-3 shows the incremental annual realistic achievable potential by sector for 2012 through 2015. During this period, lighting and appliance standards slow the rate of growth in the residential baseline energy consumption, thus reducing the amount of incremental annual potential savings from residential conservation programs. On the other hand, C&I potential continues to grow. Complete annual incremental savings for Washington and Idaho appear in Appendices A and B respectively. Table 6-3 Incremental Annual Realistic Achievable Energy-efficiency Potential by Sector, MWh Segment 2012 2013 2014 2015 Residential, WA 17,413 17,161 16,488 18,514 Residential, ID 8,692 8,451 7,943 8,569 C&I, WA 15,733 21,165 26,869 30,393 C&I, ID 8,423 10,734 14,543 16,956 Total 50,261 57,511 65,843 74,432 In Figure 6-4, we can see how the annual incremental realistic achievable potential throughout the study tracks the avoided energy costs, with annual potential generally increasing or decreasing along with avoided costs. Note however that other factors also influence potential, particularly the rates at which programs can ramp up over time, which is particularly relevant to how potential changes from year to year in the early years of the study. 0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 2012 2017 2022 2027 2032 C&I, ID C&I, WA Residential, ID Residential, WA Sa v i n g s ( M W h ) Avista 2011 Electric Integrated Resource Plan 662 Avista Conservation Potential Assessment Study Energy Efficiency Potential Results Global Energy Partners, LLC 6-5 An EnerNOC Company Figure 6-4 Incremental Annual Realistic Achievable Energy-efficiency (MWh) vs. Avoided Energy Cost Note: Avoided costs are 2009 real dollars and include energy costs, risk, and the 10% Power Act premium. $- $10.00 $20.00 $30.00 $40.00 $50.00 $60.00 $70.00 $80.00 $90.00 - 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 Av o i d e d E n e r g y C o s t s , $ 2 0 0 9 R e a l An n u a l I n c r e m e n t a l S a v i n g s ( M W h ) Extra Large Industrial Extra Large Commercial Large Commercial Small Commercial Residential Avoided Costs Avista 2011 Electric Integrated Resource Plan 663 Energy Efficiency Potential Results Avista Conservation Potential Assessment Study 6-6 www.gepllc.com 6.3 RESIDENTIAL SECTOR Realistic achievable potential savings for the residential sector in both states is 26,105 MWh in 2012, or 0.7% of the sector’s baseline forecast. It reaches 897,032 MWh, or 16.0% of the baseline forecast by 2032. Technical and economic potential savings are 37.7% and 24.5% respectively. Figure 6-5 depicts the potential savings estimates graphically. Figure 6-6 shows the energy use forecasts under the four types of potential versus the baseline forecast. Table 6-3 presents estimates for energy and peak demand under the four types of potential. Figure 6-5 Energy Efficiency Potential Savings, Residential Sector Figure 6-6 Energy Efficiency Potential Forecast, Residential Sector Realistic Achievable Maximum Achievable Economic Technical 0% 5% 10% 15% 20% 25% 30% 35% 40% 2012 2017 2022 2027 2032 En e r g y S a v i n g s ( % o f B a s e l i n e F o r e c a s t ) - 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 En e r g y C o n s u m p t i o n ( M W h ) Baseline Realistic Achievable Maximum Achievable Economic Technical Avista 2011 Electric Integrated Resource Plan 664 Avista Conservation Potential Assessment Study Energy Efficiency Potential Results Global Energy Partners, LLC 6-7 An EnerNOC Company Table 6-4 Energy Efficiency Potential, Residential Sector 2012 2017 2022 2027 2032 Baseline Forecast (MWh) 3,626,696 3,871,294 4,356,240 4,918,847 5,600,787 Baseline Peak Demand (MW) 991 1,026 1,150 1,288 1,449 Cumulative Energy Savings (MWh) Realistic Achievable 26,105 138,450 336,444 604,152 897,032 Maximum Achievable 36,300 429,065 798,829 1,024,671 1,192,794 Economic 104,111 583,427 967,788 1,188,497 1,373,869 Technical 153,100 918,965 1,468,041 1,825,587 2,112,855 Cumulative Energy Savings (% of Baseline) Realistic Achievable 0.7% 3.6% 7.7% 12.3% 16.0% Maximum Achievable 1.0% 11.1% 18.3% 20.8% 21.3% Economic 2.9% 15.1% 22.2% 24.2% 24.5% Technical 4.2% 23.7% 33.7% 37.1% 37.7% Peak Savings (MW) Realistic Achievable 10 44 100 179 262 Maximum Achievable 14 120 232 301 343 Economic 38 171 286 349 396 Technical 51 256 407 503 579 Peak Savings (% of Baseline) Realistic Achievable 1.1% 4.3% 8.7% 13.9% 18.1% Maximum Achievable 1.4% 11.7% 20.2% 23.3% 23.7% Economic 3.8% 16.7% 24.9% 27.1% 27.3% Technical 5.1% 24.9% 35.4% 39.0% 40.0% 6.3.1 Residential Potential by Market Segment Table 6-5 shows the baseline forecast and realistic achievable potential energy savings for the four residential segments in selected years. Single-family homes in Washington and Idaho account for 65% and 68% of each state’s residential sector total sales during the base year and throughout the forecast. Thus, as one would expect, single-family homes account for the largest share of potential savings. Table 6-6 takes a closer look at savings by segment and potential level in 2022, the mid-point of the 20-year period. Avista 2011 Electric Integrated Resource Plan 665 Energy Efficiency Potential Results Avista Conservation Potential Assessment Study 6-8 www.gepllc.com Table 6-5 Residential Sector, Baseline and Realistic Achievable Potential by Segment 2012 2017 2022 2027 2032 Baseline Forecast (MWh) Single Family 2,394,930 2,551,956 2,876,301 3,252,564 3,709,958 Multi Family 203,544 222,114 253,265 288,585 330,209 Mobile Home 126,939 133,923 149,975 168,639 191,313 Limited Income 901,283 963,301 1,076,699 1,209,059 1,369,306 Total 3,626,696 3,871,294 4,356,240 4,918,847 5,600,787 Cumulative Energy Savings, Realistic Achievable Potential (MWh) Single Family 18,783 96,418 240,911 426,483 630,128 Multi Family 1,066 5,833 14,343 28,236 42,801 Mobile Home 985 4,280 7,677 13,381 20,040 Limited Income 5,272 31,920 73,512 136,051 204,063 Total 26,105 138,450 336,444 604,152 897,032 % of Total Residential Cumulative Energy Savings Single Family 72.0% 69.6% 71.6% 70.6% 70.2% Multi Family 4.1% 4.2% 4.3% 4.7% 4.8% Mobile Home 3.8% 3.1% 2.3% 2.2% 2.2% Limited Income 20.2% 23.1% 21.8% 22.5% 22.7% Table 6-6 Residential Realistic Achievable Potential by Housing Type, 2022 Forecast Single Family Multi Family Mobile Home Limited Income Total Baseline Forecast (MWh) 2,876,301 253,265 149,975 1,076,699 4,356,240 Cumulative Energy Savings (MWh) Realistic Achievable 240,911 14,343 7,677 73,512 336,444 Economic Potential 679,288 46,859 21,400 220,241 967,788 Technical Potential 950,449 77,463 52,154 387,975 1,468,041 Cumulative Energy Savings % of Baseline Realistic Achievable 8.4% 5.7% 5.1% 6.8% 7.7% Economic Potential 23.6% 18.5% 14.3% 20.5% 22.2% Technical Potential 33.0% 30.6% 34.8% 36.0% 33.7% Avista 2011 Electric Integrated Resource Plan 666 Avista Conservation Potential Assessment Study Energy Efficiency Potential Results Global Energy Partners, LLC 6-9 An EnerNOC Company 6.3.2 Residential Potential by End Use, Technology, and Measure Type Table 6-7 provides estimates of savings for each end use and type of potential. Water Heating offers the highest cumulative technical potential over the 20-year period, which reflects the high potential for conversion to natural gas in homes where gas is available (see discussion below) and use of heat pump water heaters where gas is not available, as well as a wide range of other water heating measures. Conversion to natural gas passes the TRC test throughout the study period for most Washington housing types and for single family homes in Idaho. In contrast, based on the study’s assumptions of equipment cost and avoided cost, heat pump water heaters are cost-effective in new single family homes by 2014, but do not become cost-effective for existing homes until 2024 in Idaho and 2028 in Washington. Water heating also has the highest cumulative realistic achievable potential. Space Heating offers the second-highest cumulative technical potential over the study and its economic potential is slightly higher than water heating, again due to the potential for conversion to natural gas (see discussion below), but also due to shell measures, controls, and advanced new construction designs. Based on realistic achievable savings, space heating also ranks second. Interior lighting offers the fourth-largest technical potential savings, but the third-largest economic and realistic achievable potential. The lighting standard begins its phase-in starting in 2012, which coincides with the availability in the market place of advanced incandescent lamps that meet the minimum efficacy standard. The baseline forecast assumes that people will install both advanced incandescent and CFLs in screw-in lighting applications. For technical potential, LED lamps are the most efficient option, starting in 2012. However, LED lamps do not pass the economic screen until 2022, when they begin to become cost-effective for pin-based fixtures. Nonetheless, there is significant economic and realistic achievable lighting potential due to conversion from advanced incandescents to CFLs. Appliances rank sixth based on technical potential, but fourth in terms of realistic achievable potential. This reflects the cost-effectiveness of the highest-efficiency white-goods appliances for both new construction and for replacing failed units, as well as the market acceptance of high-efficiency appliances. Removal of second refrigerators and freezers also contributes to economic and realistic achievable potential within this end use. Cooling offers the third-highest technical potential, but is sixth based on realistic achievable potential. Initially technical potential is low but ramps up due to the assumption of increased saturation of air conditioning over time. Economic potential for cooling in 2031 is about 40% of technical potential because the higher SEER units do not pass the economic screen based on based on the study’s assumptions of equipment cost and avoided cost. Home electronics also offer substantial savings opportunities. Technical potential reflects the purchase of ENERGY STAR units for all technologies, except PCs and laptops for which a super-efficient ―climate saver‖ option is available in the marketplace. However, the climate saver options are not cost-effective during the forecast horizon, so economic potential reflects the purchase of ENERGY STAR units across all technologies in this end use. Avista 2011 Electric Integrated Resource Plan 667 Energy Efficiency Potential Results Avista Conservation Potential Assessment Study 6-10 www.gepllc.com Table 6-7 Residential Cumulative Savings by End Use and Potential Type (MWh) End Use Case 2012 2017 2022 2027 2032 Cooling Realistic Achievable 14 2,443 8,588 23,412 44,892 Economic 364 22,925 41,690 60,482 82,185 Technical 4,155 63,885 102,963 147,309 200,588 Space Heating Realistic Achievable 306 17,366 81,141 187,511 304,466 Economic 9,645 157,044 303,749 401,120 480,554 Technical 13,047 206,921 390,626 523,886 650,322 Heat/Cool Realistic Achievable 12 872 2,353 6,048 15,539 Economic 447 12,872 15,291 18,697 27,916 Technical 3,334 27,773 47,801 66,829 76,389 Water Heating Realistic Achievable 636 25,578 102,451 201,179 317,521 Economic 12,121 135,781 297,102 388,156 462,418 Technical 35,027 281,264 527,056 667,224 745,280 Appliances Realistic Achievable 1,282 12,411 26,859 42,554 59,056 Economic 5,548 61,277 80,081 85,195 91,618 Technical 7,229 78,554 105,335 113,831 120,932 Interior Lighting Realistic Achievable 18,569 52,269 64,439 74,958 71,445 Economic 55,377 107,842 116,225 106,057 86,182 Technical 64,748 148,015 146,127 136,520 126,690 Exterior Lighting Realistic Achievable 3,281 10,532 10,777 10,042 8,058 Economic 9,770 21,965 17,611 13,313 9,494 Technical 11,200 28,680 24,906 22,638 22,320 Electronics Realistic Achievable 1,780 13,544 32,080 45,568 57,382 Economic 8,967 45,853 67,702 76,036 87,323 Technical 12,390 65,526 93,981 106,595 122,734 Miscellaneous Realistic Achievable 225 3,435 7,756 12,880 18,673 Economic 1,871 17,869 28,336 39,442 46,180 Technical 1,970 18,348 29,247 40,754 47,600 Total Realistic Achievable 26,105 138,450 336,444 604,152 897,032 Economic 104,111 583,427 967,788 1,188,497 1,373,869 Technical 153,100 918,965 1,468,041 1,825,587 2,112,855 Figure 6-7 focuses on realistic achievable potential by end use in selected years. As discussed above, by the end of the study period, water heating and space heating are the largest contributors to realistic achievable potential. In the early years of the study period, lighting maintains its historic role as the largest contributor to residential sector savings, due to remaining opportunities for conversion from incandescent lighting (both today’s standard lamps and the new advanced incandescents) to CFLs. By 2022, however, the percentage of savings due to lighting is projected to drop off as advanced incandescents become the new baseline. Avista 2011 Electric Integrated Resource Plan 668 Avista Conservation Potential Assessment Study Energy Efficiency Potential Results Global Energy Partners, LLC 6-11 An EnerNOC Company Figure 6-7 Residential Realistic Achievable Potential by End Use, Selected Years Table 6-8 shows the savings by end use and market segment in 2022. The segments are similar in terms of the savings opportunities by end use, but there are a few notable differences. Single- family homes have more exterior lighting and so have more savings potential for this end use. Similarly, single-family homes have swimming pools and therefore have more potential for savings in pool pumps, which are included in miscellaneous loads. Water heating is a higher proportion of potential savings in multi-family homes, mobile homes, and limited income homes, reflecting the smaller home sizes and thus diminished savings potential for space conditioning and appliances, compared to single family homes. Table 6-8 Residential Potential by End Use and Market Segment, 2022 (MWh) Single Family Multi Family Mobile Home Limited Income Total Cooling 4,975 258 129 3,226 8,588 Space heating 63,291 3,985 908 12,957 81,141 Heat/cool 2,138 12 88 114 2,353 Water heating 65,162 6,257 1,293 29,739 102,451 Appliances 19,090 529 950 6,290 26,859 Interior lighting 45,467 2,415 2,203 14,354 64,439 Exterior lighting 8,875 127 480 1,295 10,777 Electronics 25,054 754 1,302 4,970 32,080 Miscellaneous 6,860 6 324 566 7,756 Total 240,911 14,343 7,677 73,512 336,444 As described in Chapter 5, using our LoadMAP model, we develop separate estimates of potential for equipment and non-equipment measures. Table 6-9 presents results for equipment at the technology level, for which realistic chievable potential is greater than zero. -200,000 400,000 600,000 800,000 1,000,000 2012 2017 2022 2027 2032 Cumulative Savings (MWh) Cooling Space heating Heat/cool Water heating Appliances Int. lighting Ext. lighting Electronics Miscellaneous Avista 2011 Electric Integrated Resource Plan 669 Energy Efficiency Potential Results Avista Conservation Potential Assessment Study 6-12 www.gepllc.com Table 6-9 Residential Cumulative Realistic Achievable Potential by End Use and Equipment Measures, Selected Years (MWh) End Use Technology 2012 2017 2022 Cooling Central AC - 152 167 Heat/Cool Air Source Ht. Pump - - - Water Heating Water Heater 140 1,047 1,096 Appliances Clothes Washer 83 1,014 2,552 Clothes Dryer 103 708 1,299 Dishwasher 115 1,074 2,621 Refrigerator 438 1,999 4,064 Freezer 333 1,651 3,592 Second Refrigerator 154 747 1,424 Stove 22 165 371 Interior Lighting Screw-in 17,292 42,771 48,939 Linear Fluorescent 173 1,906 3,576 Pin-based 1,102 7,398 11,079 Exterior Lighting Screw-in 3,256 10,404 10,606 High Intensity/Flood 25 128 171 Electronics Personal Computers 1,148 9,279 15,975 TVs 620 3,260 6,039 Miscellaneous Pool Pump 171 1,581 3,896 Furnace Fan 45 560 1,668 Total 25,220 85,845 119,135 Conversion of electric water heaters and electric furnaces to natural gas was modeled as a special case within the measure analysis to allow consideration of feasibility (e.g., homes too far from a natural gas line), as well as to allow the option of a heat pump water heater for homes where conversion to gas is not feasible. Table 6-10 shows the residential sector achievable savings from converting electric furnaces and water heaters to natural gas. Conversion ramps up slowly, but because it completely removes use of electricity from two of the largest ends uses, it accounts for a substantial portion of savings by 2032: For water heating, about one-fourth of the savings from conversion to gas occurs in new construction. For furnaces, the fraction due to new construction is roughly one-third. Table 6-10 Residential Realistic Achievable Savings from Conversion to Natural Gas (MWh) 2012 2017 2022 2027 2032 Water heater —convert to gas Realistic achievable potential (MWh) 267 10,214 69,745 145,049 216,351 Water heater –convert to gas (% of Res. Achievable potential) 0.5% 2.5% 7.4% 9.4% 10.0% Furnace — convert to gas Realistic achievable potential (MWh) 244 7,803 49,719 106,607 171,095 Furnace — convert to gas (% of Res. Achievable potential) 0.5% 1.9% 5.3% 6.9% 7.9% Avista 2011 Electric Integrated Resource Plan 670 Avista Conservation Potential Assessment Study Energy Efficiency Potential Results Global Energy Partners, LLC 6-13 An EnerNOC Company Table 6-11 presents savings results for non-equipment measures for which realistic achievable potential is greater than zero, sorted by cumulative potential in 2032. Note that because a measure such as insulation provides both space cooling and space heating savings, Table 6-11 does not break down savings by end use. Table 6-11 Residential Realistic Achievable Savings for Non-equipment Measures (MWh), Selected Years Measure 2012 2017 2022 Water Heater - Convert to Gas 267 10,214 69,745 Furnace - Convert to Gas 244 7,803 49,719 Advanced New Construction Designs 1 180 4,206 Repair and Sealing - Ducting 20 2,713 7,763 Insulation - Infiltration Control 20 2,731 7,696 Water Heater - Thermostat Setback 142 8,150 13,721 Home Energy Management System 7 1,175 4,146 Water Heater - Hot Water Saver 6 426 5,447 Freezer - Remove Second Unit 22 3,246 6,959 Electronics - Reduce Standby Wattage 13 1,004 10,066 Thermostat - Clock/Programmable 21 2,859 7,907 Insulation - Foundation 1 438 1,979 Air Source Heat Pump - Maintenance 12 872 2,353 Refrigerator - Remove Second Unit 13 1,807 3,977 Water Heater - Faucet Aerators 12 978 2,341 Insulation - Ducting 1 195 1,024 Insulation - Wall Cavity 1 275 1,234 Water Heater - Tank Blanket/Insulation 49 2,596 4,051 Ceiling Fan - Installation 0 87 743 Room AC - Removal of Second Unit 6 919 2,280 Water Heater - Heat Pump - 23 793 Water Heater - Timer 8 1,152 2,477 Insulation - Ceiling 2 400 1,201 Water Heater - Low Flow Showerheads 9 887 1,762 Central AC - Maintenance and Tune-Up - - - Pool - Pump Timer 8 1,294 2,192 Insulation - Wall Sheathing 0 50 230 Water Heater - Pipe Insulation 2 105 1,018 Whole-House Fan - Installation 0 27 278 Total 885 52,605 217,309 Avista 2011 Electric Integrated Resource Plan 671 Energy Efficiency Potential Results Avista Conservation Potential Assessment Study 6-14 www.gepllc.com Looking at both the equipment (Table 6-9) and non-equipment measure results (Table 6-11), we see that initially nearly all of the savings come from the equipment measures, particularly lighting, but over time an increasing proportion of the savings come from conversion of water heating and space heating to natural gas. At the study mid-point in 2022, the four measures with the greatest realistic achievable poential are: Water heater conversion to gas (69,745 MWh) Furnace conversion to gas (49,719 MWh) Replacement of interior screw in lamps (48,939 MWh) Replacement of personal computers with ENERGY STAR units (15,975 MWh) These four measures provide realistic achievable potential of 184,378 MWh in 2022, which is approximately 55% of the total 2022 potential for the residential sector. 6.4 COMMERCIAL AND INDUSTRIAL SECTOR POTENTIAL Realistic achievable potential savings for the C&I sector in both states is 24,155 MWh in 2012, or 0.5% of the sector’s baseline forecast. It reaches 1,258,101 MWh, or 17.4% of the baseline forecast by 2032. Technical and economic potential savings are 37.8% and 27.8% of the baseline forecast respectively. Figure 6-8 depicts the potential savings estimates graphically. Figure 6-9 shows the energy use forecasts under the four types of potential versus the baseline forecast. Table 6-12 presents estimates for the sector’s energy and peak demand under the four types of potential. Figure 6-8 Energy Efficiency Potential Savings, Commercial and Industrial Sector Realistic Achievable Maximum Achievable Economic Technical 0% 5% 10% 15% 20% 25% 30% 35% 40% 2012 2017 2022 2027 2032 En e r g y S a v i n g s ( % o f B a s e l i n e F o r e c a s t ) Avista 2011 Electric Integrated Resource Plan 672 Avista Conservation Potential Assessment Study Energy Efficiency Potential Results Global Energy Partners, LLC 6-15 An EnerNOC Company Figure 6-9 Energy Efficiency Potential Forecast, Commercial and Industrial Sector Table 6-12 Energy Efficiency Potential, Commercial and Industrial Sector 2012 2017 2022 2027 2032 Baseline Forecast (MWh) 5,172,344 5,592,586 6,061,107 6,618,022 7,250,973 Cumulative Energy Savings (MWh) Realistic Achievable 24,155 267,535 608,739 932,205 1,258,101 Maximum Achievable 52,460 606,406 1,153,644 1,452,022 1,712,907 Economic 140,180 910,181 1,443,612 1,749,278 2,013,333 Technical 176,414 1,168,096 1,967,434 2,424,630 2,739,507 Cumulative Energy Savings (% of Baseline) Realistic Achievable 0.5% 4.8% 10.0% 14.1% 17.4% Maximum Achievable 1.0% 10.8% 19.0% 21.9% 23.6% Economic 2.7% 16.3% 23.8% 26.4% 27.8% Technical 3.4% 20.9% 32.5% 36.6% 37.8% Peak Savings (MW) Realistic Achievable 4 40 84 127 169 Maximum Achievable 8 88 154 191 223 Economic 22 130 193 231 263 Technical 27 166 262 324 364 Peak Savings (% of Baseline) Realistic Achievable 0.5% 4.7% 9.0% 12.4% 15.1% Maximum Achievable 1.0% 10.3% 16.6% 18.8% 20.0% Economic 2.7% 15.3% 20.8% 22.7% 23.6% Technical 3.4% 19.4% 28.2% 31.8% 32.6% - 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000 8,000,000 En e r g y C o n s u m p t i o n ( M W h ) Baseline Realistic Achievable Maximum Achievable Economic Technical Avista 2011 Electric Integrated Resource Plan 673 Energy Efficiency Potential Results Avista Conservation Potential Assessment Study 6-16 www.gepllc.com 6.4.1 Commercial Potential by Market Segment and State Table 6-13 shows the baseline forecast and realistic achievable potential energy savings for the four C&I segments. Large Commercial customers account for the largest portion of the baseline forecast and thus also have the largest realistic achievable potential. In 2012 the Large Commercial segment’s realistic achievable potential is 14,754 MWh or 61.1% of C&I total realistic achievable potential. By 2032 its share of C&I potential has dropped slightly to 50.8%. In contrast, the Extra Large Industrial customers increase their role in savings over the study period, beginning with only 1,673 MWh of realistic achievable potential or 6.9% of total C&I potential in 2012, but growing by 2032 to cumulative realistic achievable savings of 285,178 MWh or 22.7% of the C&I sector savings. Table 6-14 takes a closer look at savings by segment and potential level in 2022, the mid-point of the 20-year period. Table 6-13 C&I Sector, Baseline and Realistic Achievable Potential by Segment 2012 2017 2022 2027 2032 Baseline Forecast (MWh) Small/Med. Commercial 730,499 772,442 832,324 906,807 992,374 Large Commercial 2,266,380 2,403,446 2,592,110 2,822,788 3,088,354 Extra Large Commercial 347,860 421,489 457,725 497,943 541,389 Extra Large Industrial 1,827,605 1,995,209 2,178,948 2,390,485 2,628,857 Total 5,172,344 5,592,586 6,061,107 6,618,022 7,250,973 Cumulative Energy Savings, Realistic Achievable Potential (MWh) Small/Med. Commercial 4,513 46,375 96,231 144,812 197,619 Large Commercial 14,754 164,668 338,450 491,020 638,562 Extra Large Commercial 3,216 33,198 69,605 105,163 136,743 Extra Large Industrial 1,673 23,294 104,453 191,210 285,178 Total 24,155 267,535 608,739 932,205 1,258,101 % of Total C&I Cumulative Energy Savings Small/Med. Commercial 18.7% 17.3% 15.8% 15.5% 15.7% Large Commercial 61.1% 61.6% 55.6% 52.7% 50.8% Extra Large Commercial 13.3% 12.4% 11.4% 11.3% 10.9% Extra Large Industrial 6.9% 8.7% 17.2% 20.5% 22.7% Table 6-14 C&I Realistic Achievable Potential by Segment, 2022 Forecast Small/Med. Commercial Large Commercial Extra Large Commercial Extra Large Industrial Total Baseline Forecast (MWh) 832,324 2,592,110 457,725 2,178,948 6,061,107 Cumulative Energy Savings (MWh) Realistic achievable 96,231 338,450 69,605 104,453 608,739 Economic Potential 193,950 646,644 144,275 458,743 1,443,612 Technical Potential 308,119 951,283 184,560 523,472 1,967,434 Cumulative Energy Savings % of Baseline Realistic achievable 12% 13% 15% 5% 10% Economic Potential 23% 25% 32% 21% 24% Technical Potential 37% 37% 40% 24% 32% Avista 2011 Electric Integrated Resource Plan 674 Avista Conservation Potential Assessment Study Energy Efficiency Potential Results Global Energy Partners, LLC 6-17 An EnerNOC Company 6.4.2 C&I Potential by End Use, Technology, and Measure Type Table 6-15 presents the C&I sector savings by end use and potential type. Recall that the Small/Medium Commercial and Large Commercial Segments include a small percentage of industrial-type customers. Hence, we included a non-equipment measure called Industrial Process Improvements to capture potential savings from these customers. In addition, the miscellaneous category includes non-HVAC motors to capture motor use within small industrial facilities. For all C&I customers, a custom measure category was included to serve as a ―catch all‖ for measures for which costs and savings are not easily quantified and that could be part of a program such as Avista’s existing Site-Specific incentive program. In terms of how potential is divided among the various end uses, we note the following: Interior lighting offers the largest technical, economic, and achievable potential. The high technical potential of 892,840 MWh in 2032 is a result of LED lighting that is now commercially available in screw-in and linear lighting applications, as well as numerous fixture improvement and control options. However, LED lighting is not cost effective given the study’s avoided cost assumptions, so economic potential reflects installation of CFL, T5, and Super T8 lamps throughout most of the commercial sector. Still, this results in realistic achievable potential of 598,564 MWh by 2032. Cooling has the third highest savings for technical potential at 302,301 MWh in 2032, and many of the cooling measures are cost effective, including installation of high-efficiency equipment, thermal shell measures, HVAC control strategies, and retrocommissioning. Because the market for cooling technologies is mature, these savings are relatively easy to capture, as reflected in the ramp rates for these measures. Thus realistic achievable potential for cooling, at 119,700 MWh, is the second highest among C&I end uses. Ventilation is second in terms of technical and economic potential due to conversion to variable air volume systems, high-efficiency and variable speed control fans, and retrocommissioning. Realistic achievable potential in 2032 of 117,020 MWh ranks this end use third, just behind cooling. Machine drive ranks fourth in realistic achievable potential at 101,018 MWh in 2032. Even though the National Electrical Manufacturer’s Association (NEMA) standards make premium efficiency motors the baseline efficiency level, savings remain available from upgrading to still more efficient levels. Office equipment, exterior lighting, and industrial process improvements offer smaller but still significant realistic achievable potential by 2032 at 73,152 MWh, 68,467 MWh, and 60,759 MWh respectively. Commercial refrigeration, food preparation, and water heating savings are relatively small across the C&I sector as a whole, though these end uses can offer significant savings in supermarkets, restaurants, hospitals, and other buildings where these end use constitute a larger portion of overall energy use. Avista 2011 Electric Integrated Resource Plan 675 Energy Efficiency Potential Results Avista Conservation Potential Assessment Study 6-18 www.gepllc.com Table 6-15 C&I Cumulative Savings by End Use and Potential Type, Selected Years, (MWh) End Use Case 2012 2017 2022 2027 2032 Cooling RAP 205 14,595 50,416 82,103 119,700 Economic 2,848 51,234 108,395 146,209 191,484 Technical 7,425 96,886 200,488 252,951 302,301 Space Heating RAP 17 2,185 11,476 22,223 36,932 Economic 346 11,546 31,407 45,917 66,710 Technical 571 18,000 51,975 71,620 94,893 Heat/Cool RAP 47 3,765 6,874 8,352 10,413 Economic 541 8,928 11,319 13,415 15,092 Technical 743 10,317 13,864 16,814 18,949 Ventilation RAP 457 7,102 35,467 69,845 117,020 Economic 7,544 56,221 144,530 201,459 237,313 Technical 10,719 82,071 220,464 294,789 323,008 Water Heating RAP 205 6,315 13,969 20,663 27,581 Economic 1,907 19,044 27,780 34,762 36,791 Technical 13,251 96,031 174,865 249,540 274,478 Food Preparation RAP 213 2,665 7,608 14,695 22,009 Economic 2,824 17,789 32,528 39,188 42,755 Technical 3,215 19,520 35,976 43,195 47,322 Refrigeration RAP 185 1,877 6,192 11,901 17,567 Economic 2,768 13,518 25,844 33,360 37,422 Technical 3,273 17,982 40,008 51,933 58,855 Interior Lighting RAP 17,619 166,503 328,877 477,040 598,564 Economic 78,200 461,679 609,517 700,595 803,195 Technical 85,734 504,965 681,379 784,870 892,840 Exterior Lighting Achievable 1,634 23,519 46,019 57,477 68,467 Economic 7,096 67,172 78,193 81,864 86,650 Technical 7,893 73,413 87,263 98,652 110,984 Office Equipment RAP 2,642 27,112 44,602 58,637 73,152 Economic 19,053 86,895 91,341 95,389 99,348 Technical 25,452 119,267 126,773 134,377 142,248 Machine Drive RAP 581 9,104 42,030 72,656 101,018 Economic 6,560 57,477 158,387 196,285 214,864 Technical 6,994 67,404 204,459 258,683 286,647 Process RAP 345 2,590 14,014 33,699 60,759 Economic 10,390 57,275 120,473 154,151 172,559 Technical 10,390 57,275 120,473 154,151 172,559 Miscellaneous RAP 7 204 1,194 2,914 4,921 Economic 103 1,403 3,897 6,684 9,150 Technical 753 4,964 9,446 13,056 14,423 Total RAP 24,154 267,494 608,739 932,221 1,258,104 Economic 140,121 909,897 1,443,612 1,749,309 2,013,338 Technical 175,565 1,165,177 1,967,434 2,424,763 2,739,528 Avista 2011 Electric Integrated Resource Plan 676 Avista Conservation Potential Assessment Study Energy Efficiency Potential Results Global Energy Partners, LLC 6-19 An EnerNOC Company Figure 6-10 focuses on achievable potential by end use in selected years. Interior lighting remains the largest source of potential in the C&I sector throughout the study. Cooling, ventilation, and machine drive are the next largest contributors as discussed above. Figure 6-10 C&I Realistic Achievable Potential by End Use, Selected Years Table 6-16 shows the savings by end use and C&I market segment in 2022. As one would expect, the Extra Large Industrial segment differs significantly from the other segments. Machine drive and process improvements constitute 40% and 13% of realistic achievable potential for this segment. Note that the three commercial building segments, which are based on Avista’s rate structure, do include a small percentage of industrial businesses. For these customers, the miscellaneous savings end-use includes non-HVAC motors. Table 6-16 C&I Realistic Achievable Potential by End Use and Market Segment, 2022 (MWh) Small/Med. Commercial Large Commercial Extra Large Commercial Extra Large Industrial Total Cooling 3,823 26,225 5,151 15,217 50,416 Space Heating 778 6,727 1,521 2,450 11,476 Combined Heating/Cooling 572 5,264 583 455 6,874 Ventilation 8,757 5,663 5,627 15,420 35,467 Water Heating 2,190 5,825 5,954 - 13,969 Food Preparation 1,238 5,563 807 - 7,608 Refrigeration 1,313 4,383 496 - 6,192 Interior Lighting 58,481 218,078 38,555 13,764 328,877 Exterior Lighting 10,719 27,639 6,557 1,103 46,019 Office Equipment 8,011 32,404 4,187 - 44,602 Machine Drive - - - 42,030 42,030 Process - - - 14,014 14,014 Miscellaneous 349 678 168 - 1,194 Total 96,231 338,450 69,605 104,453 608,739 -200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000 2012 2017 2022 2027 2032 Cooling Space Heating Heat/cool Ventilation Water Heating Food Preparation Refrigeration Interior Lighting Exterior Lighting Office Equipment Miscellaneous Machine Drive Process Cumulative Savings(MWh) Avista 2011 Electric Integrated Resource Plan 677 Energy Efficiency Potential Results Avista Conservation Potential Assessment Study 6-20 www.gepllc.com Table 6-17 presents realistic achievable potential savings for equipment measures for which realistic achievable potential is greater than zero. These results provide additional detail at the technology level. For example, within interior lighting, screw-in lamps initial provide the greatest share of savings, but the EISA standards move the baseline in that category to a higher efficiency level. Consequently, in the long run, fluorescent lamps offer the greatest savings potential. Table 6-17 C&I Cumulative Realistic Achievable Potential by End Use and Equipment Measures, Selected Years (MWh) End Use Technology 2012 2017 2022 Cooling Central Chiller 81 855 3,288 PTAC 6 6 6 Heat/Cool Heat Pump 21 391 1,172 Ventilation Ventilation 140 1,047 1,096 Water Heater Water Heater 174 2,019 4,463 Food Preparation Fryer 13 147 392 Hot Food Container 13 275 763 Oven 187 2,203 5,881 Refrigeration Glass Door Display 32 434 1,248 Icemaker 25 324 961 Solid Door Refrigerator 43 497 1,331 Vending Machine 83 455 1,111 Walk in Refrigeration 2 26 63 Interior Lighting Interior Screw-in 10,283 66,690 101,556 HID 2,837 25,587 50,762 Linear Fluorescent 4,319 53,111 104,450 Exterior Lighting Screw-in 230 3,155 5,265 HID 1,267 16,135 31,807 Linear Fluorescent 124 2,230 3,784 Office Equipment Desktop Computer 1,546 14,363 22,986 Laptop Computer 111 1,031 1,649 Monitor 317 1,139 1,970 POS Terminal 37 514 939 Printer/copier/fax 110 1,626 2,988 Server 511 7,235 11,670 Machine Drive Less than 5 HP 34 236 663 5-24 HP 73 532 1,536 25-99 HP 183 1,325 3,825 100-249 HP 51 373 1,077 250-499 HP 55 397 1,145 500 and more HP 103 748 2,160 Process Electrochem. Process 49 358 1,869 Process Cooling/Refrig. 65 479 2,500 Process Heating 231 1,707 8,907 Miscellaneous Non-HVAC Motor 6 95 520 Total 23,654 212,346 405,630 Avista 2011 Electric Integrated Resource Plan 678 Avista Conservation Potential Assessment Study Energy Efficiency Potential Results Global Energy Partners, LLC 6-21 An EnerNOC Company Table 6-18 presents savings results for non-equipment measures for which realistic achievable potential is greater than zero, sorted by cumulative potential in 2032. Note that, because a measure such as insulation provides both space cooling and space heating savings, Table 6-18 does not break down savings by end use. Table 6-18 C&I Cumulative Realistic Achievable Savings for Non-equipment Measures, Selected Years (MWh) Measure 2012 2017 2022 Energy Management System 39 2,372 25,108 Advanced New Construction Designs 1 106 1,626 Retrocommissioning - Lighting 57 11,775 21,760 Interior Fluorescent - High Bay Fixtures 21 1,262 13,307 Custom Measures 4 829 11,321 Retrocommissioning - Comprehensive 41 8,649 15,523 Fans - Variable Speed Control 12 553 5,368 RTU - Maintenance 63 7,964 14,458 Fans - Energy Efficient Motors 10 651 6,782 Photocell Controlled T8 Dimming Ballasts 0 61 535 Retrocommissioning - HVAC 5 580 5,758 Pumping System - Optimization 11 507 4,907 Compressed Air - System Optimization and Improvements 11 506 4,837 Interior Lighting - Occupancy Sensors 19 726 5,616 Motors - Variable Frequency Drive 18 2,220 4,618 Motors - Magnetic Adjustable Speed Drives 8 367 3,707 Water Heater - Faucet Aerators/Low Flow Nozzles 27 3,964 8,101 Interior Fluorescent - Delamp and Install Reflectors 18 728 5,429 Commissioning - Comprehensive 0 368 2,614 Compressed Air - System Controls 7 355 3,457 Chiller - Turbocor Compressor 4 276 3,008 Heat Pump - Maintenance 26 3,374 5,702 Roofs - High Reflectivity 2 54 426 Pumps - Variable Speed Control 5 250 2,395 Chiller - Condenser Water Temperature Reset 7 419 3,987 Chiller - VSD 3 208 2,116 Compressed Air - Compressor Replacement 4 203 1,982 Pumping System - Controls 4 202 1,942 Thermostat - Clock/Programmable 5 762 1,499 Exterior Lighting - Daylighting Controls 4 161 1,309 Commissioning - Lighting 0 248 842 Office Equipment - Energy Star Power Supply 9 1,205 2,400 Compressed Air - System Maintenance 13 717 1,198 Insulation - Ducting 1 145 1,221 Chiller - Chilled Water Reset 4 645 1,142 Avista 2011 Electric Integrated Resource Plan 679 Energy Efficiency Potential Results Avista Conservation Potential Assessment Study 6-22 www.gepllc.com Measure 2012 2017 2022 Water Heater - Heat Pump 1 69 870 Cooking - Exhaust Hoods with Sensor Control 1 14 127 Pumping System - Maintenance - 43 606 Furnace - Convert to Gas 2 80 527 Cooling - Economizer Installation 3 125 1,138 Exterior Lighting - Induction Lamps 0 29 430 Refrigeration - System Optimization 0 24 388 Insulation - Ceiling 0 2 29 Refrigeration - System Controls 0 17 272 Industrial Process Improvements 0 28 332 LED Exit Lighting 25 932 1,028 Insulation - Wall Cavity 0 12 177 Commissioning - HVAC - - 20 Water Heater - Tank Blanket/Insulation 4 255 449 Miscellaneous - Energy Star Water Cooler 0 59 173 Refrigeration - Floating Head Pressure 0 10 105 Refrigeration - Strip Curtain - 1 34 Refrigeration - System Maintenance 0 5 78 Refrigeration - Anti-Sweat Heater/Auto Door Closer 0 8 81 Water Heater - Hot Water Saver - - 4 Water Heater - High Efficiency Circulation Pump 0 8 83 Vending Machine - Controller 0 39 66 Chiller - Chilled Water Variable-Flow System 0 6 51 Exterior Lighting - Cold Cathode Lighting 0 2 24 Laundry - High Efficiency Clothes Washer 0 9 16 Refrigeration - Night Covers 0 1 9 Total 501 55,189 203,109 By the mid-point of the study period, 2022, the greatest savings come from: Replacement of interior lamps (linear fluorescent, screw in, and HID systems: 42,202 MWh) Replacement of office equipment with more efficient units (101,556 MWh) Replacement of exterior lamps (40,855 GWh) Installation of Energy Management Systems (25,108 MWh) Retrocommissioning of lighting systems (21,760 MWh) Together, these five measures account for 285,137 MWh or 47% of the realistic achievable potential savings in the commercial sector in 2022. Avista 2011 Electric Integrated Resource Plan 680 Avista Conservation Potential Assessment Study Energy Efficiency Potential Results Global Energy Partners, LLC 6-23 An EnerNOC Company 6.5 SENSITIVITY ANALYSIS Global conducted two sets of sensitivity analyses to better understand the effects of changing assumptions on conservation potential. The first looked at changes in avoided costs, and the second considered lower rates of customer and economic growth in Avista’s service territory. Because these sensitivity analyses were conducted using an interim, earlier set of potential results, the potential levels in the discussion below are slightly lower than the potential levels presented elsewhere in this chapter. For example, the 2032 realistic achievable cumulative potential in 2032 shown above is 2,155,133 MWh, but the value in the sensitivity analyses is 2,106,548 MWh or 2% less. However, the project team agreed that the general results of the sensitivity analyses would be essentially unchanged, and therefore the sensitivity analyses based on interim results are presented here. 6.5.1 Sensitivity of Potential to Avoided Cost Global modeled several scenarios with varying levels of avoided costs in addition to the base case. The other scenarios included 150%, 125%, and 75% of the avoided costs used in the base case. Figure 6-11 illustrates how realistic achievable potential varies under the four scenarios. The dotted line in Figure 6-11 indicates the technical potential, which is not affected by avoided costs. The four other lines illustrate how economic potential changes over time with avoided costs. While the changes are significant, the relationship between avoided cost and achievable potential is not linear and increases in avoided costs do not provide equivalent percentage increases in economic potential, and therefore in achievable potential also. Technical potential imposes a limit on the amount of additional conservation and each incremental unit of conservation becomes increasingly expensive. Figure 6-11 Energy Savings, Economic Potential Case by Avoided Costs Scenario (MWh) Table 6-19 provides additional information on how avoided cost changes affect realistic achievable potential. In the reference case, realistic achievable potential is approximately 16.4% of the baseline forecast by 2032. With the 150% avoided cost case, realistic achievable potential increased to 19.2% of the baseline forecast, while the 125% avoided cost case and the 75% avoided cost case yielded realistic achievable potential equal to 18.1% and 13.2% of the baseline forecast respectively. Avista 2011 Electric Integrated Resource Plan 681 Energy Efficiency Potential Results Avista Conservation Potential Assessment Study 6-24 www.gepllc.com Table 6-19 Realistic Achievable Potential with Varying Avoided Costs Reference Scenario 75% of avoided costs 125% of avoided costs 150% of avoided costs Realistic achievable potential savings 2032 (MWh) 2,106,584 1,690,671 2,320,926 2,464,465 Realistic achievable potential, percentage of baseline forecast, 2032 16.4% 13.2% 18.1% 19.2% Percentage change in savings vs. 100% avoided cost scenario -20% 10% 17% Note: Value of 2,106,548 MWh for 2032 realistic achievable potential was based on interim results and thus is different from the value shown elsewhere in this report. The project developed a series of supply curves based on the four avoided cost scenarios, shown in Figure 6-12. Each supply curve is created by stacking measures and equipment over the 20- year planning horizon in ascending order of cost. As expected, this stacking of conservation resources produces a traditional upward-sloping supply curve. Because there is a gap in the cost of the energy efficiency measures as you move up the supply curve, the measures with a very high cost cause a rapid sloping of the supply curve. The 75% of avoided cost scenario provides roughly a 13% reduction in energy use compared with the baseline forecast in 2032, at a cost of $0.05/kWh or less. The other three scenarios track one another closely, providing just over 15% savings in 2032 at costs below $0.05/kWh. Results do not differ greatly until the curves begin to reach the increasingly high-cost measures. Figure 6-12 Supply Curves for Evaluated EE Measures and Avoided Cost Scenarios 6.5.2 Sensitivity of Potential to Customer and Economic Growth This conservation potential assessment shows that conservation offsets roughly half of growth in electrical energy use for the Avista system, whereas the Sixth Plan projects that conservation can offset 80% of growth. Of course, Avista’s service territory differs from the region overall in many ways, including its climate. Another significant factor may be the CPA study’s assumptions regarding customer and economic growth. To better understand how growth affects the study’s results, we used the LoadMAP model to evaluate several scenarios with lower customer and $0.00 $0.05 $0.10 $0.15 $0.20 $0.25 0%5%10%15%20% Co s t p e r k W h s a v e d % Reduction from Baseline in 2032 100% avoided costs scenario 75% avoided costs scenario 125% avoided costs scenario 150% avoided costs scenario ∆ Portfolio average cost for each scenario Avista 2011 Electric Integrated Resource Plan 682 Avista Conservation Potential Assessment Study Energy Efficiency Potential Results Global Energy Partners, LLC 6-25 An EnerNOC Company economic growth, as indicated in Table 6-20. Low Growth Scenario 1 assumes that home size (in square footage) grows 1% per year but is then capped at 110% of home size in the base year. This scenario also assumes lower rates of income growth, as shown in Table 6-20. The Low Growth Scenario 2 uses the same assumptions but in addition assumes lower customer growth in terms of total households for the residential sector and total square footage for the C&I sector. Table 6-20 Varying Growth Scenario Descriptions Reference Scenario Low Growth Scenario 1 Low Growth Scenario 2 Home size ~ 1% per year growth Capped at 110% of existing home size Capped at 110% of existing home size Per capita income growth 1.6% 2011–2015; 2.2% 2016–2020; 2.1% thereafter 1.6% after 2016 1.6% after 2016 Residential sector market growth 1.30% after 2015 (WA) 1.25% after 2015 (ID) no change 1.0% after 2015 (WA & ID) Commercial sector market growth, WA & ID ~ 2.0% (varies by segment) no change 1.0% all segments Table 6-21 shows that as economic and customer growth decreases, the ability of conservation to offset growth increases. In the reference scenario, energy efficiency offsets 52% of growth in consumption, while in the lower growth scenarios, EE offsets 54% and 76% of growth respectively. This is the case because with reduced new construction, load growth and realistic achievable potential drop, but savings due to the retrofit of existing buildings constitute a greater proportion of load growth. Table 6-21 Varying Growth Scenario Results Reference Scenario Low Growth Scenario 1 Low Growth Scenario 2 Baseline forecast 2012 (MWh) 8,799,039 8,799,039 8,799,033 Baseline forecast 2032 (MWh) 12,851,760 12,523,843 11,178,008 Load growth 2012-2032 (MWh) 4,052,720 3,724,803 2,378,975 Realistic achievable potential forecast 2032 (MWh) 10,745,176 10,500,088 9,366,471 Realistic achievable potential savings 2032 (MWh) 2,106,584 2,023,754 1,811,538 Percentage of growth offset 52% 54% 76% Note: Value of 2,106,548 MWh for 2032 realistic achievable potential was based on an interim results reference case and thus is different from the value shown elsewhere in this report. The general effects would be the same with the revised reference case. 6.6 PUMPING POTENTIAL Table 6-22 displays the 2009 electricity sales and peak demand of Avista’s pumping customers. These customers include mostly municipal water systems and some irrigation customers. The pumping accounts represent 2.2% of total electricity sales and 0.8% of peak demand. (Total in this case refers to the rate classes listed in Table 3-1 and Table 3-2: residential, commercial, industrial, and pumping). Because pumping represents a relatively small percentage of Avista’s total sales, the project team decided to use the NWPCC Sixth Plan calculator to estimate pumping energy efficiency potential. Avista 2011 Electric Integrated Resource Plan 683 Energy Efficiency Potential Results Avista Conservation Potential Assessment Study 6-26 www.gepllc.com Table 6-22 Pumping Rate Classes, Electricity Sales and Peak Demand 2009 Sector Rate Schedule(s) Number of meters (customers) 2009 Electricity sales (MWh) Peak demand (MW) Pumping, Washington 031, 032 2,361 135,999 10 Pumping, Idaho 031, 032 1,312 58,885 4 Pumping, Total 3,673 194,884 14 Percentage of System Total 2.2% 0.8% The Sixth Plan Calculator estimates agricultural conservation targets based on 2007 sales. It provides annual conservation targets through 2019. Therefore, we trended the data through 2022 to provide annual savings estimates for the ten-year period 2012–2022, with the results shown in Figure 6-13. Table 6-23 displays incremental annual savings potential for 2012–2015, while Table 6-24 provides cumulative potential for selected years. Figure 6-13 Sixth Plan Calculator Agriculture Incremental Annual Potential Table 6-23 Sixth Plan Calculator Agriculture Incremental Annual Potential, Selected Years (MWh) Segment 2012 2013 2014 2015 Pumping, Washington 1,567 1,484 1,402 1,835 Pumping, Idaho 690 654 618 809 Pumping, Total 2,257 2,138 2,020 2,643 - 500 1,000 1,500 2,000 2,500 3,000 An n u a l S a v i n g s ( M W h ) Pumping Annual Potential, Idaho Pumping Annual Potential, Washington Avista 2011 Electric Integrated Resource Plan 684 Avista Conservation Potential Assessment Study Energy Efficiency Potential Results Global Energy Partners, LLC 6-27 An EnerNOC Company Table 6-24 Sixth Plan Calculator Agriculture Cumulative Potential, Selected Years (MWh) Measure 2012 2017 2022 Pumping, Washington 1,567 9,979 18,892 Pumping, Idaho 690 4,397 8,324 Pumping, Total 2,257 14,375 27,217 Avista 2011 Electric Integrated Resource Plan 685 Avista 2011 Electric Integrated Resource Plan 686 Avista 2011 Electric Integrated Resource Plan 687 Global Energy Partners An EnerNOC Company 500 Ygnacio Valley Road, Suite 450 Walnut Creek, CA 94596 P: 925.482.2000 F: 925.284.3147 E: gephq@gepllc.com ABOUT GLOBAL Global Energy Partners is a premier provider of energy and environmental engineering and technical services to utilities, energy companies, research organizations, government/regulatory agencies and private industry. Global’s offerings range from strategic planning to turn-key program design and implementation and technology applications. Global is a wholly-owned subsidiary of EnerNOC, Inc committed to helping its clients achieve strategic business objectives with a staff of world-class experts, state of the art tools, and proven methodologies. Avista 2011 Electric Integrated Resource Plan 688 Global Energy Partners An EnerNOC Company 500 Ygnacio Valley Road, Suite 450 Walnut Creek, CA 94596 P: 925.482.2000 F: 925.284.3147 E: gephq@gepllc.com AVISTA CONSERVATION POTENTIAL ASSESSMENT APPENDICES Final Report — Electricity Potentials August 19, 2011 J. Borstein, Project Manager I. Rohmund, Director Avista 2011 Electric Integrated Resource Plan 689 Avista 2011 Electric Integrated Resource Plan 690 Global Energy Partners iii An EnerNOC Company This report was prepared by Global Energy Partners An EnerNOC Company 500 Ygnacio Valley Blvd., Suite 450 Walnut Creek, CA 94596 Principal Investigator(s): I. Rohmund J. Borstein A. Duer B. Kester J. Prijyanonda S. Yoshida Avista 2011 Electric Integrated Resource Plan 691 Avista 2011 Electric Integrated Resource Plan 692 Global Energy Partners v An EnerNOC Company CONTENTS A WASHINGTON MARKET PROFILES, BASELINE FORECAST, AND POTENTIAL RESULTS .................................................................................................... A-1  B IDAHO MARKET PROFILES, BASELINE FORECAST, AND POTENTIAL RESULTS .................................................................................................... B-1  C RESIDENTIAL ENERGY EFFICIENCY EQUIPMENT AND MEASURE DATA .. C-1  D COMMERCIAL ENERGY EFFICIENCY EQUIPMENT AND MEASURE DATA .. D-1  E REFERENCES .............................................................................................. E-1  Avista 2011 Electric Integrated Resource Plan 693 Avista 2011 Electric Integrated Resource Plan 694 Global Energy Partners vii An EnerNOC Company LIST OF FIGURES Figure A–1 Residential Baseline Forecast by End Use, Washington ........................................ A-11  Figure A-2 C&I Baseline Electricity Forecast by End Use, Washington .................................... A-11  Figure A-3 Baseline Forecast Summary by Sector, Washington ............................................. A-12  Figure A-4 Summary of Energy Efficiency Potential Savings, Washington, All Sectors .............. A-13  Figure A-5 Energy Efficiency Potential Forecasts, Washington, All Sectors ............................. A-13  Figure A-6 Achievable Cumulative Potential by Sector, Washington ....................................... A-15  Figure A-7 Residential Energy Efficiency Potential Savings, Washington ................................ A-15  Figure A-8 Residential Energy Efficiency Potential Forecast, Washington ............................... A-15  Figure A–9 Residential Achievable Potential by End Use, Selected Years, Washington ............. A-19  Figure A-10 Energy Efficiency Potential Savings, C&I Sector, Washington ................................ A-22  Figure A-11 Energy Efficiency Potential Forecast, C&I Sector, Washington .............................. A-22  Figure A-12 C&I Achievable Potential by End Use, Selected Years, Washington ........................ A-26  Figure B–1 Residential Baseline Forecast by End Use, Idaho ................................................. B-11  Figure B–2 C&I Baseline Electricity Forecast by End Use, Idaho ............................................ B-11  Figure B–3 Baseline Forecast Summary by Sector, Idaho ...................................................... B-12  Figure B–4 Summary of Energy Efficiency Potential Savings, Idaho, All Sectors ...................... B-13  Figure B–5 Energy Efficiency Potential Forecasts, Idaho, All Sectors ...................................... B-13  Figure B–6 Achievable Cumulative Potential by Sector, Idaho ............................................... B-15  Figure B–7 Residential Energy Efficiency Potential Savings, Idaho ......................................... B-15  Figure B–8 Residential Energy Efficiency Potential Forecast, Idaho ........................................ B-15  Figure B–9 Residential Achievable Potential by End Use, Selected Years, Idaho ...................... B-19  Figure B–10 Energy Efficiency Potential Savings, C&I Sector, Idaho ........................................ B-22  Figure B–11 Energy Efficiency Potential Forecast, C&I Sector, Idaho ....................................... B-22  Figure B-12 C&I Achievable Potential by End Use, Selected Years, Idaho ................................ B-26  Avista 2011 Electric Integrated Resource Plan 695 Avista 2011 Electric Integrated Resource Plan 696 Global Energy Partners ix An EnerNOC Company Avista 2011 Electric Integrated Resource Plan 697 x www.gepllc.com LIST OF TABLES Table A–1 Electricity Sales and Peak Demand by Rate Class, Washington 2009 ....................... A-1  Table A-2 Residential Electricity Usage and Intensity by Segment, Washington 2009............... A-1  Table A-3  Single Family Market Profile, 2009, Washington .................................................... A-2  Table A-4  Multi-family Market Profile, 2009, Washington ...................................................... A-3  Table A-5  Mobile Home Market Profile, 2009, Washington .................................................... A-4  Table A-6  Limited Income Market Profile, 2009, Washington ................................................. A-5  Table A-7 Commercial Sector Market Characterization Results, Washington 2009 .................... A-6  Table A-8 Small/Medium Commercial Segment Market Profile, Washington, 2009 ................... A-7  Table A-9 Large Commercial Segment Market Profile, Washington, 2009 ............................... A-8  Table A-10 Extra Large Commercial Segment Market Profile, Washington, 2009 ....................... A-9  Table A-11 Extra Large Industrial Segment Market Profile, Washington, 2009 ........................ A-10  Table A-12 Baseline Forecast Summary by Sector, Washington ............................................. A-12  Table A-13 Summary of Energy Efficiency Potential, Washington, All Sectors ......................... A-14  Table A-14 Achievable Cumulative EE Potential by Sector, Washington (MWh) ....................... A-14  Table A-15 Energy Efficiency Potential for the Residential Sector, Washington ........................ A-16  Table A-16 Residential Baseline & Achievable Potential by Segment, Washington ................... A-17  Table A-17 Residential Potential by Housing Type, 2022, Washington .................................... A-17  Table A-18 Residential Cumulative Savings by End Use and Potential Type, Washington (MWh)A-18  Table A-19 Residential Potential by End Use and Market Segment, 2022, WA (MWh) .............. A-19  Table A-20 Residential Cumulative Achievable Potential by End Use and Equipment Measures, Washington, Selected Years (MWh) ................................................................... A-20  Table A-21 Residential Achievable Savings for Non-equipment Measures, Washington (MWh) . A-21  Table A-22 Energy Efficiency Potential, C&I Sector, Washington ........................................... A-23  Table A-23 C&I Sector, Baseline and Achievable Potential by Segment, Washington ............... A-24  Table A-24 C&I Potential by Segment, Washington, 2022 ..................................................... A-24  Table A-25 C&I Cumulative Savings by End Use and Potential Type, Washington (MWh) ......... A-25  Table A-26 C&I Achievable Potential by End Use and Market Segment, 2022, Washington (MWh)A-26  Table A-27 C&I Cumulative Achievable Potential by End Use and Equipment Measures, Washington (MWh) ............................................................................................................ A-27  Table A-28 C&I Cumulative Achievable Savings for Non-equipment Measures, Washington (MWh)A-28  Table B–1 Electricity Use and Peak Demand by Rate Class, Idaho 2009 .................................. B-1  Table B–2 Residential Electricity Usage and Intensity by Segment, Idaho 2009 ....................... B-1  Table B–3 Single Family Market Profile, 2009, Idaho ............................................................. B-2  Table B–4 Multi-family Market Profile, 2009, Idaho ............................................................... B-3  Table B–5  Mobile Home Market Profile, 2009, Idaho ............................................................. B-4  Table B–6 Limited Income Market Profile, 2009, Idaho ......................................................... B-5  Table B–7 Commercial Sector Market Characterization Results, Idaho 2009 ............................ B-6  Table B–8 Small/Medium Commercial Segment Market Profile, Idaho, 2009 ............................ B-7  Table B–9 Large Commercial Segment Market Profile, Idaho, 2009 ........................................ B-8  Table B–10 Extra Large Commercial Segment Market Profile, Idaho, 2009 ................................ B-9  Table B–11 Extra Large Industrial Segment Market Profile, Idaho, 2009 ................................. B-10  Table B-12 Baseline Forecast Summary by Sector, Idaho ...................................................... B-12  Avista 2011 Electric Integrated Resource Plan 698 Table B–13 Summary of Energy Efficiency Potential, Idaho, All Sectors .................................. B-14  Table B–14 Achievable Cumulative EE Potential by Sector, Idaho (MWh) ................................ B-14  Table B–15 Energy Efficiency Potential for the Residential Sector, Idaho ................................ B-16  Table B-16 Residential Baseline & Achievable Potential by Segment, Idaho ............................ B-17  Table B-17 Residential Potential by Housing Type, 2022, Idaho ............................................ B-17  Table A-18 Residential Cumulative Savings by End Use and Potential Type, Oregon (MWh) ..... B-18  Table B-19 Residential Potential by End Use and Market Segment, 2022, WA (MWh) .............. B-19  Table B–20 Residential Cumulative Achievable Potential by End Use and Equipment Measures, Oregon, Selected Years (MWh) .......................................................................... B-20  Table B–21 Residential Achievable Savings for Non-equipment Measures, Idaho (MWh) .......... B-21  Table B–22 Energy Efficiency Potential, C&I Sector, Idaho .................................................... B-23  Table B–23 C&I Sector, Baseline and Achievable Potential by Segment, Idaho ........................ B-24  Table B–24 C&I Potential by Segment, Idaho, 2022 .............................................................. B-24  Table B-25 C&I Cumulative Savings by End Use and Potential Type, Idaho (MWh) ................. B-25  Table B-26 C&I Achievable Potential by End Use Market Segment, 2022, Idaho (MWh) ........... B-26  Table B-27 C&I Cumulative Achievable Potential by End Use and Equipment Measures, Washington (MWh) ............................................................................................................ B-27  Table B-28 C&I Cumulative Achievable Savings for Non-equipment Measures, Idaho (MWh) ... B-28  Table C–1 Residential Energy Efficiency Equipment/Measure Descriptions ............................... C-2  Table C-2 Energy Efficiency Equipment Data — Single Family, Existing Vintage....................... C-9  Table C-3 Energy Efficiency Equipment Data — Multi Family, Existing Vintage ...................... C-11  Table C-4 Energy Efficiency Equipment Data — Mobile Home, Existing Vintage ..................... C-13  Table C-5 Energy Efficiency Equipment Data — Limited Income, Existing Vintage ................. C-15  Table C-6 Energy Efficiency Equipment Data —Single Family, New Vintage .......................... C-17  Table C-7 Energy Efficiency Equipment Data — Multi Family, New Vintage ........................... C-19  Table C-8 Energy Efficiency Equipment Data — Mobile Home, New Vintage ......................... C-21  Table C-9 Energy Efficiency Equipment Data — Limited Income, New Vintage ...................... C-23  Table C-10 Energy-Efficiency Measure Data—Single Family, Existing Vintage .......................... C-25  Table C-11 Energy-Efficiency Measure Data — Multi Family, Existing Vintage ......................... C-26  Table C-12 Energy-Efficiency Measure Data — Mobile Home, Existing Vintage ........................ C-27  Table C-13 Energy-Efficiency Measure Data — Limited Income, Existing Vintage .................... C-28  Table C-14 Energy-Efficiency Measure Data — Single Family, New Vintage ............................ C-29  Table C-15 Energy-Efficiency Measure Data — Multi Family, New Vintage .............................. C-30  Table C-16 Energy-Efficiency Measure Data — Mobile Home, New Vintage ............................. C-31  Table C-17 Energy-Efficiency Measure Data — Limited Income, New Vintage ......................... C-32  Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions ........ D-2  Table D-2 Energy Efficiency Equipment Data — Small/Medium Comm., Existing Vintage ........ D-16  Table D-3 Energy Efficiency Equipment Data — Large Commercial, Existing Vintage .............. D-18  Table D-4 Energy Efficiency Equipment Data — Extra Large Commercial, Existing Vintage ..... D-20  Table D-5 Energy Efficiency Equipment Data — Extra Large Industrial, Existing Vintage ........ D-22  Table D-6 Energy Efficiency Equipment Data — Small/Medium Commercial, New Vintage ...... D-24  Table D-7 Energy Efficiency Equipment Data — Large Commercial, New Vintage .................. D-26  Table D-8 Energy Efficiency Equipment Data — Extra Large Commercial, New Vintage .......... D-28  Table D-9 Energy Efficiency Equipment Data — Extra Large Industrial, New Vintage ............. D-30  Table D-10 Energy Efficiency Measure Data — Small/Med. Comm., Existing Vintage ............... D-32  Avista 2011 Electric Integrated Resource Plan 699 xii www.gepllc.com Table D-11 Energy Efficiency Measure Data — Large Commercial, Existing Vintage ................. D-33  Table D-12 Energy Efficiency Measure Data — Extra Large Comm., Existing Vintage ............... D-34  Table D-13 Energy Efficiency Measure Data — Extra Large Industrial, Existing Vintage ........... D-35  Table D-14 Energy Efficiency Measure Data — Small/Medium Comm., New Vintage ................ D-36  Table D-15 Energy Efficiency Measure Data — Large Commercial, New Vintage...................... D-37  Table D-16 Energy Efficiency Measure Data — Extra Large Commercial, New Vintage ............. D-38  Table D-17 Energy Efficiency Measure Data — Extra Large Industrial, New Vintage ................ D-39  Avista 2011 Electric Integrated Resource Plan 700 Global Energy Partners A-1 An EnerNOC Company APPENDIX A WASHINGTON MARKET PROFILES, BASELINE FORECAST, AND POTENTIAL RESULTS This appendix contains Washington-specific tables that summarize the study assumptions, inputs, and results for Avista’s Washington service territory only. These tables either repeat Washington- specific information provided previously within the body of the report, or provide Washington- specific information that corresponds to Avista system-level information in the report. Table A–1 Electricity Sales and Peak Demand by Rate Class, Washington 2009 Sector  Rate  Schedule(s)  Number of meters  (customers)  2009 Electricity  sales (MWh)  Peak demand  (MW)  Residential 001 200,134 2,451,687 710 General Service 011, 012 27,142 415,935 64 Large General Service 021, 022 3,352 1,556,929 232 Extra Large General Service 025 22 879,233 134 Pumping 031, 032 2,361 135,999 10 Total   233,011 5,439,850 1,150 Table A-2 Residential Electricity Usage and Intensity by Segment, Washington 2009 Washington   Segment  Intensity    (kWh/Household)  Number of   Customers  % of  Customers  2009 Electricity  Sales (MWh) % of Sales  Single Family 14,547 109,134 54% 1,587,572 65%  Multi‐Family 8,728 18,219 9% 159,019 6%  Mobile Home 13,092 5,248 3% 68,708 3%  Limited Income 9,424 67,533 34% 636,407 26%  Total 12,250 200,134 100% 2,451,707 100%  Note: Minor differences with totals in Table A-1 due to calibration. Avista 2011 Electric Integrated Resource Plan 701 Washington Market Profiles, Baseline Forecast, and Potential Results A-2 www.gepllc.com Table A-3 Single Family Market Profile, 2009, Washington UEC Intensity Usage UEC Intensity (kWh) (kWh/HH) (GWh)(kWh) (kWh/HH) Cooling Central AC 36.8% 1,857            684                  75               73.4% 2,154          1,581            16% Cooling Room AC 10.8% 683                74                     8                 1.4% 793             11                  16% Combined Heating/Cooling Air Source Heat Pump 18.4% 6,091            1,122               122            15.0% 7,066          1,063            16% Combined Heating/Cooling Geothermal Heat Pump 0.7% 3,655            26                     3                 0.8% 4,239          32                  16% Space Heating Electric Resistance 6.2% 10,449          647                  71               3.0% 12,539       373                20% Space Heating Electric Furnace 25.0% 8,360            2,088               228            25.0% 10,031       2,505            20% Space Heating Supplemental 6.1% 117                7                       1                 6.1% 140             9                    20% Water Heating Water Heater 55.3% 3,466            1,918               209            43.7% 4,177          1,827            21% Interior Lighting Screw‐in 100.0% 1,452            1,452               158            100.0% 1,452          1,452            0% Interior Lighting Linear Fluorescent 69.2% 152                105                  11               69.2% 152             105                0% Interior Lighting Pin‐based 100.0% 60                  60                     7                 100.0% 60                60                  0% Exterior Lighting Screw‐in 86.7% 381                330                  36               86.7% 381             330                0% Exterior Lighting High Intensity/Flood 1.9% 146                3                       0                 1.9% 146             3                    0% Appliances Clothes Washer 98.0% 126                124                  13               99.8% 154             154                22% Appliances Clothes Dryer 92.8% 609                565                  62               89.0% 692             616                14% Appliances Dishwasher 93.9% 246                231                  25               99.9% 271             271                11% Appliances Refrigerator 100.0% 793                793                  87               100.0% 625             625                 ‐21% Appliances Freezer 69.4% 773                536                  58               69.4% 708             491                 ‐8% Appliances Second Refrigerator 47.3% 816                386                  42               20.5% 711             146                 ‐13% Appliances Stove 82.1% 383                314                  34               82.1% 465             382                22% Appliances Microwave 98.5% 168                166                  18               98.5% 173             171                3% Electronics Personal Computers 140.0% 279                391                  43               147.0% 287             422                3% Electronics TVs 260.0% 359                933                  102            260.0% 400             1,041            12% Electronics Devices and Gadgets 100.0% 60                  60                     7                 100.0% 67                67                  10% Miscellaneous Pool Pump 13.3% 1,500            200                  22               14.0% 1,526          214                2% Miscellaneous Furnace Fan 30.1% 500                151                  16               30.1% 614             185                23% Miscellaneous Miscellaneous 100.0% 1,180            1,180               129            100.0% 1,416          1,416            20% 14,547            1,588         15,549           New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 702 Washington Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners, LLC A-3 Table A-4 Multi-family Market Profile, 2009, Washington UEC Intensity Usage UEC Intensity (kWh) (kWh/HH) (GWh)(kWh) (kWh/HH) Cooling Central AC 5.0% 928                46                     1                 24.1% 1,003          241                8% Cooling Room AC 25.0% 355                89                     2                 18.9% 384             73                  8% Combined Heating/Cooling Air Source Heat Pump 1.0% 2,928            29                     1                 3.4% 3,163          108                8% Combined Heating/Cooling Geothermal Heat Pump 0.0% 1,757            ‐                    ‐             0.5% 1,898          9                    8% Space Heating Electric Resistance 59.0% 5,476            3,231               59               59.0% 6,023          3,554            10% Space Heating Electric Furnace 5.0% 4,381            219                  4                 5.0% 4,819          241                10% Space Heating Supplemental 18.0% 61                  11                     0                 18.9% 67                13                  10% Water Heating Water Heater 77.0% 2,142            1,650               30               71.3% 2,362          1,684            10% Interior Lighting Screw‐in 100.0% 750                750                  14               100.0% 750             750                0% Interior Lighting Linear Fluorescent 32.0% 76                  24                     0                 32.0% 76                24                  0% Interior Lighting Pin‐based 3.0% 75                  2                       0                 3.0% 75                2                    0% Exterior Lighting Screw‐in 38.5% 55                  21                     0                 38.5% 55                21                  0% Exterior Lighting High Intensity/Flood 0.2% 73                  0                       0                 0.2% 73                0                    0% Appliances Clothes Washer 32.0% 63                  20                     0                 32.0% 70                22                  11% Appliances Clothes Dryer 30.7% 582                179                  3                 30.7% 621             191                7% Appliances Dishwasher 64.0% 88                  56                     1                 64.0% 93                59                  5% Appliances Refrigerator 100.0% 677                677                  12               100.0% 665             665                 ‐2% Appliances Freezer 8.4% 734                62                     1                 8.4% 703             59                   ‐4% Appliances Second Refrigerator 5.0% 687                34                     1                 5.0% 631             32                   ‐8% Appliances Stove 96.4% 163                158                  3                 96.4% 181             175                11% Appliances Microwave 90.0% 99                  89                     2                 90.0% 101             91                  1% Electronics Personal Computers 63.0% 223                141                  3                 66.2% 226             150                1% Electronics TVs 165.0% 178                293                  5                 165.0% 188             310                6% Electronics Devices and Gadgets 100.0% 25                  25                     0                 100.0% 26                26                  5% Miscellaneous Pool Pump 0.0%‐                 ‐                    ‐             0.0%‐              ‐                0% Miscellaneous Furnace Fan 13.0% 38                  5                       0                 13.0% 42                5                    11% Miscellaneous Miscellaneous 100.0% 917                917                  17               100.0% 963             963                5% 8,728               159            9,468             New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 703 Washington Market Profiles, Baseline Forecast, and Potential Results A-4 www.gepllc.com Table A-5 Mobile Home Market Profile, 2009, Washington UEC Intensity Usage UEC Intensity (kWh) (kWh/HH) (GWh)(kWh) (kWh/HH) Cooling Central AC 23.2% 1,106            256                  1                 35.9% 1,194          428                8% Cooling Room AC 23.2% 407                94                     0                 22.0% 439             97                  8% Combined Heating/Cooling Air Source Heat Pump 21.7% 3,488            759                  4                 22.8% 3,767          860                8% Combined Heating/Cooling Geothermal Heat Pump 0.0% 2,093            ‐                    ‐             0.0% 2,260          ‐                8% Space Heating Electric Resistance 0.0% 5,888            ‐                    ‐             0.0% 6,476          ‐                10% Space Heating Electric Furnace 68.1% 4,710            3,209               17               68.1% 5,181          3,530            10% Space Heating Supplemental 1.4% 34                  0                       0                 1.5% 37                1                    10% Water Heating Water Heater 96.3% 1,766            1,702               9                 91.0% 1,947          1,771            10% Interior Lighting Screw‐in 100.0% 1,307            1,307               7                 100.0% 1,307          1,307            0% Interior Lighting Linear Fluorescent 69.2% 137                95                     0                 69.2% 137             95                  0% Interior Lighting Pin‐based 100.0% 54                  54                     0                 100.0% 54                54                  0% Exterior Lighting Screw‐in 86.7% 343                297                  2                 86.7% 343             297                0% Exterior Lighting High Intensity/Flood 1.9% 131                2                       0                 1.9% 131             2                    0% Appliances Clothes Washer 96.3% 128                124                  1                 96.3% 142             137                11% Appliances Clothes Dryer 98.8% 620                612                  3                 98.8% 662             653                7% Appliances Dishwasher 89.0% 250                222                  1                 89.0% 263             234                5% Appliances Refrigerator 100.0% 806                806                  4                 100.0% 792             792                 ‐2% Appliances Freezer 59.3% 786                466                  2                 59.3% 753             446                 ‐4% Appliances Second Refrigerator 19.5% 830                162                  1                 19.5% 762             149                 ‐8% Appliances Stove 93.9% 344                323                  2                 93.9% 381             358                11% Appliances Microwave 82.0% 151                124                  1                 82.0% 154             126                2% Electronics Personal Computers 116.5% 262                305                  2                 122.3% 265             324                1% Electronics TVs 260.0% 359                933                  5                 260.0% 380             987                6% Electronics Devices and Gadgets 100.0% 60                  60                     0                 100.0% 64                64                  5% Miscellaneous Pool Pump 11.1% 1,500            167                  1                 11.7% 1,513          177                1% Miscellaneous Furnace Fan 8.3% 500                42                     0                 8.3% 557             47                  11% Miscellaneous Miscellaneous 100.0% 971                971                  5                 100.0% 1,020          1,020            5% 13,092            69               13,955           New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 704 Washington Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners, LLC A-5 Table A-6 Limited Income Market Profile, 2009, Washington UEC Intensity Usage UEC Intensity (kWh) (kWh/HH) (GWh)(kWh) (kWh/HH) Cooling Central AC 22.2% 1,049            233                  16               28.7% 1,133          325                8% Cooling Room AC 35.4% 712                252                  17               18.0% 769             138                8% Combined Heating/Cooling Air Source Heat Pump 10.4% 2,372            247                  17               10.4% 2,561          267                8% Combined Heating/Cooling Geothermal Heat Pump 0.0% 1,423            ‐                    ‐             0.5% 1,537          8                    8% Space Heating Electric Resistance 32.0% 5,164            1,651               112            28.8% 5,680          1,635            10% Space Heating Electric Furnace 19.3% 4,123            796                  54               21.2% 4,536          963                10% Space Heating Supplemental 12.7% 63                  8                       1                 13.4% 69                9                    10% Water Heating Water Heater 83.9% 2,334            1,958               132            67.0% 2,574          1,725            10% Interior Lighting Screw‐in 100.0% 728                728                  49               100.0% 728             728                0% Interior Lighting Linear Fluorescent 69.2% 75                  52                     3                 69.2% 75                52                  0% Interior Lighting Pin‐based 100.0% 59                  59                     4                 100.0% 59                59                  0% Exterior Lighting Screw‐in 47.1% 106                50                     3                 47.1% 106             50                  0% Exterior Lighting High Intensity/Flood 2.7% 84                  2                       0                 2.7% 84                2                    0% Appliances Clothes Washer 71.3% 55                  39                     3                 71.3% 61                43                  11% Appliances Clothes Dryer 68.6% 652                447                  30               68.6% 696             477                7% Appliances Dishwasher 78.5% 72                  56                     4                 78.5% 75                59                  5% Appliances Refrigerator 100.0% 677                677                  46               100.0% 665             665                 ‐2% Appliances Freezer 63.4% 734                466                  31               63.4% 703             446                 ‐4% Appliances Second Refrigerator 23.4% 687                161                  11               23.4% 631             148                 ‐8% Appliances Stove 89.7% 196                176                  12               89.7% 217             195                11% Appliances Microwave 92.6% 109                101                  7                 92.6% 111             102                1% Electronics Personal Computers 101.4% 230                233                  16               106.5% 233             248                1% Electronics TVs 165.0% 204                337                  23               165.0% 216             356                6% Electronics Devices and Gadgets 100.0% 30                  30                     2                 105.0% 32                33                  5% Miscellaneous Pool Pump 5.8% 617                36                     2                 5.8% 622             36                  1% Miscellaneous Furnace Fan 25.2% 213                54                     4                 25.2% 238             60                  11% Miscellaneous Miscellaneous 100.0% 575                575                  39               100.0% 604             604                5% 9,424               636            9,434             New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 705 Washington Market Profiles, Baseline Forecast, and Potential Results A-6 www.gepllc.com Table A-7 Commercial Sector Market Characterization Results, Washington 2009 Avista Rate Schedule LoadMAP Segment  and Typical Building  Electricity  sales (MWh)  Intensity  (kWh/sq.ft.)  General Service  011, 012 Small and Medium Commercial —Retail 415,935 17.5 Large General Service  021, 022 Large Commercial —Office 1,556,929 16.7 Extra Large General  Service Commercial   025C Extra Large Commercial —University 265,686 13.9 Extra Large General  Service Industrial   025I Extra Large Industrial 613,615 40.0 Total     2,852,165  Avista 2011 Electric Integrated Resource Plan 706 Washington Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners, LLC A-7 Table A-8 Small/Medium Commercial Segment Market Profile, Washington, 2009 EUI Intensity Usage EUI Intensity (kWh) (kWh/Sqft.) (GWh)(kWh) (kWh/Sqft.) Cooling Central Chiller 13.8% 2.39               0.33                 8                 13.8% 2.15            0.30               ‐10% Cooling RTU 63.1% 2.46               1.55                 37               63.1% 2.22            1.40               ‐10% Cooling PTAC 3.3% 2.44               0.08                 2                 3.3% 2.20            0.07               ‐10% Combined Heating/Cooling Heat Pump 3.6% 6.19               0.22                 5                 3.6% 5.57            0.20               ‐10% Space Heating Electric Resistance 5.9% 6.72               0.39                 9                 5.9% 6.72            0.39              0% Space Heating Furnace 17.7% 7.05               1.25                 30               17.7% 6.34            1.13               ‐10% Ventilation Ventilation 76.9% 2.09               1.61                 38               76.9% 1.88            1.45               ‐10% Interior Lighting Interior Screw‐in 100.0% 1.00               1.00                 24               100.0% 0.90            0.90               ‐10% Interior Lighting HID 100.0% 0.68               0.68                 16               100.0% 0.61            0.61               ‐10% Interior Lighting Linear Fluorescent 100.0% 3.37               3.37                 80               100.0% 3.03            3.03               ‐10% Exterior Lighting Exterior Screw‐in 82.6% 0.20               0.16                 4                 82.6% 0.18            0.15               ‐10% Exterior Lighting HID 82.6% 0.76               0.63                 15               82.6% 0.68            0.56               ‐10% Exterior Lighting Linear Fluorescent 82.6% 0.16               0.13                 3                 82.6% 0.14            0.12               ‐10% Water Heating Water Heater 63.0% 2.00               1.26                 30               63.0% 1.90            1.19              ‐5% Food Preparation Fryer 25.8% 0.16               0.04                 1                 25.8% 0.16            0.04              0% Food Preparation Oven 25.8% 0.98               0.25                 6                 25.8% 0.98            0.25              0% Food Preparation Dishwasher 25.8% 0.06               0.01                 0                 25.8% 0.06            0.01              0% Food Preparation Hot Food Container 25.8% 0.31               0.08                 2                 25.8% 0.31            0.08              0% Food Preparation Food Prep 25.8% 0.01               0.00                 0                 25.8% 0.01            0.00              0% Refrigeration Walk in Refrigeration 0.0%‐                 ‐                    ‐             0.0%‐              ‐                 Refrigeration Glass Door Display 52.4% 0.45               0.23                 6                 52.4% 0.40            0.21               ‐10% Refrigeration Solid Door Refrigerator 52.4% 0.50               0.26                 6                 52.4% 0.45            0.24               ‐10% Refrigeration Open Display Case 52.4% 0.04               0.02                 1                 52.4% 0.04            0.02               ‐10% Refrigeration Vending Machine 52.4% 0.30               0.16                 4                 52.4% 0.30            0.16              0% Refrigeration Icemaker 52.4% 0.34               0.18                 4                 52.4% 0.34            0.18              0% Office Equipment Desktop Computer 99.9% 0.48               0.48                 11               99.9% 0.48            0.48              0% Office Equipment Laptop Computer 99.9% 0.06               0.06                 1                 99.9% 0.06            0.06              0% Office Equipment Server 99.9% 0.36               0.36                 9                 99.9% 0.36            0.36              0% Office Equipment Monitor 99.9% 0.25               0.25                 6                 99.9% 0.25            0.25              0% Office Equipment Printer/copier/fax 99.9% 0.24               0.24                 6                 99.9% 0.24            0.24              0% Office Equipment POS Terminal 99.9% 0.27               0.27                 7                 99.9% 0.27            0.27              0% Miscellaneous Non‐HVAC Motor 40.2% 1.22               0.49                 12               40.2% 1.22            0.49              0% Miscellaneous Other Miscellaneous 100.0% 1.43               1.43                 34               100.0% 1.43            1.43              0% 17.50             416          16.3             New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 707 Washington Market Profiles, Baseline Forecast, and Potential Results A-8 www.gepllc.com Table A-9 Large Commercial Segment Market Profile, Washington, 2009 EUI Intensity Usage EUI Intensity (kWh) (kWh/Sqft.) (GWh)(kWh) (kWh/Sqft.) Cooling Central Chiller 24.7% 2.15               0.53                 49               24.7% 1.93            0.48               ‐10% Cooling RTU 37.8% 2.52               0.95                 89               37.8% 2.26            0.86               ‐10% Cooling PTAC 3.8% 2.49               0.09                 9                 3.8% 2.24            0.08               ‐10% Combined Heating/Cooling Heat Pump 9.1% 4.81               0.44                 41               9.1% 4.33            0.40               ‐10% Space Heating Electric Resistance 5.9% 3.62               0.21                 20               5.9% 3.62            0.21              0% Space Heating Furnace 12.7% 4.68               0.60                 55               12.7% 4.21            0.54               ‐10% Ventilation Ventilation 75.1% 1.66               1.24                 116            75.1% 1.49            1.12               ‐10% Interior Lighting Interior Screw‐in 100.0% 0.94               0.94                 88               100.0% 0.85            0.85               ‐10% Interior Lighting HID 100.0% 0.71               0.71                 66               100.0% 0.64            0.64               ‐10% Interior Lighting Linear Fluorescent 100.0% 3.29               3.29                 307            100.0% 2.96            2.96               ‐10% Exterior Lighting Exterior Screw‐in 89.6% 0.11               0.10                 9                 89.6% 0.10            0.09               ‐10% Exterior Lighting HID 89.6% 0.62               0.56                 52               89.6% 0.56            0.50               ‐10% Exterior Lighting Linear Fluorescent 89.6% 0.16               0.14                 13               89.6% 0.14            0.13               ‐10% Water Heating Water Heater 54.2% 2.31               1.25                 117            54.2% 2.20            1.19              ‐5% Food Preparation Fryer 18.4% 0.35               0.06                 6                 18.4% 0.35            0.06              0% Food Preparation Oven 18.4% 1.88               0.35                 32               18.4% 1.88            0.35              0% Food Preparation Dishwasher 18.4% 0.19               0.03                 3                 18.4% 0.19            0.03              0% Food Preparation Hot Food Container 18.4% 0.27               0.05                 5                 18.4% 0.27            0.05              0% Food Preparation Food Prep 18.4% 0.02               0.00                 0                 18.4% 0.02            0.00              0% Refrigeration Walk in Refrigeration 39.1% 0.48               0.19                 17               39.1% 0.43            0.17               ‐10% Refrigeration Glass Door Display 39.1% 0.37               0.14                 13               39.1% 0.33            0.13               ‐10% Refrigeration Solid Door Refrigerator 39.1% 0.77               0.30                 28               39.1% 0.69            0.27               ‐10% Refrigeration Open Display Case 39.1% 0.27               0.10                 10               39.1% 0.24            0.09               ‐10% Refrigeration Vending Machine 39.1% 0.36               0.14                 13               39.1% 0.36            0.14              0% Refrigeration Icemaker 39.1% 0.66               0.26                 24               39.1% 0.66            0.26              0% Office Equipment Desktop Computer 98.4% 0.90               0.88                 82               98.4% 0.90            0.88              0% Office Equipment Laptop Computer 98.4% 0.07               0.07                 6                 98.4% 0.07            0.07              0% Office Equipment Server 98.4% 0.42               0.41                 38               98.4% 0.42            0.41              0% Office Equipment Monitor 98.4% 0.21               0.20                 19               98.4% 0.21            0.20              0% Office Equipment Printer/copier/fax 98.4% 0.21               0.21                 19               98.4% 0.21            0.21              0% Office Equipment POS Terminal 98.4% 0.07               0.07                 6                 98.4% 0.07            0.07              0% Miscellaneous Non‐HVAC Motor 57.7% 1.40               0.81                 75               57.7% 1.40            0.81              0% Miscellaneous Other Miscellaneous 100.0% 1.36               1.36                 127            100.0% 1.36            1.36              0% 16.70               1,557         15.6               New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 708 Washington Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners, LLC A-9 Table A-10 Extra Large Commercial Segment Market Profile, Washington, 2009 EUI Intensity Usage EUI Intensity (kWh) (kWh/Sqft.) (GWh)(kWh) (kWh/Sqft.) Cooling Central Chiller 52.2% 2.13               1.11                 21               52.2% 1.92            1.00               ‐10% Cooling RTU 24.7% 2.22               0.55                 10               24.7% 2.00            0.49               ‐10% Cooling PTAC 0.0% 2.22               ‐                    ‐             0.0% 2.00            ‐                 ‐10% Combined Heating/Cooling Heat Pump 4.4% 5.23               0.23                 4                 4.4% 4.70            0.21               ‐10% Space Heating Electric Resistance 15.8% 4.39               0.69                 13               15.8% 4.39            0.69              0% Space Heating Furnace 5.6% 5.67               0.32                 6                 5.6% 5.11            0.29               ‐10% Ventilation Ventilation 90.2% 1.94               1.75                 33               90.2% 1.74            1.57               ‐10% Interior Lighting Interior Screw‐in 100.0% 1.37               1.37                 26               100.0% 1.23            1.23               ‐10% Interior Lighting HID 100.0% 0.29               0.29                 6                 100.0% 0.26            0.26               ‐10% Interior Lighting Linear Fluorescent 100.0% 2.19               2.19                 42               100.0% 1.97            1.97               ‐10% Exterior Lighting Exterior Screw‐in 96.3% 0.03               0.03                 1                 96.3% 0.03            0.03               ‐10% Exterior Lighting HID 96.3% 0.88               0.85                 16               96.3% 0.79            0.76               ‐10% Exterior Lighting Linear Fluorescent 96.3% 0.04               0.03                 1                 96.3% 0.03            0.03               ‐10% Water Heating Water Heater 26.3% 3.72               0.98                 19               26.3% 3.53            0.93               ‐5% Food Preparation Fryer 13.8% 0.13               0.02                 0                 13.8% 0.13            0.02              0% Food Preparation Oven 13.8% 2.12               0.29                 6                 13.8% 2.12            0.29              0% Food Preparation Dishwasher 13.8% 0.08               0.01                 0                 13.8% 0.08            0.01              0% Food Preparation Hot Food Container 13.8% 0.13               0.02                 0                 13.8% 0.13            0.02              0% Food Preparation Food Prep 13.8% 0.01               0.00                 0                 13.8% 0.01            0.00              0% Refrigeration Walk in Refrigeration 26.6% 0.19               0.05                 1                 26.6% 0.17            0.04               ‐10% Refrigeration Glass Door Display 26.6% 0.11               0.03                 1                 26.6% 0.10            0.03               ‐10% Refrigeration Solid Door Refrigerator 26.6% 0.71               0.19                 4                 26.6% 0.64            0.17               ‐10% Refrigeration Open Display Case 26.6% 0.50               0.13                 3                 26.6% 0.45            0.12               ‐10% Refrigeration Vending Machine 26.6% 0.38               0.10                 2                 26.6% 0.38            0.10              0% Refrigeration Icemaker 26.6% 0.31               0.08                 2                 26.6% 0.31            0.08              0% Office Equipment Desktop Computer 100.0% 0.64               0.64                 12               100.0% 0.64            0.64              0% Office Equipment Laptop Computer 100.0% 0.07               0.07                 1                 100.0% 0.07            0.07              0% Office Equipment Server 100.0% 0.17               0.17                 3                 100.0% 0.17            0.17              0% Office Equipment Monitor 100.0% 0.13               0.13                 2                 100.0% 0.13            0.13              0% Office Equipment Printer/copier/fax 100.0% 0.05               0.05                 1                 100.0% 0.05            0.05              0% Office Equipment POS Terminal 100.0% 0.01               0.01                 0                 100.0% 0.01            0.01              0% Miscellaneous Non‐HVAC Motor 88.8% 0.82               0.73                 14               88.8% 0.82            0.73              0% Miscellaneous Other Miscellaneous 100.0% 0.80               0.80                 15               100.0% 0.80            0.80              0% 13.90               266            12.9               New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 709 Washington Market Profiles, Baseline Forecast, and Potential Results A-10 www.gepllc.com Table A-11 Extra Large Industrial Segment Market Profile, Washington, 2009 EUI Intensity Usage EUI Intensity (kWh) (kWh/Sqft.) (GWh)(kWh) (kWh/Sqft.) Cooling Central Chiller 14.4% 7.98               1.15                 18               14.4% 7.18            1.04               ‐10% Cooling RTU 17.1% 6.32               1.08                 17               17.1% 5.68            0.97               ‐10% Cooling PTAC 1.1% 5.50               0.06                 1                 1.1% 4.95            0.05               ‐10% Combined Heating/Cooling Heat Pump 1.6% 11.13            0.18                 3                 1.6% 10.01          0.16               ‐10% Space Heating Electric Resistance 10.8% 8.67               0.93                 14               10.8% 8.67            0.93              0% Space Heating Furnace 2.0% 9.10               0.18                 3                 2.0% 8.19            0.17               ‐10% Ventilation Ventilation 27.4% 12.31            3.37                 52               27.4% 11.08          3.04               ‐10% Interior Lighting Interior Screw‐in 100.0% 0.33               0.33                 5                 100.0% 0.30            0.30               ‐10% Interior Lighting HID 100.0% 1.05               1.05                 16               100.0% 0.94            0.94               ‐10% Interior Lighting Linear Fluorescent 100.0% 1.10               1.10                 17               100.0% 0.99            0.99               ‐10% Exterior Lighting Exterior Screw‐in 92.5% 0.02               0.02                 0                 92.5% 0.02            0.02               ‐10% Exterior Lighting HID 92.5% 0.25               0.23                 4                 92.5% 0.23            0.21               ‐10% Exterior Lighting Linear Fluorescent 92.5% 0.01               0.01                 0                 92.5% 0.01            0.01               ‐10% Process Process Cooling/Refrigeration 2.4% 99.67            2.40                 37               2.4% 99.67          2.40              0% Process Process Heating 26.2% 13.74            3.60                 55               26.2% 13.74          3.60              0% Process Electrochemical Process 2.6% 77.43            2.00                 31               2.6% 77.43          2.00              0% Machine Drive Less than 5 HP 90.5% 0.92               0.84                 13               90.5% 0.92            0.84              0% Machine Drive 5‐24 HP 80.1% 2.26               1.81                 28               80.1% 2.26            1.81              0% Machine Drive 25‐99 HP 72.4% 6.10               4.42                 68               72.4% 6.10            4.42              0% Machine Drive 100‐249 HP 65.3% 3.84               2.51                 38               65.3% 3.84            2.51              0% Machine Drive 250‐499 HP 23.7% 11.61            2.75                 42               23.7% 11.61          2.75              0% Machine Drive 500 and more HP 26.1% 19.50            5.08                 78               26.1% 19.50          5.08              0% Miscellaneous Miscellaneous 100.0% 4.90               4.90                 75               100.0% 4.90            4.90              0% 40.00               614            39.1               New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 710 Washington Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners A-11 An EnerNOC Company Figure A–1 Residential Baseline Forecast by End Use, Washington Figure A-2 C&I Baseline Electricity Forecast by End Use, Washington ‐ 500,000  1,000,000  1,500,000  2,000,000  2,500,000  3,000,000  3,500,000  4,000,000  2009 2012 2017 2022 2027 2032 An n u a l  Us e  (M W h ) Cooling Space Heating Heat & Cool Water Heating Appliances Interior Lighting Exterior Lighting Electronics Miscellaneous ‐ 500,000  1,000,000  1,500,000  2,000,000  2,500,000  3,000,000  3,500,000  4,000,000  4,500,000  2009 2012 2017 2022 2027 2032 An n u a l  Us e  (M W h ) Cooling Space Heating Heat & Cool Ventilation Water Heating Food Preparation Refrigeration Interior Lighting Exterior Lighting Office Equipment Miscellaneous Machine Drive Process Avista 2011 Electric Integrated Resource Plan 711 Washington Market Profiles, Baseline Forecast, and Potential Results A-12 www.gepllc.com Table A-12 Baseline Forecast Summary by Sector, Washington End Use 2009 2012 2017 2022 2027 2032  % Change  ('09–'32)  Avg. Growth  Rate  ('09–'32)  Res. WA 2,451,707 2,448,104 2,617,630 2,947,427 3,329,882 3,792,486 54.7%1.9% C&I WA 2,852,165 2,955,156 3,209,083 3,509,816 3,869,176 4,280,649 50.1%1.8% Total 5,303,872 5,403,260 5,826,712 6,457,243 7,199,059 8,073,136 52.2%1.8% Figure A-3 Baseline Forecast Summary by Sector, Washington ‐ 1,000,000  2,000,000  3,000,000  4,000,000  5,000,000  6,000,000  7,000,000  8,000,000  9,000,000  An n u a l  Us e  (M W h ) Residential ‐WA C&I ‐WA Avista 2011 Electric Integrated Resource Plan 712 Washington Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners A-13 An EnerNOC Company Figure A-4 Summary of Energy Efficiency Potential Savings, Washington, All Sectors Figure A-5 Energy Efficiency Potential Forecasts, Washington, All Sectors Realistic Achievable  Maximum Achievable  Economic  Technical  0% 5% 10% 15% 20% 25% 30% 35% 40% 2012 2017 2022 2027 2032 En e r g y  Sa v i n g s  ( % of  Ba s e l i n e  Fo r e c a s t ) ‐ 1,000,000  2,000,000  3,000,000  4,000,000  5,000,000  6,000,000  7,000,000  8,000,000  9,000,000  En e r g y  Co n s u m p t i o n  (M W h ) Baseline  Realistic Achievable  Maximum Achievable  Economic  Technical  Avista 2011 Electric Integrated Resource Plan 713 Washington Market Profiles, Baseline Forecast, and Potential Results A-14 www.gepllc.com Table A-13 Summary of Energy Efficiency Potential, Washington, All Sectors  2012 2017 2022 2027 2032  Baseline Forecast  (MWh) 5,403,260 5,826,712 6,457,243 7,199,059 8,073,136  Baseline Peak  Demand(MW) 1,170 1,236 1,374 1,531 1,713  Cumulative Energy Savings (MWh)     Realistic Achievable 33,146 267,962 616,991 1,007,301 1,411,648  Maximum Achievable 57,434 679,603 1,258,467 1,598,673 1,869,605  Economic 156,759 956,924 1,517,670 1,853,199 2,143,779  Technical 212,980 1,349,814 2,191,746 2,718,118 3,118,733  Cumulative Energy Savings (% of Baseline)     Realistic Achievable 0.6% 4.6% 9.6% 14.0% 17.5%  Maximum Achievable 1.1% 11.7% 19.5% 22.2% 23.2%  Economic 2.9% 16.4% 23.5% 25.7% 26.6%  Technical 3.9% 23.2% 33.9% 37.8% 38.6%  Peak Savings (MW)     Realistic Achievable 10 57 126 212 298  Maximum Achievable 15 142 266 339 388  Economic 41 204 325 394 447  Technical 53 289 457 565 645  Peak Savings (% of Baseline)     Realistic Achievable 0.8% 4.6% 9.2% 13.8% 17.4%  Maximum Achievable 1.3% 11.5% 19.3% 22.1% 22.6%  Economic 3.5% 16.5% 23.7% 25.8% 26.1%  Technical 4.6% 23.4% 33.3% 36.9% 37.6%  Table A-14 Achievable Cumulative EE Potential by Sector, Washington (MWh) Segment 2012 2017 2022 2027 2032 Residential, WA 17,413 94,529 238,739 431,973 637,029 C&I, WA 15,733 173,433 378,252 575,328 774,619 Total 33,146 267,962 616,991 1,007,301 1,411,648 Avista 2011 Electric Integrated Resource Plan 714 Washington Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners A-15 An EnerNOC Company Figure A-6 Achievable Cumulative Potential by Sector, Washington Figure A-7 Residential Energy Efficiency Potential Savings, Washington Figure A-8 Residential Energy Efficiency Potential Forecast, Washington 0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000 1,600,000 2012 2017 2022 2027 2032 C&I, WA Residential, WASa v i n g s  (M W h ) Realistic Achievable  Maximum Achievable  Economic  Technical  0% 5% 10% 15% 20% 25% 30% 35% 40% 2012 2017 2022 2027 2032 En e r g y  Sa v i n g s  (%  of  Ba s e l i n e  Fo r e c a s t ) ‐ 500,000  1,000,000  1,500,000  2,000,000  2,500,000  3,000,000  3,500,000  4,000,000  En e r g y  Co n s u m p t i o n  (M W h ) Baseline  Realistic Achievable Maximum Achievable Economic  Technical  Avista 2011 Electric Integrated Resource Plan 715 Washington Market Profiles, Baseline Forecast, and Potential Results A-16 www.gepllc.com Table A-15 Energy Efficiency Potential for the Residential Sector, Washington  2012 2017 2022 2027 2032  Baseline Forecast (MWh) 2,448,104 2,617,630 2,947,427 3,329,882 3,792,486  Baseline Peak Demand  (MW) 710 736 825 925 1,041  Cumulative Energy Savings (MWh)     Realistic achievable 17,413 94,529 238,739 431,973 637,029  Maximum achievable 24,459 298,135 567,960 730,774 843,186  Economic 70,743 404,323 687,451 847,003 970,769  Technical 103,446 626,769 1,005,455 1,250,538 1,446,982  Cumulative Energy Savings (% of Baseline)     Realistic Achievable 0.7% 3.6% 8.1% 13.0% 16.8%  Maximum achievable 1.0% 11.4% 19.3% 21.9% 22.2%  Economic 2.9% 15.4% 23.3% 25.4% 25.6%  Technical 4.2%23.9% 34.1% 37.6% 38.2% Peak Savings (MW)     Realistic Achievable 7 32 74 133 193  Maximum achievable 10 87 171 222 251  Economic 27 124 211 258 290  Technical 37 187 298 368 422  Peak Savings (% of Baseline)     Realistic Achievable 1.0% 4.3% 9.0% 14.4% 18.5%  Maximum achievable 1.4% 11.9% 20.7% 24.0% 24.1%  Economic 3.9% 16.8% 25.5% 27.9% 27.8%  Technical 5.2% 25.4% 36.1% 39.8% 40.5%  Avista 2011 Electric Integrated Resource Plan 716 Washington Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners A-17 An EnerNOC Company Table A-16 Residential Baseline & Realistic Achievable Potential by Segment, WA  2012 2017 2022 2027 2032 Baseline Forecast (MWh)     Single Family 1,585,536 1,691,161 1,906,692 2,156,609 2,459,834  Multi Family 160,305 175,186 199,898 227,929 260,943  Mobile Home 68,448 72,476 81,311 91,591 104,051  Limited Income 633,816 678,807 759,527 853,753 967,658  Total 2,448,104 2,617,630 2,947,427 3,329,882 3,792,486  Energy Savings, Realistic Achievable Potential (MWh)     Single Family 12,388 64,350 164,414 291,057 426,412 Multi Family 830 4,691 12,243 24,346 36,864 Mobile Home 520 2,283 4,274 7,827 11,714 Limited Income 3,674 23,204 57,808 108,744 162,039 Total 17,413 94,529 238,739 431,973 637,029 % of Total Residential Energy Savings  Single Family 71.1% 68.1% 68.9% 67.4% 66.9%  Multi Family 4.8% 5.0% 5.1% 5.6% 5.8%  Mobile Home 3.0% 2.4% 1.8% 1.8% 1.8%  Limited Income 21.1% 24.5% 24.2% 25.2% 25.4%  Table A-17 Residential Potential by Housing Type, 2022, Washington Forecast Single  Family  Multi  Family  Mobile  Home  Limited  Income Total  Baseline Forecast (MWh) 1,906,692 199,898 81,311 759,527 2,947,427  Cumulative Energy Savings (MWh)  Realistic Achievable 164,414 12,243 4,274 57,808 238,739  Maximum Achievable 386,645 31,832 9,576 139,906 567,960  Economic Potential  463,459 39,746 11,955 172,291 687,451  Technical Potential 639,003 61,512 28,913 276,028 1,005,455  Energy Savings % of Baseline  Realistic Achievable 8.6% 6.1% 5.3% 7.6% 8.1%  Maximum Achievable 20.3% 15.9% 11.8% 18.4% 19.3%  Economic Potential  24.3% 19.9% 14.7% 22.7% 23.3%  Technical Potential 33.5% 30.8% 35.6% 36.3% 34.1%  Avista 2011 Electric Integrated Resource Plan 717 Washington Market Profiles, Baseline Forecast, and Potential Results A-18 www.gepllc.com Table A-18 Residential Cumulative Savings by End Use and Potential Type, Washington (MWh) End Use Case 2012 2017 2022 2027 2032  Cooling  Realistic Achievable 9 1,659 5,876 15,615 29,687  Economic 246 15,452 28,210 40,243 54,276  Technical 2,766 42,662 68,576 97,845 132,886  Space Heating  Realistic Achievable 216 12,242 57,209 132,448 215,198  Economic 6,791 110,158 213,315 282,271 338,227  Technical 9,175 144,853 273,139 365,838 453,464  Heat/Cool  Realistic Achievable  9 595 1,581 4,130 10,179  Economic 311 8,778 10,272 12,770 18,457  Technical 2,278 18,977 32,657 45,591 52,056  Water Heating  Realistic Achievable 469 18,949 78,476 154,418 239,950  Economic 9,253 101,513 227,153 297,020 348,485  Technical 24,475 195,999 366,992 463,545 517,698  Appliances  Realistic Achievable 848 8,195 17,794 28,160 39,054  Economic 3,663 40,418 53,006 56,444 60,723  Technical 4,768 51,790 69,442 75,057 79,777  Interior Lighting  Realistic Achievable 12,389 34,835 44,682 52,336 47,795  Economic 36,945 71,839 81,146 74,030 56,992  Technical 43,188 98,598 97,421 91,087 84,570  Exterior Lighting  Realistic Achievable  2,156 6,922 7,102 6,615 5,305  Economic 6,420 14,434 11,588 8,760 6,252  Technical 7,353 18,822 16,360 14,884 14,685  Electronics  Realistic Achievable 1,173 8,913 21,007 29,939 37,810  Economic 5,909 30,195 44,462 50,005 57,525  Technical 8,171 43,205 61,954 70,337 81,054  Miscellaneous  Realistic Achievable 145 2,218 5,012 8,312 12,051  Economic 1,205 11,535 18,300 25,461 29,833  Technical 1,273 11,864 18,916 26,354 30,793  Total  Realistic Achievable 17,413 94,529 238,739 431,973 637,029  Economic 70,743 404,323 687,451 847,003 970,769  Technical 103,446 626,769 1,005,455 1,250,538 1,446,982  Avista 2011 Electric Integrated Resource Plan 718 Washington Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners A-19 An EnerNOC Company Figure A–9 Residential Achievable Potential by End Use, Selected Years, Washington Table A-19 Residential Realistic Achievable Potential by End Use and Market Segment, 2022, WA (MWh)  Single Family Multi Family Mobile  Home  Limited  Income Total  Cooling  3,239 206 70 2,360 5,876 Space heating 44,225 3,196 506 9,282 57,209 Heat/cool 1,464 10 49 58 1,581 Water heating 44,891 5,834 886 26,864 78,476 Appliances 12,433 426 499 4,436 17,794 Interior lighting 31,573 1,880 1,155 10,074 44,682 Exterior lighting 5,854 99 252 896 7,102 Electronics 16,296 587 685 3,438 21,007 Miscellaneous 4,438 5 171 399 5,012 Total 164,414 12,243 4,274 57,808 238,739   ‐100,000 200,000 300,000 400,000 500,000 600,000 700,000  2012 2017 2022 2027 2032 Cumulative Savings (MWh) Cooling  Space heating Heat/cool Water heating Appliances Int. lighting Ext. lighting Electronics Miscellaneous Avista 2011 Electric Integrated Resource Plan 719 Washington Market Profiles, Baseline Forecast, and Potential Results A-20 www.gepllc.com Table A-20 Residential Cumulative Realistic Achievable Potential by End Use and Equipment Measures, Washington, Selected Years (MWh) End Use Technology 2012 2017 2022  Cooling Central AC ‐100 112 Heat/Cool Air Source Ht. Pump ‐‐ ‐ Water Heating Water Heater 97 726 760 Appliances  Clothes Washer 54 661 1,664 Clothes Dryer 68 468 858 Dishwasher 75 701 1,709 Refrigerator 293 1,347 2,798 Freezer 220 1,091 2,371 Second Refrigerator 101 490 949 Stove 14 109 245 Interior Lighting  Screw‐in 11,536 28,508 34,316 Linear Fluorescent 117 1,267 2,373 Pin‐based 735 4,932 7,438 Exterior Lighting  Screw‐in 2,139 6,837 6,987 High Intensity/Flood 17 85 115 Electronics Personal Computers 758 6,128 10,557 TVs 407 2,139 3,960 Miscellaneous Pool Pump 110 1,022 2,525 Furnace Fan 29 358 1,066 Total 16,770 56,971 80,803 Avista 2011 Electric Integrated Resource Plan 720 Washington Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners A-21 An EnerNOC Company Table A-21 Residential Realistic Achievable Savings for Non-equipment Measures, Washington (MWh) Measure 2012 2017 2022  Water Heater ‐ Convert to Gas 211 8,173 55,933  Furnace ‐ Convert to Gas 172 5,504 35,051  Advanced New Construction Designs 1 119 2,781 Repair and Sealing ‐ Ducting 13 1,860 5,347 Insulation ‐ Infiltration Control 14 1,927 5,432 Water Heater ‐ Thermostat Setback 98 5,644 9,489 Home Energy Management System 5 798 2,822 Water Heater ‐ Hot Water Saver 4 296 3,785 Freezer ‐ Remove Second Unit 15 2,142 4,592 Thermostat ‐ Clock/Programmable 15 2,060 5,686 Electronics ‐ Reduce Standby Wattage 8 646 6,490 Insulation ‐ Foundation 1 298 1,351 Air Source Heat Pump ‐ Maintenance 9 595 1,581 Refrigerator ‐ Remove Second Unit 8 1,185 2,608 Water Heater ‐ Faucet Aerators 9 685 1,639 Insulation ‐ Ducting 1 146 836 Insulation ‐ Wall Cavity 0 190 865 Water Heater ‐ Tank Blanket/Insulation 34 1,803 2,812 Room AC ‐ Removal of Second Unit 4 638 1,582 Ceiling Fan ‐ Installation 0 63 576 Water Heater ‐ Timer 8 934 1,676 Insulation ‐ Ceiling 2 285 862 Water Heater ‐ Low Flow Showerheads 6 617 1,233 Water Heater ‐ Heat Pump ‐11 458 Central AC ‐ Maintenance and Tune‐Up ‐ ‐  ‐ Insulation ‐ Wall Sheathing 0 36 172 Pool ‐ Pump Timer 5 838 1,421 Water Heater ‐ Pipe Insulation 1 72 692 Whole‐House Fan ‐ Installation ‐6 166 Total 643 37,558 157,936  Avista 2011 Electric Integrated Resource Plan 721 Washington Market Profiles, Baseline Forecast, and Potential Results A-22 www.gepllc.com Figure A-10 Energy Efficiency Potential Savings, C&I Sector, Washington Figure A-11 Energy Efficiency Potential Forecast, C&I Sector, Washington Realistic Achievable  Maximum Achievable  Economic  Technical  0% 5% 10% 15% 20% 25% 30% 35% 40% 2012 2017 2022 2027 2032 En e r g y  Sa v i n g s  ( % of  Ba s e l i n e  Fo r e c a s t ) ‐ 500,000  1,000,000  1,500,000  2,000,000  2,500,000  3,000,000  3,500,000  4,000,000  4,500,000  En e r g y  Co n s u m p t i o n  (M W h ) Baseline  Realistic Achievable  Maximum Achievable  Economic  Technical  Avista 2011 Electric Integrated Resource Plan 722 Washington Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners A-23 An EnerNOC Company Table A-22 Energy Efficiency Potential, C&I Sector, Washington  2012 2017 2022 2027 2032 Baseline Forecast (MWh) 2,955,156 3,209,083 3,509,816 3,869,176 4,280,649  Baseline Peak  Demand(MW) 460 500 549 607 671  Cumulative Energy Savings (MWh)   Realistic Achievable 15,733 173,433 378,252 575,328 774,619 Maximum Achievable   32,975 381,468 690,507 867,899 1,026,419 Economic 86,016 552,602 830,218 1,006,195 1,173,010 Technical 109,533 723,045 1,186,290 1,467,580 1,671,750 Cumulative Energy Savings (% of Baseline)  Realistic Achievable 0.5% 5.4%10.8% 14.9% 18.1% Maximum Achievable   1.1%11.9% 19.7% 22.4% 24.0% Economic 2.9%17.2% 23.7% 26.0% 27.4% Technical 3.7%22.5% 33.8% 37.9% 39.1% Peak Savings (MW)   Realistic Achievable 2 25 52 79 105 Maximum Achievable   5 55 95 117 137 Economic 13 80 114 137 157 Technical 17 102 159 197 223 Peak Savings (% of Baseline)   Realistic Achievable 0.5% 5.1% 9.5%13.0% 15.7% Maximum Achievable   1.1%11.0% 17.2% 19.4% 20.4% Economic 2.9%15.9% 20.8% 22.6% 23.4% Technical 3.6%20.4% 28.9% 32.5% 33.2% Avista 2011 Electric Integrated Resource Plan 723 Washington Market Profiles, Baseline Forecast, and Potential Results A-24 www.gepllc.com Table A-23 C&I Sector, Baseline and Realistic Achievable Potential by Segment, Washington  2012 2017 2022 2027 2032  Baseline Forecast (MWh)     Small/Med. Commercial  413,131 436,628 470,488 512,594 560,964  Large Commercial  1,558,848 1,641,938 1,770,523 1,927,937 2,109,236  Extra Large Commercial  275,848 338,184 367,338 399,653 434,542  Extra Large Industrial  707,328 792,332 901,468 1,028,993 1,175,907  Total  2,955,156 3,209,083 3,509,816 3,869,176 4,280,649  Cumulative Energy Savings, Achievable Potential (MWh)     Small/Med. Commercial  2,551 25,567 52,366 79,356 108,891  Large Commercial  10,092 112,528 231,487 335,497 435,628  Extra Large Commercial  2,607 27,021 56,555 85,997 112,469  Extra Large Industrial  483 8,317 37,844 74,477 117,630  Total  15,733 173,433 378,252 575,328 774,619  % of Total C&I Cumulative Energy Savings  Small/Med. Commercial  16.2% 14.7% 13.8% 13.8% 14.1%  Large Commercial  64.1% 64.9% 61.2% 58.3% 56.2%  Extra Large Commercial  16.6% 15.6% 15.0% 14.9% 14.5%  Extra Large Industrial  3.1% 4.8% 10.0% 12.9% 15.2%  Table A-24 C&I Potential by Segment, Washington, 2022 Forecast Small/Med. Commercial  Large  Commercial  Extra Large  Commercial  Extra Large  Industrial Total  Baseline Forecast (MWh) 470,488 1,770,523 367,338 901,468 3,509,816  Cumulative Energy Savings (MWh)  Realistic Achievable 52,366 231,487 56,555 37,844 378,252  Economic Potential  106,676 441,853 118,311 163,378 830,218  Technical Potential 172,714 650,066 148,095 215,416 1,186,290  Cumulative Energy Savings % of Baseline Realistic Achievable 11% 13% 15% 4% 11%  Economic Potential  23% 25% 32% 18% 24%  Technical Potential 37% 37% 40% 24% 34%  Avista 2011 Electric Integrated Resource Plan 724 Washington Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners A-25 An EnerNOC Company Table A-25 C&I Cumulative Savings by End Use and Potential Type, Washington (MWh) End Use Case 2012 2017 2022 2027 2032  Cooling  Realistic Achievable 127 8,672 29,166 48,498 72,425  Economic 1,709 30,259 62,983 86,699 116,136  Technical 4,457 60,126 124,114 157,093 189,090  Space Heating  Realistic Achievable 10 1,427 7,180 14,045 23,624  Economic 212 7,563 19,650 28,833 42,274  Technical 356 11,555 32,534 45,033 60,186  Heat/Cool  Realistic Achievable 31 2,494 4,572 5,575 6,982  Economic 357 5,927 7,558 8,984 10,138  Technical 483 6,778 9,118 11,073 12,505  Ventilation  Realistic Achievable 246 4,256 20,112 40,397 69,089  Economic 4,017 29,775 75,187 107,501 130,189  Technical 6,107 47,417 127,261 172,058 190,303  Water Heating  Realistic Achievable 181 4,769 10,742 16,921 23,513  Economic 1,709 15,526 22,956 29,467 31,482  Technical 8,806 63,741 116,091 166,541 183,186  Food  Preparation  Realistic Achievable 140 1,796 5,159 9,950 14,898  Economic 1,863 11,976 21,990 26,511 28,922  Technical 2,173 13,179 24,316 29,162 31,947  Refrigeration  Realistic Achievable 123 1,246 4,138 7,959 11,717  Economic 1,843 8,978 17,215 22,233 24,920  Technical 2,183 11,986 26,785 34,794 39,418  Interior Lighting  Realistic Achievable 11,768 111,221 218,748 316,260 394,891  Economic 50,511 299,598 396,845 456,682 523,557  Technical 55,416 327,215 442,057 510,066 581,362  Exterior Lighting  Realistic Achievable 1,108 15,661 30,450 38,068 45,433  Economic 4,693 44,035 50,942 53,236 56,711  Technical 5,191 48,166 57,089 64,537 72,708  Office  Equipment  Realistic Achievable 1,779 18,258 30,020 39,448 49,199  Economic 12,800 58,446 61,458 64,159 66,791  Technical 17,214 80,539 85,590 90,712 96,009  Machine Drive  Realistic Achievable 199 2,492 8,718 15,739 23,806  Economic 2,252 17,069 40,392 50,946 58,527  Technical 2,653 26,498 84,466 111,180 128,005  Process  Realistic Achievable 17 999 8,473 20,545 35,763  Economic 3,980 22,472 50,483 66,505 77,283  Technical 3,980 22,472 50,483 66,505 77,283  Miscellaneous  Realistic Achievable 5 142 775 1,924 3,280  Economic 70 977 2,561 4,439 6,080  Technical 514 3,373 6,388 8,826 9,749  Total  Realistic Achievable 15,733 173,433 378,252 575,328 774,619  Economic 86,016 552,602 830,218 1,006,195 1,173,010  Technical 109,533 723,045 1,186,290 1,467,580 1,671,750  Avista 2011 Electric Integrated Resource Plan 725 Washington Market Profiles, Baseline Forecast, and Potential Results A-26 www.gepllc.com Figure A-12 C&I Achievable Potential by End Use, Selected Years, Washington Table A-26 C&I Realistic Achievable Potential by End Use and Market Segment, 2022, Washington (MWh)  Small/Med.  Commercial  Large  Commercial  Extra Large  Commercial  Extra Large  Industrial Total  Cooling 1,017 17,942 4,119 6,087 29,166 Space Heating 440 4,617 1,216 906 7,180 Combined  Heating/Cooling 323 3,597 464 188 4,572  Ventilation 4,268 3,818 4,496 7,530 20,112 Water Heating 1,238 3,974 5,530 ‐ 10,742 Food Preparation 700 3,815 644 ‐ 5,159 Refrigeration 741 3,001 396 ‐ 4,138 Interior Lighting 33,054 149,244 30,943 5,507 218,748 Exterior Lighting 5,854 18,916 5,246 434 30,450 Office Equipment 4,529 22,130 3,362 ‐ 30,020 Machine Drive  ‐  ‐ ‐8,718 8,718 Process  ‐  ‐ ‐8,473 8,473 Miscellaneous 202 432 141 ‐ 775 Total 52,366 231,487 56,555 37,844 378,252 ‐100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000  2012 2017 2022 2027 2032 Cooling Space Heating Heat/cool Ventilation Water Heating Food Preparation Refrigeration Interior Lighting Exterior Lighting Office Equipment Miscellaneous Machine Drive Process Cumulative Savings(MWh) Avista 2011 Electric Integrated Resource Plan 726 Washington Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners A-27 An EnerNOC Company Table A-27 C&I Cumulative Achievable Potential by End Use and Equipment Measures, Washington (MWh) End Use Technology 2012 2017 2022  Cooling Central Chiller 53 551 2,062  PTAC 4 4 4  Heat/Cool Heat Pump 14 263 795  Ventilation Ventilation 235 3,625 13,529  Water Heater Water Heater 160 1,908 4,354  Food Preparation   Fryer 9 101 271  Hot Food Container 5 172 488  Oven 127 1,495 3,996  Refrigeration  Glass Door Display 21 279 808  Icemaker 16 216 644  Solid Door Refrigerator 29 332 893  Vending Machine 55 303 740  Walk in Refrigeration 21 279 808  Interior Lighting  Interior Screw‐in 6,957 45,558 69,399  HID 1,823 16,436 32,323  Linear Fluorescent 2,869 35,193 69,229  Exterior Lighting  Screw‐in 154 2,018 3,288  HID 864 10,866 21,367  Linear Fluorescent 82 1,472 2,497  Office Equipment  Desktop Computer 1,056 9,794 15,665  Laptop Computer 75 700 1,119  Monitor 211 757 1,307  POS Terminal 23 318 580  Printer/copier/fax 66 1,061 1,963  Server 342 4,823 7,781  Machine Drive  Less than 5 HP 13 92 280  5‐24 HP 28 208 649  25‐99 HP 69 518 1,616  100‐249 HP 19 146 455  250‐499 HP 21 155 484  500 and more HP 39 292 913  Process  Electrochem. Process 2 138 1,150  Process Cooling/Refrig. 3 185 1,538  Process Heating 11 658 5,482  Miscellaneous Non‐HVAC Motor 4 70 339  Total 15,460 140,725 268,060  Avista 2011 Electric Integrated Resource Plan 727 Washington Market Profiles, Baseline Forecast, and Potential Results A-28 www.gepllc.com Table A-28 C&I Cumulative Achievable Savings for Non-equipment Measures, Washington (MWh) Measure 2012 2017 2022  Energy Management System 25 1,553 16,501  Advanced New Construction Designs 1 70 1,070  Retrocommissioning ‐ Lighting 37 7,653 14,120  Interior Fluorescent ‐ High Bay Fixtures 13 787 8,430  Retrocommissioning ‐ Comprehensive 29 6,096 10,951  Custom Measures 2 533 7,173  RTU ‐ Maintenance 39 4,686 8,093  Fans ‐ Variable Speed Control 5 218 2,179  Fans ‐ Energy Efficient Motors 5 304 3,318  Interior Lighting ‐ Photocell Controlled T8 Dimming Ballasts 0 39 342  Interior Lighting ‐ Occupancy Sensors 13 477 3,666  Interior Fluorescent ‐ Delamp and Install Reflectors 12 506 3,807  Water Heater ‐ Faucet Aerators/Low Flow Nozzles 18 2,657 5,409  Commissioning ‐ Comprehensive 0 245 1,809  Retrocommissioning ‐ HVAC 2 258 2,720  Heat Pump ‐ Maintenance 17 2,231 3,777  Motors ‐ Variable Frequency Drive 7 883 1,911  Motors ‐ Magnetic Adjustable Speed Drives 3 146 1,535  Roofs ‐ High Reflectivity 1 33 262  Chiller ‐ Turbocor Compressor 2 109 1,244  Chiller ‐ Condenser Water Temperature Reset 4 222 2,148  Chiller ‐ VSD 1 81 859  Commissioning ‐ Lighting 0 155 528  Thermostat ‐ Clock/Programmable 3 458 904  Office Equipment ‐ ENERGY STAR Power Supply 6 806 1,605  Exterior Lighting ‐ Daylighting Controls 2 92 747  Water Heater ‐ Heat Pump 0 54 659  Cooking ‐ Exhaust Hoods with Sensor Control 0 8 71  Cooling ‐ Economizer Installation 2 83 760  Insulation ‐ Ducting 1 53 443  Exterior Lighting ‐ Induction Lamps 0 20 290  Furnace ‐ Convert to Gas 1 45 297  Chiller ‐ Chilled Water Reset 1 242 437  Insulation ‐ Wall Cavity 0 10 146  Insulation ‐ Ceiling 0 1 17  Refrigeration ‐ System Optimization 0 10 159  LED Exit Lighting 17 613 670  Industrial Process Improvements 0 17 205  Avista 2011 Electric Integrated Resource Plan 728 Washington Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners A-29 An EnerNOC Company Measure 2012 2017 2022  Refrigeration ‐ System Controls 0 7 112  Commissioning ‐ HVAC  ‐ ‐ 16  Water Heater ‐ Tank Blanket/Insulation 2 144 254  Pumps ‐ Variable Speed Control 0 9 106  Miscellaneous ‐ ENERGY STAR Water Cooler 0 40 115  Refrigeration ‐ Strip Curtain  ‐ 1 20  Refrigeration ‐ Floating Head Pressure 0 6 59  Water Heater ‐ Hot Water Saver  ‐ ‐ 2  Refrigeration ‐ Anti‐Sweat Heater/Auto Door Closer 0 4 46  Refrigeration ‐ System Maintenance 0 2 32  Water Heater ‐ High Efficiency Circulation Pump 0 6 64  Vending Machine ‐ Controller 0 26 44  Chiller ‐ Chilled Water Variable‐Flow System 0 4 32  Exterior Lighting ‐ Cold Cathode Lighting 0 1 16  Laundry ‐ High Efficiency Clothes Washer 0 6 10  Refrigeration ‐ Night Covers 0 0 5  Total 273 32,708 110,192  Avista 2011 Electric Integrated Resource Plan 729 Avista 2011 Electric Integrated Resource Plan 730 Global Energy Partners B-1 An EnerNOC Company APPENDIX B IDAHO MARKET PROFILES, BASELINE FORECAST, AND POTENTIAL RESULTS This appendix contains Idaho-specific tables that summarize the study assumptions, inputs, and results for Avista’s Idaho service territory only. These tables either repeat Idaho-specific information provided previously within the body of the report, or provide Idaho-specific information that corresponds to Avista system-level information in the report. Table B–1 Electricity Use and Peak Demand by Rate Class, Idaho 2009 Sector  Rate  Schedule(s)  Number of meters  (customers)  2009 Electricity  sales (MWh)  Peak demand  (MW)  Residential 001 99,580 1,182,368 283 General Service 011, 012 19,245 322,570 61 Large General Service 021, 022 1,456 699,953 115 Extra Large General Service 025, 025P 10 266,044 40 Extra Large GS Potlatch 025P 1 892 101 Pumping 031, 032 1,312 58,885 4 Total   121,604 3,422,111 603 Table B–2 Residential Electricity Usage and Intensity by Segment, Idaho 2009 Idaho  Segment  Intensity    (kWh/Household)  Number of   Customers  % of  Customers  2009 Electricity  Sales (MWh) % of Sales  Single Family 13,703 59,205 59% 811,302 69%  Multi‐Family 8,213 5,237 5% 43,013 4%  Mobile Home 12,320 4,774 5% 58,815 5%  Limited Income 8,868 30,363 31% 269,249 23%  Total 11,874 99,580 100% 1,182,379 100%  Note: Minor differences with totals in Table B–1 due to calibration. Avista 2011 Electric Integrated Resource Plan 731 Idaho Market Profiles, Baseline Forecast, and Potential Results B-2 www.gepllc.com Table B–3 Single Family Market Profile, 2009, Idaho UEC Intensity Usage UEC Intensity (kWh) (kWh/HH) (GWh)(kWh) (kWh/HH) Cooling Central AC 36.8% 1,857            684                  41               73.4% 2,154          1,581            16% Cooling Room AC 10.8% 683                74                     4                 1.4% 793             11                  16% Combined Heating/Cooling Air Source Heat Pump 14.7% 6,377            940                  56               13.6% 7,398          1,004            16% Combined Heating/Cooling Geothermal Heat Pump 0.7% 3,826            27                     2                 0.8% 4,439          33                  16% Space Heating Electric Resistance 5.0% 11,494          570                  34               2.5% 13,793       342                20% Space Heating Electric Furnace 20.0% 9,195            1,837               109            21.0% 11,035       2,315            20% Space Heating Supplemental 6.1% 128                8                       0                 6.1% 154             9                    20% Water Heating Water Heater 44.4% 3,813            1,694               100            37.8% 4,595          1,736            21% Interior Lighting Screw‐in 100.0% 1,394            1,394               83               100.0% 1,394          1,394            0% Interior Lighting Linear Fluorescent 69.2% 146                101                  6                 69.2% 146             101                0% Interior Lighting Pin‐based 100.0% 58                  58                     3                 100.0% 58                58                  0% Exterior Lighting Screw‐in 86.7% 366                317                  19               86.7% 366             317                0% Exterior Lighting High Intensity/Flood 1.9% 140                3                       0                 1.9% 140             3                    0% Appliances Clothes Washer 98.0% 126                124                  7                 99.8% 154             154                22% Appliances Clothes Dryer 92.8% 609                565                  33               89.0% 692             616                14% Appliances Dishwasher 93.9% 246                231                  14               99.9% 271             271                11% Appliances Refrigerator 100.0% 793                793                  47               100.0% 625             625                 ‐21% Appliances Freezer 69.4% 773                536                  32               69.4% 708             491                 ‐8% Appliances Second Refrigerator 47.3% 816                386                  23               20.5% 711             146                 ‐13% Appliances Stove 82.1% 383                314                  19               82.1% 465             382                22% Appliances Microwave 98.5% 168                166                  10               98.5% 173             171                3% Electronics Personal Computers 140.0% 279                391                  23               147.0% 287             422                3% Electronics TVs 260.0% 359                933                  55               260.0% 400             1,041            12% Electronics Devices and Gadgets 100.0% 60                  60                     4                 100.0% 67                67                  10% Miscellaneous Pool Pump 13.3% 1,500            200                  12               14.0% 1,526          214                2% Miscellaneous Furnace Fan 30.1% 550                166                  10               30.1% 675             203                23% Miscellaneous Miscellaneous 100.0% 1,132            1,132               67               100.0% 1,359          1,359            20% 13,703            811            15,063           New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 732 Idaho Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners B-3 An EnerNOC Company Table B–4 Multi-family Market Profile, 2009, Idaho UEC Intensity Usage UEC Intensity (kWh) (kWh/HH) (GWh)(kWh) (kWh/HH) Cooling Central AC 5.0% 845                42                     0                 24.1% 912             220                8% Cooling Room AC 25.0% 324                81                     0                 18.9% 350             66                  8% Combined Heating/Cooling Air Source Heat Pump 1.0% 2,665            27                     0                 3.4% 2,878          98                  8% Combined Heating/Cooling Geothermal Heat Pump 0.0% 1,599            ‐                    ‐             0.5% 1,727          9                    8% Space Heating Electric Resistance 59.0% 4,983            2,940               15               59.0% 5,481          3,234            10% Space Heating Electric Furnace 5.0% 3,986            199                  1                 5.0% 4,385          219                10% Space Heating Supplemental 18.0% 56                  10                     0                 18.9% 61                12                  10% Water Heating Water Heater 77.0% 1,936            1,491               8                 71.3% 2,134          1,522            10% Interior Lighting Screw‐in 100.0% 750                750                  4                 100.0% 750             750                0% Interior Lighting Linear Fluorescent 32.0% 76                  24                     0                 32.0% 76                24                  0% Interior Lighting Pin‐based 3.0% 75                  2                       0                 3.0% 75                2                    0% Exterior Lighting Screw‐in 38.5% 55                  21                     0                 38.5% 55                21                  0% Exterior Lighting High Intensity/Flood 0.2% 73                  0                       0                 0.2% 73                0                    0% Appliances Clothes Washer 32.0% 63                  20                     0                 32.0% 70                22                  11% Appliances Clothes Dryer 30.7% 582                179                  1                 30.7% 621             191                7% Appliances Dishwasher 64.0% 88                  56                     0                 64.0% 93                59                  5% Appliances Refrigerator 100.0% 677                677                  4                 100.0% 665             665                 ‐2% Appliances Freezer 8.4% 734                62                     0                 8.4% 703             59                   ‐4% Appliances Second Refrigerator 5.0% 687                34                     0                 5.0% 631             32                   ‐8% Appliances Stove 96.4% 163                158                  1                 96.4% 181             175                11% Appliances Microwave 90.0% 99                  89                     0                 90.0% 101             91                  1% Electronics Personal Computers 63.0% 223                141                  1                 66.2% 226             150                1% Electronics TVs 165.0% 178                293                  2                 165.0% 188             310                6% Electronics Devices and Gadgets 100.0% 25                  25                     0                 100.0% 26                26                  5% Miscellaneous Pool Pump 0.0%‐                 ‐                    ‐             0.0%‐              ‐                0% Miscellaneous Furnace Fan 13.0% 38                  5                       0                 13.0% 42                5                    11% Miscellaneous Miscellaneous 100.0% 888                888                  5                 100.0% 932             932                5% 8,213               43               8,893             New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 733 Idaho Market Profiles, Baseline Forecast, and Potential Results B-4 www.gepllc.com Table B–5 Mobile Home Market Profile, 2009, Idaho UEC Intensity Usage UEC Intensity (kWh) (kWh/HH) (GWh)(kWh) (kWh/HH) Cooling Central AC 23.2% 962                223                  1                 35.9% 1,039          373                8% Cooling Room AC 23.2% 354                82                     0                 22.0% 382             84                  8% Combined Heating/Cooling Air Source Heat Pump 21.7% 3,035            660                  3                 22.8% 3,277          748                8% Combined Heating/Cooling Geothermal Heat Pump 0.0% 1,821            ‐                    ‐             0.0% 1,966          ‐                8% Space Heating Electric Resistance 0.0% 5,122            ‐                    ‐             0.0% 5,634          ‐                10% Space Heating Electric Furnace 68.1% 4,098            2,792               13               68.1% 4,508          3,071            10% Space Heating Supplemental 1.4% 30                  0                       0                 1.5% 33                0                    10% Water Heating Water Heater 96.3% 1,607            1,549               7                 91.0% 1,772          1,612            10% Interior Lighting Screw‐in 100.0% 1,307            1,307               6                 100.0% 1,307          1,307            0% Interior Lighting Linear Fluorescent 69.2% 137                95                     0                 69.2% 137             95                  0% Interior Lighting Pin‐based 100.0% 54                  54                     0                 100.0% 54                54                  0% Exterior Lighting Screw‐in 86.7% 343                297                  1                 86.7% 343             297                0% Exterior Lighting High Intensity/Flood 1.9% 131                2                       0                 1.9% 131             2                    0% Appliances Clothes Washer 96.3% 128                124                  1                 96.3% 142             137                11% Appliances Clothes Dryer 98.8% 620                612                  3                 98.8% 662             653                7% Appliances Dishwasher 89.0% 250                222                  1                 89.0% 263             234                5% Appliances Refrigerator 100.0% 806                806                  4                 100.0% 792             792                 ‐2% Appliances Freezer 59.3% 786                466                  2                 59.3% 753             446                 ‐4% Appliances Second Refrigerator 19.5% 830                162                  1                 19.5% 762             149                 ‐8% Appliances Stove 93.9% 344                323                  2                 93.9% 381             358                11% Appliances Microwave 82.0% 151                124                  1                 82.0% 154             126                2% Electronics Personal Computers 116.5% 262                305                  1                 122.3% 265             324                1% Electronics TVs 260.0% 359                933                  4                 260.0% 380             987                6% Electronics Devices and Gadgets 100.0% 60                  60                     0                 100.0% 64                64                  5% Miscellaneous Pool Pump 11.1% 1,500            167                  1                 11.7% 1,513          177                1% Miscellaneous Furnace Fan 8.3% 500                42                     0                 8.3% 557             47                  11% Miscellaneous Miscellaneous 100.0% 913                913                  4                 100.0% 959             959                5% 12,320            59               13,096           New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 734 Idaho Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners B-5 An EnerNOC Company Table B–6 Limited Income Market Profile, 2009, Idaho UEC Intensity Usage UEC Intensity (kWh) (kWh/HH) (GWh)(kWh) (kWh/HH) Cooling Central AC 22.2% 944                210                  6                 28.7% 1,019          293                8% Cooling Room AC 35.4% 641                227                  7                 18.0% 692             124                8% Combined Heating/Cooling Air Source Heat Pump 10.4% 2,134            222                  7                 10.4% 2,305          240                8% Combined Heating/Cooling Geothermal Heat Pump 0.0% 1,281            ‐                    ‐             0.5% 1,383          7                    8% Space Heating Electric Resistance 32.0% 4,647            1,486               45               28.8% 5,112          1,471            10% Space Heating Electric Furnace 19.3% 3,711            716                  22               21.2% 4,082          867                10% Space Heating Supplemental 12.7% 57                  7                       0                 13.4% 62                8                    10% Water Heating Water Heater 83.9% 2,101            1,762               54               67.0% 2,316          1,552            10% Interior Lighting Screw‐in 100.0% 728                728                  22               100.0% 728             728                0% Interior Lighting Linear Fluorescent 69.2% 75                  52                     2                 69.2% 75                52                  0% Interior Lighting Pin‐based 100.0% 59                  59                     2                 100.0% 59                59                  0% Exterior Lighting Screw‐in 47.1% 106                50                     2                 47.1% 106             50                  0% Exterior Lighting High Intensity/Flood 2.7% 84                  2                       0                 2.7% 84                2                    0% Appliances Clothes Washer 71.3% 55                  39                     1                 71.3% 61                43                  11% Appliances Clothes Dryer 68.6% 652                447                  14               68.6% 696             477                7% Appliances Dishwasher 78.5% 72                  56                     2                 78.5% 75                59                  5% Appliances Refrigerator 100.0% 677                677                  21               100.0% 665             665                 ‐2% Appliances Freezer 63.4% 734                466                  14               63.4% 703             446                 ‐4% Appliances Second Refrigerator 23.4% 687                161                  5                 23.4% 631             148                 ‐8% Appliances Stove 89.7% 196                176                  5                 89.7% 217             195                11% Appliances Microwave 92.6% 109                101                  3                 92.6% 111             102                1% Electronics Personal Computers 101.4% 230                233                  7                 106.5% 233             248                1% Electronics TVs 165.0% 204                337                  10               165.0% 216             356                6% Electronics Devices and Gadgets 100.0% 30                  30                     1                 105.0% 32                33                  5% Miscellaneous Pool Pump 5.8% 617                36                     1                 5.8% 622             36                  1% Miscellaneous Furnace Fan 25.2% 213                54                     2                 25.2% 238             60                  11% Miscellaneous Miscellaneous 100.0% 534                534                  16               100.0% 561             561                5% 8,868               269            8,884             New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 735 Idaho Market Profiles, Baseline Forecast, and Potential Results B-6 www.gepllc.com Table B–7 Commercial Sector Market Characterization Results, Idaho 2009 Avista Rate Schedule LoadMAP Segment and Typical  Building  Electricity  sales (MWh)  Intensity  (kWh/sq.ft.)  General Service  011, 012 Small and Medium Commercial —Retail 322,570 17.5 Large General Service  021, 022 Large Commercial —Office 699,953 16.7 Extra Large General  Service Commercial   025C Extra Large Commercial —University 70,361 13.9 Extra Large General  Service Industrial   025I, 025P Extra Large Industrial 1,087,974 40.0 Total   2,180,858  Avista 2011 Electric Integrated Resource Plan 736 Idaho Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners B-7 An EnerNOC Company Table B–8 Small/Medium Commercial Segment Market Profile, Idaho, 2009 EUI Intensity Usage EUI Intensity (kWh) (kWh/Sqft.) (GWh)(kWh) (kWh/Sqft.) Cooling Central Chiller 13.8% 2.39               0.33                 6                 13.8% 2.15            0.30               ‐10% Cooling RTU 63.1% 2.46               1.55                 29               63.1% 2.22            1.40               ‐10% Cooling PTAC 3.3% 2.44               0.08                 1                 3.3% 2.20            0.07               ‐10% Combined Heating/Cooling Heat Pump 3.6% 6.19               0.22                 4                 3.6% 5.57            0.20               ‐10% Space Heating Electric Resistance 5.9% 6.72               0.39                 7                 5.9% 6.72            0.39              0% Space Heating Furnace 17.7% 7.05               1.25                 23               17.7% 6.34            1.13               ‐10% Ventilation Ventilation 76.9% 2.09               1.61                 30               76.9% 1.88            1.45               ‐10% Interior Lighting Interior Screw‐in 100.0% 1.00               1.00                 18               100.0% 0.90            0.90               ‐10% Interior Lighting HID 100.0% 0.68               0.68                 13               100.0% 0.61            0.61               ‐10% Interior Lighting Linear Fluorescent 100.0% 3.37               3.37                 62               100.0% 3.03            3.03               ‐10% Exterior Lighting Exterior Screw‐in 82.6% 0.20               0.16                 3                 82.6% 0.18            0.15               ‐10% Exterior Lighting HID 82.6% 0.76               0.63                 12               82.6% 0.68            0.56               ‐10% Exterior Lighting Linear Fluorescent 82.6% 0.16               0.13                 2                 82.6% 0.14            0.12               ‐10% Water Heating Water Heater 63.0% 2.00               1.26                 23               63.0% 1.90            1.19              ‐5% Food Preparation Fryer 25.8% 0.16               0.04                 1                 25.8% 0.16            0.04              0% Food Preparation Oven 25.8% 0.98               0.25                 5                 25.8% 0.98            0.25              0% Food Preparation Dishwasher 25.8% 0.06               0.01                 0                 25.8% 0.06            0.01              0% Food Preparation Hot Food Container 25.8% 0.31               0.08                 1                 25.8% 0.31            0.08              0% Food Preparation Food Prep 25.8% 0.01               0.00                 0                 25.8% 0.01            0.00              0% Refrigeration Walk in Refrigeration 52.4%‐                 ‐                    ‐             52.4%‐              ‐                0% Refrigeration Glass Door Display 52.4% 0.45               0.23                 4                 52.4% 0.40            0.21               ‐10% Refrigeration Solid Door Refrigerator 52.4% 0.50               0.26                 5                 52.4% 0.45            0.24               ‐10% Refrigeration Open Display Case 52.4% 0.04               0.02                 0                 52.4% 0.04            0.02               ‐10% Refrigeration Vending Machine 52.4% 0.30               0.16                 3                 52.4% 0.30            0.16              0% Refrigeration Icemaker 52.4% 0.34               0.18                 3                 52.4% 0.34            0.18              0% Office Equipment Desktop Computer 99.9% 0.48               0.48                 9                 99.9% 0.48            0.48              0% Office Equipment Laptop Computer 99.9% 0.06               0.06                 1                 99.9% 0.06            0.06              0% Office Equipment Server 99.9% 0.36               0.36                 7                 99.9% 0.36            0.36              0% Office Equipment Monitor 99.9% 0.25               0.25                 5                 99.9% 0.25            0.25              0% Office Equipment Printer/copier/fax 99.9% 0.24               0.24                 4                 99.9% 0.24            0.24              0% Office Equipment POS Terminal 99.9% 0.27               0.27                 5                 99.9% 0.27            0.27              0% Miscellaneous Non‐HVAC Motor 40.2% 1.22               0.49                 9                 40.2% 1.22            0.49              0% Miscellaneous Other Miscellaneous 100.0% 1.43               1.43                 26               100.0% 1.43            1.43              0% 17.50               323            16.3               New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 737 Idaho Market Profiles, Baseline Forecast, and Potential Results B-8 www.gepllc.com Table B–9 Large Commercial Segment Market Profile, Idaho, 2009 EUI Intensity Usage EUI Intensity (kWh) (kWh/Sqft.) (GWh)(kWh) (kWh/Sqft.) Cooling Central Chiller 24.7% 2.15               0.53                 22               24.7% 1.93            0.48               ‐10% Cooling RTU 37.8% 2.52               0.95                 40               37.8% 2.26            0.86               ‐10% Cooling PTAC 3.8% 2.49               0.09                 4                 3.8% 2.24            0.08               ‐10% Combined Heating/Cooling Heat Pump 9.1% 4.81               0.44                 18               9.1% 4.33            0.40               ‐10% Space Heating Electric Resistance 5.9% 3.62               0.21                 9                 5.9% 3.62            0.21              0% Space Heating Furnace 12.7% 4.68               0.60                 25               12.7% 4.21            0.54               ‐10% Ventilation Ventilation 75.1% 1.66               1.24                 52               75.1% 1.49            1.12               ‐10% Interior Lighting Interior Screw‐in 100.0% 0.94               0.94                 39               100.0% 0.85            0.85               ‐10% Interior Lighting HID 100.0% 0.71               0.71                 30               100.0% 0.64            0.64               ‐10% Interior Lighting Linear Fluorescent 100.0% 3.29               3.29                 138            100.0% 2.96            2.96               ‐10% Exterior Lighting Exterior Screw‐in 89.6% 0.11               0.10                 4                 89.6% 0.10            0.09               ‐10% Exterior Lighting HID 89.6% 0.62               0.56                 23               89.6% 0.56            0.50               ‐10% Exterior Lighting Linear Fluorescent 89.6% 0.16               0.14                 6                 89.6% 0.14            0.13               ‐10% Water Heating Water Heater 54.2% 2.31               1.25                 53               54.2% 2.20            1.19              ‐5% Food Preparation Fryer 18.4% 0.35               0.06                 3                 18.4% 0.35            0.06              0% Food Preparation Oven 18.4% 1.88               0.35                 14               18.4% 1.88            0.35              0% Food Preparation Dishwasher 18.4% 0.19               0.03                 1                 18.4% 0.19            0.03              0% Food Preparation Hot Food Container 18.4% 0.27               0.05                 2                 18.4% 0.27            0.05              0% Food Preparation Food Prep 18.4% 0.02               0.00                 0                 18.4% 0.02            0.00              0% Refrigeration Walk in Refrigeration 39.1% 0.48               0.19                 8                 39.1% 0.43            0.17               ‐10% Refrigeration Glass Door Display 39.1% 0.37               0.14                 6                 39.1% 0.33            0.13               ‐10% Refrigeration Solid Door Refrigerator 39.1% 0.77               0.30                 13               39.1% 0.69            0.27               ‐10% Refrigeration Open Display Case 39.1% 0.27               0.10                 4                 39.1% 0.24            0.09               ‐10% Refrigeration Vending Machine 39.1% 0.36               0.14                 6                 39.1% 0.36            0.14              0% Refrigeration Icemaker 39.1% 0.66               0.26                 11               39.1% 0.66            0.26              0% Office Equipment Desktop Computer 98.4% 0.90               0.88                 37               98.4% 0.90            0.88              0% Office Equipment Laptop Computer 98.4% 0.07               0.07                 3                 98.4% 0.07            0.07              0% Office Equipment Server 98.4% 0.42               0.41                 17               98.4% 0.42            0.41              0% Office Equipment Monitor 98.4% 0.21               0.20                 9                 98.4% 0.21            0.20              0% Office Equipment Printer/copier/fax 98.4% 0.21               0.21                 9                 98.4% 0.21            0.21              0% Office Equipment POS Terminal 98.4% 0.07               0.07                 3                 98.4% 0.07            0.07              0% Miscellaneous Non‐HVAC Motor 57.7% 1.40               0.81                 34               57.7% 1.40            0.81              0% Miscellaneous Other Miscellaneous 100.0% 1.36               1.36                 57               100.0% 1.36            1.36              0% 16.70               700            15.6               New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 738 Idaho Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners B-9 An EnerNOC Company Table B–10 Extra Large Commercial Segment Market Profile, Idaho, 2009 EUI Intensity Usage EUI Intensity (kWh) (kWh/Sqft.) (GWh)(kWh) (kWh/Sqft.) Cooling Central Chiller 52.2% 2.13               1.11                 6                 52.2% 1.92            1.00               ‐10% Cooling RTU 24.7% 2.22               0.55                 3                 24.7% 2.00            0.49               ‐10% Cooling PTAC 0.0% 2.22               ‐                    ‐             0.0% 2.00            ‐                 ‐10% Combined Heating/Cooling Heat Pump 4.4% 5.23               0.23                 1                 4.4% 4.70            0.21               ‐10% Space Heating Electric Resistance 15.8% 4.39               0.69                 4                 15.8% 4.39            0.69              0% Space Heating Furnace 5.6% 5.67               0.32                 2                 5.6% 5.11            0.29               ‐10% Ventilation Ventilation 90.2% 1.94               1.75                 9                 90.2% 1.74            1.57               ‐10% Interior Lighting Interior Screw‐in 100.0% 1.37               1.37                 7                 100.0% 1.23            1.23               ‐10% Interior Lighting HID 100.0% 0.29               0.29                 1                 100.0% 0.26            0.26               ‐10% Interior Lighting Linear Fluorescent 100.0% 2.19               2.19                 11               100.0% 1.97            1.97               ‐10% Exterior Lighting Exterior Screw‐in 96.3% 0.03               0.03                 0                 96.3% 0.03            0.03               ‐10% Exterior Lighting HID 96.3% 0.88               0.85                 4                 96.3% 0.79            0.76               ‐10% Exterior Lighting Linear Fluorescent 96.3% 0.04               0.03                 0                 96.3% 0.03            0.03               ‐10% Water Heating Water Heater 26.3% 3.72               0.98                 5                 26.3% 3.53            0.93               ‐5% Food Preparation Fryer 13.8% 0.13               0.02                 0                 13.8% 0.13            0.02              0% Food Preparation Oven 13.8% 2.12               0.29                 1                 13.8% 2.12            0.29              0% Food Preparation Dishwasher 13.8% 0.08               0.01                 0                 13.8% 0.08            0.01              0% Food Preparation Hot Food Container 13.8% 0.13               0.02                 0                 13.8% 0.13            0.02              0% Food Preparation Food Prep 13.8% 0.01               0.00                 0                 13.8% 0.01            0.00              0% Refrigeration Walk in Refrigeration 26.6% 0.19               0.05                 0                 26.6% 0.17            0.04               ‐10% Refrigeration Glass Door Display 26.6% 0.11               0.03                 0                 26.6% 0.10            0.03               ‐10% Refrigeration Solid Door Refrigerator 26.6% 0.71               0.19                 1                 26.6% 0.64            0.17               ‐10% Refrigeration Open Display Case 26.6% 0.50               0.13                 1                 26.6% 0.45            0.12               ‐10% Refrigeration Vending Machine 26.6% 0.38               0.10                 1                 26.6% 0.38            0.10              0% Refrigeration Icemaker 26.6% 0.31               0.08                 0                 26.6% 0.31            0.08              0% Office Equipment Desktop Computer 100.0% 0.64               0.64                 3                 100.0% 0.64            0.64              0% Office Equipment Laptop Computer 100.0% 0.07               0.07                 0                 100.0% 0.07            0.07              0% Office Equipment Server 100.0% 0.17               0.17                 1                 100.0% 0.17            0.17              0% Office Equipment Monitor 100.0% 0.13               0.13                 1                 100.0% 0.13            0.13              0% Office Equipment Printer/copier/fax 100.0% 0.05               0.05                 0                 100.0% 0.05            0.05              0% Office Equipment POS Terminal 100.0% 0.01               0.01                 0                 100.0% 0.01            0.01              0% Miscellaneous Non‐HVAC Motor 88.8% 0.82               0.73                 4                 88.8% 0.82            0.73              0% Miscellaneous Other Miscellaneous 100.0% 0.80               0.80                 4                 100.0% 0.80            0.80              0% 13.90               70               12.9               New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 739 Idaho Market Profiles, Baseline Forecast, and Potential Results B-10 www.gepllc.com Table B–11 Extra Large Industrial Segment Market Profile, Idaho, 2009 EUI Intensity Usage EUI Intensity (kWh) (kWh/Sqft.) (GWh)(kWh) (kWh/Sqft.) Cooling Central Chiller 14.4% 7.98               1.15                 31               14.4% 7.18            1.04               ‐10% Cooling RTU 17.1% 6.32               1.08                 29               17.1% 5.68            0.97               ‐10% Cooling PTAC 1.1% 5.50               0.06                 2                 1.1% 4.95            0.05               ‐10% Combined Heating/Cooling Heat Pump 1.6% 11.13            0.18                 5                 1.6% 10.01          0.16               ‐10% Space Heating Electric Resistance 10.8% 8.67               0.93                 25               10.8% 8.67            0.93              0% Space Heating Furnace 2.0% 9.10               0.18                 5                 2.0% 8.19            0.17               ‐10% Ventilation Ventilation 27.4% 12.31            3.37                 92               27.4% 11.08          3.04               ‐10% Interior Lighting Interior Screw‐in 100.0% 0.33               0.33                 9                 100.0% 0.30            0.30               ‐10% Interior Lighting HID 100.0% 1.05               1.05                 28               100.0% 0.94            0.94               ‐10% Interior Lighting Linear Fluorescent 100.0% 1.10               1.10                 30               100.0% 0.99            0.99               ‐10% Exterior Lighting Exterior Screw‐in 92.5% 0.02               0.02                 1                 92.5% 0.02            0.02               ‐10% Exterior Lighting HID 92.5% 0.25               0.23                 6                 92.5% 0.23            0.21               ‐10% Exterior Lighting Linear Fluorescent 92.5% 0.01               0.01                 0                 92.5% 0.01            0.01               ‐10% Process Process Cooling/Refrigeration 2.4% 99.67            2.40                 65               2.4% 99.67          2.40              0% Process Process Heating 26.2% 13.74            3.60                 98               26.2% 13.74          3.60              0% Process Electrochemical Process 2.6% 77.43            2.00                 54               2.6% 77.43          2.00              0% Machine Drive Less than 5 HP 90.5% 0.92               0.84                 23               90.5% 0.92            0.84              0% Machine Drive 5‐24 HP 80.1% 2.26               1.81                 49               80.1% 2.26            1.81              0% Machine Drive 25‐99 HP 72.4% 6.10               4.42                 120            72.4% 6.10            4.42              0% Machine Drive 100‐249 HP 65.3% 3.84               2.51                 68               65.3% 3.84            2.51              0% Machine Drive 250‐499 HP 23.7% 11.61            2.75                 75               23.7% 11.61          2.75              0% Machine Drive 500 and more HP 26.1% 19.50            5.08                 138            26.1% 19.50          5.08              0% Miscellaneous Miscellaneous 100.0% 4.90               4.90                 133            100.0% 4.90            4.90              0% 40.00               1,088         39.1               New Units Compared to  Average Average Market Profiles Saturation Total End Use Technology Saturation Avista 2011 Electric Integrated Resource Plan 740 Idaho Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners B-11 An EnerNOC Company Figure B–1 Residential Baseline Forecast by End Use, Idaho Figure B–2 C&I Baseline Electricity Forecast by End Use, Idaho ‐ 200,000  400,000  600,000  800,000  1,000,000  1,200,000  1,400,000  1,600,000  1,800,000  2,000,000  2009 2012 2017 2022 2027 2032 An n u a l  Us e  (M W h ) Cooling Space Heating Heat & Cool Water Heating Appliances Interior Lighting Exterior Lighting Electronics Miscellaneous ‐ 500,000  1,000,000  1,500,000  2,000,000  2,500,000  3,000,000  3,500,000  2009 2012 2017 2022 2027 2032 An n u a l  Us e  (M W h ) Cooling Space Heating Heat & Cool Ventilation Water Heating Food Preparation Refrigeration Interior Lighting Exterior Lighting Office Equipment Miscellaneous Machine Drive Process Avista 2011 Electric Integrated Resource Plan 741 Idaho Market Profiles, Baseline Forecast, and Potential Results B-12 www.gepllc.com Table B-12 Baseline Forecast Summary by Sector, Idaho End Use 2009 2012 2017 2022 2027 2032  % Change  ('09–'32)  Avg. Growth  Rate  ('09–'32)  Res. ID 1,182,379 1,178,591 1,253,664 1,408,812 1,588,965 1,808,300 52.9%1.8% C&I ID 2,180,858 2,217,188 2,383,504 2,551,291 2,748,846 2,970,324 36.2%1.3% Total 3,363,237 3,395,780 3,637,168 3,960,104 4,337,811 4,778,624 42.1%1.5% Figure B–3 Baseline Forecast Summary by Sector, Idaho ‐ 1,000,000  2,000,000  3,000,000  4,000,000  5,000,000  6,000,000  An n u a l  Us e  (M W h ) Residential ‐ID C&I ‐ID Avista 2011 Electric Integrated Resource Plan 742 Idaho Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners B-13 An EnerNOC Company Figure B–4 Summary of Energy Efficiency Potential Savings, Idaho, All Sectors Figure B–5 Energy Efficiency Potential Forecasts, Idaho, All Sectors Realistic Achievable  Maximum Achievable  Economic  Technical  0% 5% 10% 15% 20% 25% 30% 35% 40% 2012 2017 2022 2027 2032 En e r g y  Sa v i n g s  ( % of  Ba s e l i n e  Fo r e c a s t ) ‐ 1,000,000  2,000,000  3,000,000  4,000,000  5,000,000  6,000,000  En e r g y  Co n s u m p t i o n  (M W h ) Baseline  Achievable Economic  Technical  Avista 2011 Electric Integrated Resource Plan 743 Idaho Market Profiles, Baseline Forecast, and Potential Results B-14 www.gepllc.com Table B–13 Summary of Energy Efficiency Potential, Idaho, All Sectors  2012 2017 2022 2027 2032  Baseline Forecast  (MWh) 3,395,780 3,637,168 3,960,104 4,337,811 4,778,624  Baseline Peak  Demand(MW) 610 644 705 775 854  Cumulative Energy Savings (MWh)     Realistic Achievable 17,115 138,024 328,192 529,056 743,485 Maximum Achievable 31,326 355,867 694,006 878,021 1,036,097 Economic 87,533 536,684 893,730 1,084,577 1,243,423 Technical 116,533 737,247 1,243,729 1,532,099 1,733,629 Cumulative Energy Savings (% of Baseline)     Realistic Achievable 0.5% 3.8% 8.3% 12.2% 15.6%  Maximum Achievable 0.9% 9.8% 17.5% 20.2% 21.7%  Economic 2.6% 14.8% 22.6% 25.0% 26.0%  Technical 3.4% 20.3% 31.4% 35.3% 36.3%  Peak Savings (MW)     Realistic Achievable 4 27 57 94 133  Maximum Achievable 7 65 120 153 178  Economic 19 98 154 186 213  Technical 24 133 212 262 299  Peak Savings (% of Baseline)     Realistic Achievable 0.7% 4.1% 8.1% 12.1% 15.6%  Maximum Achievable 1.1% 10.1% 17.1% 19.7% 20.9%  Economic 3.1% 15.2% 21.9% 24.0% 24.9%  Technical 4.0% 20.6% 30.1% 33.8% 35.0%  Table B–14 Achievable Cumulative EE Potential by Sector, Idaho (MWh) Segment 2012 2017 2022 2027 2032 Residential, Idaho 8,692 43,922 97,705 172,179 260,003 C&I, Idaho 8,423 94,102 230,487 356,878 483,482 Total 17,115 138,024 328,192 529,056 743,485 Avista 2011 Electric Integrated Resource Plan 744 Idaho Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners B-15 An EnerNOC Company Figure B–6 Achievable Cumulative Potential by Sector, Idaho Figure B–7 Residential Energy Efficiency Potential Savings, Idaho Figure B–8 Residential Energy Efficiency Potential Forecast, Idaho 0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 2012 2017 2022 2027 2032 C&I, ID Residential, IDSa v i n g s  (M W h ) Realistic Achievable  Maximum Achievable  Economic  Technical  0% 5% 10% 15% 20% 25% 30% 35% 40% 2012 2017 2022 2027 2032 En e r g y  Sa v i n g s  (%  of  Ba s e l i n e  Fo r e c a s t ) ‐ 200,000  400,000  600,000  800,000  1,000,000  1,200,000  1,400,000  1,600,000  1,800,000  2,000,000  En e r g y  Co n s u m p t i o n  (M W h ) Baseline  Realistic Achievable Maximum Achievable Economic  Technical  Avista 2011 Electric Integrated Resource Plan 745 Idaho Market Profiles, Baseline Forecast, and Potential Results B-16 www.gepllc.com Table B–15 Energy Efficiency Potential for the Residential Sector, Idaho  2012 2017 2022 2027 2032  Baseline Forecast  (MWh) 1,178,591 1,253,664 1,408,812 1,588,965 1,808,300  Baseline Peak  Demand(MW) 281 290 325 363 408  Cumulative Energy Savings (MWh)     Realistic achievable 8,692 43,922 97,705 172,179 260,003  Maximum achievable 11,841 130,930 230,870 293,897 349,609  Economic 33,369 179,104 280,336 341,494 403,100  Technical 49,653 292,196 462,586 575,049 665,872  Cumulative Energy Savings (% of Baseline)     Realistic achievable 0.7% 3.5% 6.9% 10.8% 14.4%  Maximum achievable 1.0% 10.4% 16.4% 18.5% 19.3%  Economic 2.8% 14.3% 19.9% 21.5% 22.3%  Technical 4.2% 23.3% 32.8% 36.2% 36.8%  Peak Savings (MW)     Realistic achievable 3 12 26 47 70  Maximum achievable 4 32 61 79 92  Economic 11 47 75 92 106  Technical 14 69 109 135 157  Peak Savings (% of Baseline)     Realistic achievable 1.1% 4.2% 7.9% 12.8% 17.0%  Maximum achievable 1.4% 11.2% 18.7% 21.7% 22.5%  Economic 3.8% 16.3% 23.2% 25.3% 26.1%  Technical 4.9% 23.8% 33.5% 37.2% 38.6%  Avista 2011 Electric Integrated Resource Plan 746 Idaho Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners B-17 An EnerNOC Company Table B-16 Residential Baseline & Realistic Achievable Potential by Segment, Idaho  2012 2017 2022 2027 2032 Baseline Forecast (MWh)     Single Family 809,394 860,796 969,610 1,095,955 1,250,124  Multi Family 43,239 46,927 53,367 60,656 69,266  Mobile Home 58,491 61,447 68,664 77,048 87,262  Limited Income 267,467 284,494 317,172 355,306 401,648  Total 1,178,591 1,253,664 1,408,812 1,588,965 1,808,300  Energy Savings, Realistic Achievable Potential (MWh)     Single Family 6,394 32,068 76,498 135,426 203,716  Multi Family 236 1,141 2,100 3,891 5,937  Mobile Home 465 1,997 3,403 5,554 8,326  Limited Income 1,597 8,715 15,705 27,307 42,024  Total 8,692 43,922 97,705 172,179 260,003  % of Total Residential Energy Savings  Single Family 73.6% 73.0% 78.3% 78.7% 78.4%  Multi Family 2.7% 2.6% 2.1% 2.3% 2.3%  Mobile Home 5.3% 4.5% 3.5% 3.2% 3.2%  Limited Income 18.4% 19.8% 16.1% 15.9% 16.2%  Table B-17 Residential Potential by Housing Type, 2022, Idaho Forecast Single  Family  Multi  Family  Mobile  Home  Limited  Income Total  Baseline Forecast (MWh) 969,610 53,367 68,664 317,172 1,408,812  Cumulative Energy Savings (MWh)  Realistic Achievable 76,498 2,100 3,403 15,705 97,705  Maximum Achievable 180,146 5,514 7,612 37,597 230,870  Economic Potential  215,829 7,112 9,445 47,950 280,336  Technical Potential 311,446 15,951 23,241 111,948 462,586  Energy Savings % of Baseline  Realistic Achievable 7.9% 3.9% 5.0% 5.0% 6.9%  Maximum Achievable 18.6% 10.3% 11.1% 11.9% 16.4%  Economic Potential  22.3% 13.3% 13.8% 15.1% 19.9%  Technical Potential 32.1% 29.9% 33.8% 35.3% 32.8%  Avista 2011 Electric Integrated Resource Plan 747 Idaho Market Profiles, Baseline Forecast, and Potential Results B-18 www.gepllc.com Table A-18 Residential Cumulative Savings by End Use and Potential Type, Oregon (MWh) End Use Case 2012 2017 2022 2027 2032  Cooling  Realistic Achievable 4 784 2,713 7,797 15,205 Economic 118 7,473 13,481 20,239 27,909 Technical 1,389 21,223 34,387 49,464 67,702 Space Heating  Realistic Achievable 90 5,124 23,932 55,063 89,268 Economic 2,854 46,886 90,434 118,849 142,327 Technical 3,872 62,068 117,487 158,049 196,858 Heat/Cool  Realistic Achievable  4 277 772 1,917 5,360 Economic 136 4,094 5,019 5,928 9,460 Technical 1,056 8,796 15,144 21,238 24,333 Water Heating  Realistic Achievable 167 6,629 23,974 46,762 77,570 Economic 2,868 34,268 69,949 91,136 113,933 Technical 10,553 85,265 160,064 203,679 227,582 Appliances  Realistic Achievable 434 4,216 9,065 14,393 20,002 Economic 1,885 20,859 27,076 28,751 30,895 Technical 2,461 26,764 35,893 38,774 41,155 Interior Lighting  Realistic Achievable 6,180 17,434 19,757 22,622 23,650 Economic 18,432 36,002 35,080 32,028 29,190 Technical 21,560 49,417 48,706 45,433 42,120 Exterior Lighting  Realistic Achievable  1,125 3,610 3,675 3,426 2,753 Economic 3,350 7,531 6,023 4,553 3,242 Technical 3,846 9,858 8,546 7,753 7,635 Electronics  Realistic Achievable 607 4,630 11,073 15,629 19,572 Economic 3,058 15,658 23,240 26,031 29,797 Technical 4,219 22,321 32,027 36,258 41,681 Miscellaneous  Realistic Achievable 80 1,217 2,744 4,568 6,622 Economic 667 6,334 10,036 13,980 16,348 Technical 697 6,484 10,331 14,400 16,807 Total  Realistic Achievable 8,692 43,922 97,705 172,179 260,003 Economic 33,369 179,104 280,336 341,494 403,100 Technical 49,653 292,196 462,586 575,049 665,872 Avista 2011 Electric Integrated Resource Plan 748 Idaho Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners B-19 An EnerNOC Company Figure B–9 Residential Realistic Achievable Potential by End Use, Selected Years, Idaho Table B-19 Residential Realistic Achievable Potential by End Use and Market Segment, 2022, Idaho (MWh)  Single Family Multi Family Mobile  Home  Limited  Income Total  Cooling  1,736 51 59 866 2,713 Space heating 19,066 789 402 3,676 23,932 Heat/cool 675 3 39 56 772 Water heating 20,270 422 407 2,875 23,974 Appliances 6,657 103 451 1,854 9,065 Interior lighting 13,894 535 1,047 4,281 19,757 Exterior lighting 3,020 28 227 399 3,675 Electronics 8,757 167 617 1,531 11,073 Miscellaneous 2,422 1 153 168 2,744 Total 76,498 2,100 3,403 15,705 97,705   ‐50,000 100,000 150,000 200,000 250,000 300,000  2012 2017 2022 2027 2032 Cumulative Savings (MWh) Cooling  Space heating Heat/cool Water heating Appliances Int. lighting Ext. lighting Electronics Miscellaneous Avista 2011 Electric Integrated Resource Plan 749 Idaho Market Profiles, Baseline Forecast, and Potential Results B-20 www.gepllc.com Table B–20 Residential Cumulative Realistic Achievable Potential by End Use and Equipment Measures, Idaho, Selected Years (MWh) End Use Technology 2012 2017 2022  Cooling Central AC ‐ 51 55  Heat/Cool Air Source Ht. Pump ‐ ‐ ‐  Water Heating Water Heater 43 321 336  Appliances  Clothes Washer 29 352 888  Clothes Dryer 35 240 440  Dishwasher 40 373 912  Refrigerator 146 652 1,266  Freezer 113 560 1,221  Second Refrigerator 53 257 475  Stove 7 56 126  Interior Lighting  Screw‐in 5,757 14,262 14,623  Linear Fluorescent 56 639 1,202  Pin‐based 367 2,466 3,641  Exterior Lighting  Screw‐in 1,117 3,567 3,619  High Intensity/Flood 8 43 56  Electronics Personal Computers 389 3,151 5,418  TVs 213 1,121 2,079  Miscellaneous Pool Pump 61 559 1,372  Furnace Fan 16 202 602  Total 8,450 28,875 38,332    Avista 2011 Electric Integrated Resource Plan 750 Idaho Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners B-21 An EnerNOC Company Table B–21 Residential Realistic Achievable Savings for Non-equipment Measures, Idaho (MWh) Measure 2012 2017 2022  Furnace ‐ Convert to Gas 72 2,299 14,668  Water Heater ‐ Convert to Gas 56 2,041 13,812  Advanced New Construction Designs 0 62 1,426  Repair and Sealing ‐ Ducting 6 853 2,417  Insulation ‐ Infiltration Control 6 804 2,265  Water Heater ‐ Thermostat Setback 44 2,506 4,232  Home Energy Management System 2 377 1,323  Freezer ‐ Remove Second Unit 8 1,104 2,367  Water Heater ‐ Hot Water Saver 2 130 1,663  Electronics ‐ Reduce Standby Wattage 4 358 3,576  Thermostat ‐ Clock/Programmable 6 799 2,222  Insulation ‐ Foundation 0 141 628  Air Source Heat Pump ‐ Maintenance 4 277 772  Refrigerator ‐ Remove Second Unit 4 622 1,369  Water Heater ‐ Heat Pump  ‐ 12 334  Water Heater ‐ Faucet Aerators 4 293 702  Insulation ‐ Ducting 0 49 188  Water Heater ‐ Tank Blanket/Insulation 15 794 1,238  Insulation ‐ Wall Cavity 0 85 369  Ceiling Fan ‐ Installation 0 24 167  Room AC ‐ Removal of Second Unit 2 281 698  Insulation ‐ Ceiling 1 115 339  Water Heater ‐ Timer 0 231 801  Water Heater ‐ Low Flow Showerheads 3 270 529  Central AC ‐ Maintenance and Tune‐Up  ‐  ‐  ‐  Whole‐House Fan ‐ Installation 0 21 112  Pool ‐ Pump Timer 3 456 771  Water Heater ‐ Pipe Insulation 0 34 326  Insulation ‐ Wall Sheathing 0 13 58  Total 242 15,047 59,373  Avista 2011 Electric Integrated Resource Plan 751 Idaho Market Profiles, Baseline Forecast, and Potential Results B-22 www.gepllc.com Figure B–10 Energy Efficiency Potential Savings, C&I Sector, Idaho Figure B–11 Energy Efficiency Potential Forecast, C&I Sector, Idaho Realistic Achievable  Maximum Achievable  Economic  Technical  0% 5% 10% 15% 20% 25% 30% 35% 40% 2012 2017 2022 2027 2032 En e r g y  Sa v i n g s  ( % of  Ba s e l i n e  Fo r e c a s t ) ‐ 500,000  1,000,000  1,500,000  2,000,000  2,500,000  3,000,000  3,500,000  En e r g y  Co n s u m p t i o n  (M W h ) Baseline  Realistic Achievable  Maximum Achievable  Economic  Technical  Avista 2011 Electric Integrated Resource Plan 752 Idaho Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners B-23 An EnerNOC Company Table B–22 Energy Efficiency Potential, C&I Sector, Idaho  2012 2017 2022 2027 2032 Baseline Forecast (MWh) 2,217,188 2,383,504 2,551,291 2,748,846 2,970,324  Baseline Peak  Demand(MW) 329 354 380 411 446  Cumulative Energy Savings (MWh)     Realistic Achievable 8,423 94,102 230,487 356,878 483,482  Maximum Achievable   19,485 224,938 463,136 584,124 686,488  Economic 54,164 357,579 613,394 743,082 840,323  Technical 66,880 445,051 781,143 957,050 1,067,757  Cumulative Energy Savings (% of Baseline)     Realistic Achievable 0.4% 3.9% 9.0% 13.0% 16.3%  Maximum Achievable   0.9% 9.4% 18.2% 21.2% 23.1%  Economic 2.4% 15.0% 24.0% 27.0% 28.3%  Technical 3.0% 18.7% 30.6% 34.8% 35.9%  Peak Savings (MW)     Realistic Achievable 1 14 31 48 64  Maximum Achievable   3 33 60 74 86  Economic 8 51 79 94 106  Technical 10 64 103 127 141  Peak Savings (% of Baseline)     Realistic Achievable 0.4% 4.1% 8.3% 11.6% 14.3%  Maximum Achievable   0.9% 9.2% 15.7% 17.9% 19.4%  Economic 2.5% 14.3% 20.7% 22.9% 23.8%  Technical 3.1% 18.1% 27.2% 30.8% 31.7%  Avista 2011 Electric Integrated Resource Plan 753 Idaho Market Profiles, Baseline Forecast, and Potential Results B-24 www.gepllc.com Table B–23 C&I Sector, Baseline and Realistic Achievable Potential by Segment, Idaho  2012 2017 2022 2027 2032  Baseline Forecast (MWh)     Small/Med. Commercial  317,367 335,813 361,837 394,213 431,409  Large Commercial  707,532 761,508 821,587 894,850 979,118  Extra Large Commercial  72,013 83,305 90,387 98,291 106,847  Extra Large Industrial  1,120,277 1,202,878 1,277,480 1,361,492 1,452,949  Total  2,217,188 2,383,504 2,551,291 2,748,846 2,970,324  Cumulative Energy Savings, Achievable Potential (MWh)     Small/Med. Commercial  1,962 20,807 43,865 65,456 88,728  Large Commercial  4,662 52,140 106,963 155,523 202,933  Extra Large Commercial  609 6,178 13,050 19,166 24,274  Extra Large Industrial  1,190 14,977 66,609 116,733 167,548  Total  8,423 94,102 230,487 356,878 483,482  % of Total C&I Cumulative Energy Savings  Small/Med. Commercial  23.3% 22.1% 19.0% 18.3% 18.4%  Large Commercial  55.4% 55.4% 46.4% 43.6% 42.0%  Extra Large Commercial  7.2% 6.6% 5.7% 5.4% 5.0%  Extra Large Industrial  14.1% 15.9% 28.9% 32.7% 34.7%  Table B–24 C&I Potential by Segment, Idaho, 2022 Forecast Small/Med. Commercial  Large  Commercial  Extra Large  Commercial  Extra Large  Industrial Total  Baseline Forecast (MWh) 361,837 821,587 90,387 1,277,480 2,551,291  Cumulative Energy Savings (MWh)  Realistic Achievable 43,865 106,963 13,050 66,609 230,487  Economic Potential  87,274 204,790 25,964 295,365 613,394  Technical Potential 135,405 301,217 36,465 308,056 781,143  Cumulative Energy Savings % of Baseline Realistic Achievable 12% 13% 14% 5% 9%  Economic Potential  24% 25% 29% 23% 24%  Technical Potential 37% 37% 40% 24% 31%  Avista 2011 Electric Integrated Resource Plan 754 Idaho Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners B-25 An EnerNOC Company Table B-25 C&I Cumulative Savings by End Use and Potential Type, Idaho (MWh) End Use Case 2012 2017 2022 2027 2032  Cooling  Realistic Achievable 78 5,923 21,250 33,605 47,275  Economic 1,138 20,975 45,413 59,510 75,348  Technical 2,968 36,760 76,374 95,858 113,212  Space Heating  Realistic Achievable 6 758 4,296 8,178 13,308  Economic 133 3,983 11,757 17,084 24,436  Technical 215 6,445 19,442 26,587 34,707  Heat/Cool  Realistic Achievable 16 1,271 2,302 2,778 3,432  Economic 185 3,001 3,761 4,432 4,954  Technical 260 3,540 4,747 5,741 6,445  Ventilation  Realistic Achievable 211 2,846 15,356 29,448 47,931  Economic 3,528 26,446 69,343 93,958 107,124  Technical 4,612 34,655 93,204 122,731 132,705  Water Heating  Realistic Achievable 25 1,545 3,227 3,742 4,068  Economic 198 3,518 4,823 5,295 5,309  Technical 4,444 32,290 58,774 82,998 91,291  Food Preparation  Realistic Achievable 72 868 2,449 4,745 7,111  Economic 962 5,813 10,539 12,677 13,834  Technical 1,043 6,341 11,660 14,033 15,375  Refrigeration  Realistic Achievable 62 631 2,054 3,943 5,850  Economic 925 4,540 8,629 11,127 12,502  Technical 1,091 5,996 13,223 17,139 19,437  Interior Lighting  Realistic Achievable 5,851 55,282 110,129 160,780 203,673  Economic 27,689 162,081 212,672 243,913 279,638  Technical 30,318 177,750 239,322 274,804 311,478  Exterior Lighting  Realistic Achievable 526 7,858 15,569 19,409 23,034  Economic 2,403 23,137 27,251 28,628 29,938  Technical 2,701 25,247 30,174 34,115 38,276  Office Equipment  Realistic Achievable 862 8,854 14,582 19,189 23,952  Economic 6,253 28,449 29,883 31,230 32,556  Technical 8,238 38,728 41,183 43,665 46,239  Machine Drive  Realistic Achievable 382 6,612 33,312 56,917 77,212  Economic 4,308 40,409 117,995 145,338 156,337  Technical 4,341 40,906 119,993 147,502 158,642  Process  Realistic Achievable 328 1,590 5,541 13,154 24,996  Economic 6,410 34,803 69,990 87,646 95,276  Technical 6,410 34,803 69,990 87,646 95,276  Miscellaneous  Realistic Achievable 2 62 419 989 1,641  Economic 33 426 1,336 2,245 3,070  Technical 239 1,591 3,058 4,230 4,673  Total  Realistic Achievable 8,423 94,102 230,487 356,878 483,482  Economic 54,164 357,579 613,394 743,082 840,323  Technical 66,880 445,051 781,143 957,050 1,067,757  Avista 2011 Electric Integrated Resource Plan 755 Idaho Market Profiles, Baseline Forecast, and Potential Results B-26 www.gepllc.com Figure B-12 C&I Achievable Potential by End Use, Selected Years, Idaho Table B-26 C&I Realistic Achievable Potential by End Use Market Segment, 2022, Idaho (MWh)  Small/Med.  Commercial  Large  Commercial  Extra Large  Commercial  Extra Large  Industrial Total  Cooling 2,805 8,283 1,032 9,129 21,250 Space Heating 338 2,110 305 1,544 4,296 Combined  Heating/Cooling 249 1,666 119 267 2,302  Ventilation 4,489 1,846 1,131 7,890 15,356 Water Heating 952 1,851 424 ‐ 3,227 Food Preparation 538 1,748 163 ‐ 2,449 Refrigeration 572 1,382 100 ‐ 2,054 Interior Lighting 25,426 68,834 7,612 8,256 110,129 Exterior Lighting 4,866 8,723 1,312 669 15,569 Office Equipment 3,482 10,274 825 ‐ 14,582 Machine Drive  ‐  ‐ ‐33,312 33,312 Process  ‐  ‐ ‐5,541 5,541 Miscellaneous 146 246 26 ‐ 419 Total 43,865 106,963 13,050 66,609 230,487 ‐100,000 200,000 300,000 400,000 500,000  2012 2017 2022 2027 2032 Cooling Space Heating Heat/cool Ventilation Water Heating Food Preparation Refrigeration Interior Lighting Exterior Lighting Office Equipment Miscellaneous Machine Drive Process Cumulative Savings(MWh) Avista 2011 Electric Integrated Resource Plan 756 Idaho Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners B-27 An EnerNOC Company Table B-27 C&I Cumulative Achievable Potential by End Use and Equipment Measures, Washington (MWh) End Use Technology 2012 2017 2022  Cooling Central Chiller 29 304 1,225  PTAC 2 2 2  Heat/Cool Heat Pump 7 128 376  Ventilation Ventilation 196 2,023 7,393  Water Heater Water Heater 14 111 109  Food Preparation   Fryer 4 46 121  Hot Food Container 9 102 274  Oven 60 708 1,884  Refrigeration  Glass Door Display 11 155 440  Icemaker 8 108 317  Solid Door Refrigerator 14 165 438  Vending Machine 27 152 371  Walk in Refriger’n 0 5 13  Interior Lighting  Interior Screw‐in 3,326 21,132 32,157  HID 1,014 9,151 18,439  Linear Fluorescent 1,450 17,918 35,222  Exterior Lighting  Screw‐in 76 1,138 1,977  HID 403 5,269 10,440  Linear Fluorescent 42 758 1,287  Office Equipment  Desktop Computer 490 4,569 7,322  Laptop Computer 35 331 530  Monitor 106 383 662  POS Terminal 14 196 359  Printer/copier/fax 44 564 1,025  Server 169 2,412 3,889  Machine Drive  Less than 5 HP 21 144 383  5‐24 HP 46 324 887  25‐99 HP 114 808 2,209  100‐249 HP 32 227 622  250‐499 HP 34 242 661  500 and more HP 64 456 1,247  Process  Electrochem. Process 46 220 719  Process Cooling/Refrig. 62 294 961  Process Heating 220 1,048 3,426  Miscellaneous Non‐HVAC Motor 2 25 181  Total 8,194 71,620 137,570  Avista 2011 Electric Integrated Resource Plan 757 Idaho Market Profiles, Baseline Forecast, and Potential Results B-28 www.gepllc.com Table B-28 C&I Cumulative Achievable Savings for Non-equipment Measures, Idaho (MWh) Measure 2012 2017 2022  Energy Management System 13 819 8,607  Advanced New Construction Designs 0 36 557  Retrocommissioning ‐ Lighting 20 4,122 7,640  Interior Fluorescent ‐ High Bay Fixtures 8 475 4,877  Pumping System ‐ Optimization 11 507 4,907  Compressed Air ‐ System Optimization and Improvements 11 506 4,837  Custom Measures 2 296 4,148  Fans ‐ Variable Speed Control 7 335 3,189  Compressed Air ‐ System Controls 7 355 3,457  RTU ‐ Maintenance 24 3,277 6,364  Fans ‐ Energy Efficient Motors 6 346 3,463  Retrocommissioning ‐ Comprehensive 12 2,552 4,572  Retrocommissioning ‐ HVAC 3 323 3,038  Motors ‐ Variable Frequency Drive 11 1,338 2,707  Pumps ‐ Variable Speed Control 5 241 2,289  Motors ‐ Magnetic Adjustable Speed Drives 5 221 2,171  Compressed Air ‐ Compressor Replacement 4 203 1,982  Pumping System ‐ Controls 4 202 1,942  Chiller ‐ Turbocor Compressor 3 167 1,764  Interior Lighting ‐ Photocell Controlled T8 Dimming Ballasts 0 22 193  Interior Lighting ‐ Occupancy Sensors 7 249 1,949  Water Heater ‐ Faucet Aerators/Low Flow Nozzles 9 1,306 2,692  Chiller ‐ VSD 2 127 1,257  Interior Fluorescent ‐ Delamp and Install Reflectors 6 222 1,622  Roofs ‐ High Reflectivity 1 21 165  Commissioning ‐ Comprehensive 0 123 805  Chiller ‐ Condenser Water Temperature Reset 3 196 1,839  Heat Pump ‐ Maintenance 9 1,143 1,925  Compressed Air ‐ System Maintenance 13 717 1,198  Pumping System ‐ Maintenance  ‐ 43 606  Exterior Lighting ‐ Daylighting Controls 2 70 562  Insulation ‐ Ducting 1 93 778  Chiller ‐ Chilled Water Reset 2 403 705  Thermostat ‐ Clock/Programmable 2 304 595  Commissioning ‐ Lighting 0 94 314  Office Equipment ‐ ENERGY STAR Power Supply 3 399 795  Cooking ‐ Exhaust Hoods with Sensor Control 0 6 56  Refrigeration ‐ System Optimization 0 15 229  Avista 2011 Electric Integrated Resource Plan 758 Idaho Market Profiles, Baseline Forecast, and Potential Results Global Energy Partners B-29 An EnerNOC Company Measure 2012 2017 2022  Furnace ‐ Convert to Gas 1 35 229  Water Heater ‐ Heat Pump 0 16 211  Refrigeration ‐ System Controls 0 10 160  Cooling ‐ Economizer Installation 1 42 378  Exterior Lighting ‐ Induction Lamps 0 10 140  Insulation ‐ Ceiling 0 1 13  Industrial Process Improvements 0 11 127  LED Exit Lighting 9 319 358  Commissioning ‐ HVAC  ‐ ‐ 4  Water Heater ‐ Tank Blanket/Insulation 2 111 195  Miscellaneous ‐ ENERGY STAR Water Cooler 0 20 58  Refrigeration ‐ System Maintenance 0 3 46  Refrigeration ‐ Floating Head Pressure 0 4 46  Insulation ‐ Wall Cavity 0 2 31  Refrigeration ‐ Strip Curtain  ‐ 0 14  Refrigeration ‐ Anti‐Sweat Heater/Auto Door Closer 0 3 35  Water Heater ‐ Hot Water Saver  ‐ ‐ 1  Water Heater ‐ High Efficiency Circulation Pump 0 2 19  Vending Machine ‐ Controller 0 13 22  Chiller ‐ Chilled Water Variable‐Flow System 0 2 19  Exterior Lighting ‐ Cold Cathode Lighting 0 1 8  Refrigeration ‐ Night Covers 0 0 4  Laundry ‐ High Efficiency Clothes Washer 0 3 5  Total 228 22,482 92,917      Avista 2011 Electric Integrated Resource Plan 759 Avista 2011 Electric Integrated Resource Plan 760 Global Energy Partners C-1 An EnerNOC Company APPENDIX C RESIDENTIAL ENERGY EFFICIENCY EQUIPMENT AND MEASURE DATA This appendix presents detailed information for all residential energy efficiency equipment and measures that were evaluated in LoadMAP. Several sets of tables are provided. Table C-1 provides brief descriptions for all equipment and measures that were assessed for potenital. Tables C-2 through C-9 list the detailed unit-level data for the equipment measures for each of the housing type segments — single family, multi-family, mobile home, and limited income — and for existing and new construction, respectively. Savings are in kWh/yr/household, and incremental costs are in $/household, unless noted otherwise. The B/C ratio is zero if the measure represents the baseline technology or if the technology is not available in the first year of the forecast (2012). The B/C ratio is calculated within LoadMAP for each year of the forecast and is available once the technology or measure becomes available. Tables C-10 through C-17 list the detailed unit-level data for the non-equipment energy efficiency measures for each of the housing type segments and for existing and new construction, respectively. Because these measures can produce energy-use savings for multiple end-use loads (e.g., insulation affects heating and cooling energy use) savings are expressed as a percentage of the end-use loads. Base saturation indicates the percentage of homes in which the measure is already installed. Applicability/Feasibility is the product of two factors that account for whether the measure is applicable to the building. Cost is expressed in $/household. The detailed measure-level tables present the results of the benefit/cost (B/C) analysis for the first year of the forecast. The B/C ratio is zero if the measure represents the baseline technology or if the measure is not available in the first year of the forecast (2012). The B/C ratio is calculated within LoadMAP for each year of the forecast and is available once the technology or measure becomes available. Note that Tables C-2 through C-17 present information for Washington. For Idaho, savings and B/C ratios may be slightly different due to weather-related usage, differences in the states’ market profiles, and different retail electricity prices. Although Idaho-specific values are not presented here, they are available within the LoadMAP files. Avista 2011 Electric Integrated Resource Plan 761 Residential Energy Efficiency Equipment and Measure Data C-2 www.gepllc.com Table C–1 Residential Energy Efficiency Equipment/Measure Descriptions End‐Use  Equipment/  Measure Description  Cooling Air Conditioner —  Central (CAC)  Central air conditioners consist of a refrigeration system using a direct  expansion cycle. Equipment includes a compressor, an air‐cooled condenser  (located outdoors), an expansion valve, and an evaporator coil. A supply fan  near the evaporator coil distributes supply air through air ducts to the building.  Cooling efficiencies vary based on materials used, equipment size, condenser  type, and system configuration. CACs may be unitary (all components housed  in a factory‐built assembly) or split system (an outdoor condenser section and  an indoor evaporator section connected by refrigerant lines and with the  compressor either indoors or outdoors). Energy efficiency is rated according to  the size of the unit using the Seasonal Energy Efficiency Rating (SEER). Systems  with Variable Refrigerant Flow further improve the operating efficiency. A  high‐efficiency option for a ductless mini‐split system was also analyzed.   Cooling Central Air  Conditioner, Early  Replacement  CAC systems currently on the market are significantly more efficient that older  units, due to technology improvement and stricter appliance standards. This  measure incents homeowners to replace an aging but still working unit with a  new, higher‐efficiency one.  Cooling Central Air  Conditioner  Maintenance and  Tune Up  An air conditioner's filters, coils, and fins require regular cleaning and  maintenance for the unit to function effectively and efficiently throughout its  life. Neglecting necessary maintenance leads to a steady decline in  performance, requiring the AC unit to use more energy for the same cooling  load.   Cooling Air Conditioner ‐  Room, ENERGY STAR  or better  Room air conditioners are designed to cool a single room or space. They  incorporate a complete air‐cooled refrigeration and air‐handling system in an  individual package. Room air conditioners come in several forms, including  window, split‐type, and packaged terminal units. Energy efficiency is rated  according to the size of the unit using the Energy Efficiency Rating (EER).   Cooling Room AC — Removal  of Second Unit  Homeowners may have a second room AC unit that is extremely inefficient.  This measure incents homeowners to recycle the second unit and thus also  eliminates associated electricity use.  Cooling Attic Fan    Attic Fan,  Photovoltaic  Attic fans can reduce the need for AC by reducing heat transfer from the attic  through the ceiling of the house. A well‐ventilated attic can be several degrees  cooler than a comparable, unventilated attic. An option for an attic fan  equipped with a small solar photovoltaic generator was also modeled.  Cooling Ceiling Fan Ceiling fans can reduce the need for air conditioning. However, the house  occupants must also select a ceiling fan with a high‐efficiency motor and either  shutoff the AC system or setup the thermostat temperature of the air  conditioning system to realize the potential energy savings. Some ceiling fans  also come with lamps. In this analysis, it is assumed that there are no lamps,  and installing a ceiling fan will allow occupants to increase the thermostat  cooling setpoint up by 2°F.  Cooling Whole‐House Fan Whole‐house fans can reduce the need for AC on moderate‐weather days or  on cool evenings. The fan facilitates a quick air change throughout the entire  house. Several windows must be open to achieve the best results. The fan is  mounted on the top floor of the house, usually in a hallway ceiling.  Avista 2011 Electric Integrated Resource Plan 762 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-3 An EnerNOC Company End‐Use  Equipment/  Measure Description  Space Heating Convert to Gas This fuel‐switching measure is the replacement of an electric furnace with a  gas‐fired furnace. This measure will eliminate all electricity consumption and  demand due to electric space heating. In this study, it is assumed that this  measure can be implemented only in homes within 500 feet of a gas main.  Heat/Cool Air Source Heat  Pump  A central heat pump consists of components similar to a CAC system, but is  usually designed to function both as a heat pump and an air conditioner. It  consists of a refrigeration system using a direct expansion (DX) cycle.  Equipment includes a compressor, an air‐cooled condenser (located outdoors),  an expansion valve, and an evaporator coil (located in the supply air duct near  the supply fan) and a reversing valve to change the DX cycle from cooling to  heating when required. The cooling and heating efficiencies vary based on the  materials used, equipment size, condenser type, and system configuration.  Heat pumps may be unitary (all components housed in a factory‐built  assembly) or a split system (an outdoor condenser section and an indoor  evaporator section connected by refrigerant lines, with either outdoors or  indoors. A high‐efficiency option for a ductless mini‐split system was also  analyzed.  Heat / Cool Geothermal Heat  Pump  Geothermal heat pumps are similar to air‐source heat pumps, but use the  ground or groundwater instead of outside air to provide a heat source/sink. A  geothermal heat pump system generally consists of three major subsystems or  parts: a geothermal heat pump to move heat between the building and the  fluid in the earth connection, an earth connection for transferring heat  between the fluid and the earth, and a distribution subsystem for delivering  heating or cooling to the building. The system may also have a desuperheater  to supplement the building's water heater, or a full‐demand water heater to  meet all of the building's hot water needs.   Heat / Cool Air Source Heat  Pump Maintenance  A heat pump's filters, coils, and fins require regular cleaning and maintenance  for the unit to function effectively and efficiently throughout its life. Neglecting  necessary maintenance ensures a steady decline in performance while energy  use steadily increases.   HVAC (all) Insulation – Ducting Air distribution ducts can be insulated to reduce heating or cooling losses. Best  results can be achieved by covering the entire surface area with insulation.  Several types of ducts and duct insulation are available, including flexible duct,  pre‐insulated duct, duct board, duct wrap, tacked, or glued rigid insulation, and  waterproof hard shell materials for exterior ducts.  This analysis assumes that  installing duct insulation can reduce the temperature drop/gain in ducts by  50%.  HVAC (all) Repair and Sealing – Ducting  An ideal duct system would be free of leaks. Leakage in unsealed ducts varies  considerably because of differences in fabricating machinery used, methods  for assembly, installation workmanship, and age of the ductwork. Air leaks  from the system to the outdoors result in a direct loss proportional to the  amount of leakage and the difference in enthalpy between the outdoor air and  the conditioned air. This analysis assumes that over time air loss from ducts  has doubled, and conducting repair and sealing of the ducts will restore  leakage from ducts to the original baseline level.  Avista 2011 Electric Integrated Resource Plan 763 Residential Energy Efficiency Equipment and Measure Data C-4 www.gepllc.com End‐Use  Equipment/  Measure Description  HVAC (all) Thermostat —  Clock/Programmable    A programmable thermostat can be added to most heating/cooling systems.   They are typically used during winter to lower temperatures at night and in  summer to increase temperatures during the afternoon. The energy savings  from this type of thermostat are identical to those of a "setback" strategy with  standard thermostats, but the convenience of a programmable thermostat  makes it a much more attractive option.  In this analysis, the baseline is  assumed to have no thermostat setback.  HVAC (all) Doors — Storm and  Thermal  Like other components of the shell, doors are subject to several types of heat  loss: conduction, infiltration, and radiant losses. Similar to a storm window, a  storm door creates an insulating air space between the storm and primary  doors. A tight fitting storm door can also help reduce air leakage or infiltration.   Thermal doors have exceptional thermal insulation properties and also are  provided with weather‐stripping on the doorframe to reduce air leakage.  HVAC (all) Insulation —  Infiltration Control    Lowering the air infiltration rate by caulking small leaks and weather‐stripping  around window frames, doorframes, power outlets, plumbing, and wall  corners can provide significant energy savings. Weather‐stripping doors and  windows will create a tight seal and further reduce air infiltration.   HVAC (all) Insulation —Ceiling Thermal insulation is material or combinations of materials that are used to  inhibit the flow of heat energy by conductive, convective, and radiative  transfer modes. Thus, thermal insulation above ceilings can conserve energy by  reducing the heat loss or gain into attics and/or through roofs. The type of  building construction defines insulating possibilities. Typical insulating  materials include:  loose‐fill (blown) cellulose, loose‐fill (blown) fiberglass, and  rigid polystyrene.  HVAC (all) Insulation — Radiant  Barrier  Radiant barriers are materials installed to reduce the heat gain in buildings.  Radiant barriers are made from materials that are highly reflective and have  low emissivity like aluminum. The closer the emissivity is to 0 the better they  will perform.  Radiant barriers can be placed above the insulation or on the  roof rafters.    HVAC (all) Insulation —  Foundation   Insulation  — Wall  Cavity  Insulation  — Wall  Sheathing  Thermal insulation is material or combinations of materials that are used to  inhibit the flow of heat energy by conductive, convective, and radiative  transfer modes. Thus, thermal insulation can conserve energy by reducing heat  loss or gain from a building. The type of building construction defines insulating  possibilities. Typical insulating materials include:  loose‐fill (blown) cellulose,  loose‐fill (blown) fiberglass, and rigid polystyrene. Foundation, insulation, wall  cavity insulation, and wall sheathing were modeled for new construction /  major retrofits only.  Cooling Roof — High  Reflectivity  The color and material of a building structure surface determine the amount of  solar radiation absorbed by that surface and subsequently transferred into a  building. This is called solar absorptance. Using a roofing material with low  solar absorptance or painting the roof a light color reduces the cooling load.   This analysis assumes that implementing high reflectivity roofs will decrease  the roof’s absorptance of solar radiation by 45%.  Cooling Windows —  Reflective Film  Reflective films applied to the window interior help reduce solar gain into the  space and thus lower cooling energy use.  Avista 2011 Electric Integrated Resource Plan 764 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-5 An EnerNOC Company End‐Use  Equipment/  Measure Description  HVAC (all) Windows — High  Efficiency / ENERGY  STAR  High‐efficiency windows, such as those labeled under the ENERGY STAR  Program, are designed to reduce energy use and increase occupant comfort.   High‐efficiency windows reduce the amount of heat transfer through the  glazing surface. For example, some windows have a low‐E coating, a thin film  of metallic oxide coating on the glass surface that allows passage of short‐wave  solar energy through glass and prevents long‐wave energy from escaping.  Another example is double‐pane glass that reduces conductive and convective  heat transfer.  Some double‐pane windows are gas‐filled (usually argon) to  further increase the insulating properties of the window.  Water Heating Water Heater ‐  Electric, High  Efficiency  For electric hot water heating, the most common type is a storage heater,  which incorporates an electric heating element, storage tank, outer jacket,  insulation, and controls in a single unit. Efficient units are characterized by a  high recovery or thermal efficiency and low standby losses (the ratio of heat  lost per hour to the content of the stored water). Electric instantaneous water  heaters are available, but are excluded from this study due to potentially high  instantaneous demand concerns.  Water Heating Water Heater, Heat  Pump  An electric heat pump water heater (HPWH) uses a vapor‐compression  thermodynamic cycle similar to that found in an air‐conditioner or refrigerator.  Electrical work input allows a heat pump water heater to extract heat from an  available source (e.g., air) and reject that heat to a higher temperature sink, in  this case, the water in the water heater. Because a HPWH makes use of  available ambient heat, the coefficient of performance is greater than one — typically in the range of 2 to 3. These devices are available as an alternative to  conventional tank water heaters of 55 gallons or larger. By utilizing the earth as  a thermal reservoir, ground source HPWH systems can reach even higher levels  of efficiency. The heat pump can be integrated with a traditional water storage  tank or installed remote to the storage tank.   Water Heating Water Heating, Solar Solar water heating systems can be used in residential buildings that have an  appropriate near‐south‐facing roof or nearby unshaded grounds for installing a  collector. Although system types vary, in general these systems use a solar  absorber surface within a solar collector or an actual storage tank. Either a  heat‐transfer fluid or the actual potable water flows through tubes attached to  the absorber and transfers heat from it. (Systems with a separate heat‐ transfer‐fluid loop include a heat exchanger that then heats the potable  water.) The heated water is stored in a separate preheat tank or a  conventional water heater tank. If additional heat is needed, it is provided by a  conventional water‐heating system.  Water Heating Convert to Gas This fuel‐switching measure is the replacement of an electric water heater with  a gas‐fired water heater. This measure will eliminate all electricity consumption  and demand due to electric water heating.  In this study, it is assumed that this  measure can be implemented only in home within 500 feet of a gas main.  Water Heating Faucet Aerators Water faucet aerators are threaded screens that attach to existing faucets.  They reduce the volume of water coming out of faucets while introducing air  into the water stream. This measure provides energy saving by reducing hot  water use, as well as water conservation for both hot and cold water.  Avista 2011 Electric Integrated Resource Plan 765 Residential Energy Efficiency Equipment and Measure Data C-6 www.gepllc.com End‐Use  Equipment/  Measure Description  Water Heating Pipe Insulation Insulating hot water pipes decreases energy losses from piping that distributes  hot water throughout the building. I also results in quicker delivery of hot  water and may allow lower the hot water set point, which saves energy. The  most common insulation materials for this purpose are polyethylene and  neoprene.        Water Heating Low‐Flow  Showerheads  Similar to faucet aerators, low‐flow showerheads reduce the consumption of  hot water, which in turn decreases water heating energy use.    Water Heating Tank Blanket Insulating hot water tanks decreases standby energy losses from the tank. Pre‐ fitted insulating blankets are readily available.  Water Heating Thermostat Setback  / Timer  These measures use either a programmable thermostat or a timer to adjust the  water heater setpoint at times of low usage, typically when a home is  unoccupied.  Water Heating Hot Water Saver A hot water saver is a plumbing device that attaches to the showerhead and  that pauses the flow of water until the water is hot enough for use. The water  is re‐started by the flip of a switch.  Interior Lighting  / Exterior  Lighting   Infrared Halogen  Lamps  Infrared halogen lamps are designed to be a replacement for standards  incandescent lamps. Also referred to as advanced incandescent lamps, these  products meet the Energy Independence and Security Act (EISA) lighting  standards and are phased in as the baseline technology screw‐in lamp  technology to reflect the timeline over which the EISA lighting standards take  effect.  Interior Lighting  / Exterior  Lighting  Compact Fluorescent  Lamps  Compact fluorescent lamps are designed to be a replacement for standard  incandescent lamps and use about 25% of the energy used by standard  incandescent lamps to produce the same lumen output. The can use either  electronic or magnetic ballasts. Integral compact fluorescent lamps have the  ballast integrated into the base of the lamp and have a standard screw‐in base  that permits installation into existing incandescent fixtures.  Interior Lighting  / Exterior  Lighting  Solid State Lighting,  LEDs (Screw‐in and  linear)  Light‐emitting diode (LED) lighting has seen recent penetration in specific  applications such as traffic lights and exit signs. With the potential for  extremely high efficiency, LEDs show promise to provide general‐use lighting  for interior spaces. Current models commercially available have efficacies  comparable to CFLs. However, theoretical efficiencies are significantly higher.  LED models under development are expected to provide improved efficacies.  Interior Lighting Fluorescent, T8,  Super T8, and T5  Lamps and Electronic  Ballasts  T8 fluorescent lamps are smaller in diameter than standard T12 lamps,  resulting in greater light output per watt. T8 lamps also operate at a lower  current and wattage, which increases the efficiency of the ballast but requires  the lamps to be compatible with the ballast. Fluorescent lamp fixtures can  include a reflector that increases the light output from the fixture, and thus  make it possible to use a fewer number of lamps in each fixture. T5 lamps  further increase efficiency by reducing the lamp diameter to 5/8”.  Exterior Lighting Metal Halide and  High Pressure  Sodium  These lamps technologies can provide slightly higher efficiencies than CFLs in  exterior applications.  Interior Lighting Occupancy Sensors Occupancy sensors turn lights off when a space is unoccupied. They are  appropriate for areas with intermittent use, such as bathrooms or storage  areas.   Avista 2011 Electric Integrated Resource Plan 766 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-7 An EnerNOC Company End‐Use  Equipment/  Measure Description  Exterior Lighting Photovoltaic  Installation  Solar photovoltaic generation may be used to power exterior lighting and thus  eliminate all or part of the electrical energy use.   Exterior Lighting Photosensor Control Photosensor controls turn exterior lighting on or off based on ambient lighting  levels. Compared with manual operation, this can reduce the operation of  exterior lighting during daylight hours.   Exterior Lighting Timeclock  Installation  Lighting timers turn exterior lighting on or off based on a preset schedule.  Compared with manual operation, this can reduce the operation of exterior  lighting during daylight hours.  Appliances Refrigerator/Freezer,  ENERGY STAR or  better  Energy‐efficient refrigerators/freezers incorporate features such as improved  cabinet insulation, more efficient compressors and evaporator fans, defrost  controls, mullion heaters, oversized condenser coils, and improved door seals.   Further efficiency increases can be obtained by reducing the volume of  refrigerated space, or adding multiple compartments to reduce losses from  opening doors.  Appliances Refrigerator/Freezer  —   Early Replacement   Refrigerators/freezers currently on the market are significantly more efficient  that older units, due to technology improvement and stricter appliance  standards. This measure incents homeowners to replace an aging but still  working unit with a new, higher‐efficiency one.  Appliances Refrigerator/Freezer  —   Remove Second Unit  Homeowners may have a second refrigerator or freezer that is not used to full  capacity and that, because of its age, is extremely inefficient. This measure  incents homeowners to recycle the second unit and thus also eliminates  associated electricity use.  Appliances Dishwasher, ENERGY  STAR or better  ENERGY STAR labeled dishwashers save by using both improved technology for  the primary wash cycle, and by using less hot water. Construction includes  more effective washing action, energy‐efficient motors, and other advanced  technology such as sensors that determine the length of the wash cycle and  the temperature of the water necessary to clean the dishes.   Appliances Clothes Washer,  ENERGY STAR or  better  ENERGY STAR labeled clothes washers use superior designs that require less  water. Sensors match the hot water needs to the size and soil level of the load,  preventing energy waste. Further energy and water savings can be achieved  through advanced technologies such as inverter‐drive or combination washer‐ dryer units.  Appliances Clothes Dryer –  Electric, High  Efficiency  An energy‐efficient clothes dryer has a moisture‐sensing device to terminate  the drying cycle rather than using a timer, and an energy‐efficient motor is  used for spinning the dryer tub. Application of a heat pump cycle for extracting  the moisture from clothes leads to additional energy savings.  Appliances Range and Oven –  Electric, High  Efficiency  These products have additional insulation in the oven compartment and  tighter‐fitting oven door gaskets and hinges to save energy. Conventional  ovens must first heat up about 35 pounds of steel and a large amount of air  before they heat up the food. Tests indicate that only 6% of the energy output  of a typical oven is actually absorbed by the food.   Electronics Color TVs and Home  Electronics, ENERGY  STAR or better  In the average home, electronic products consumed significant energy, even  when they are turn off, to maintain features like clocks, remote control, and  channel/station memory. ENERGY STAR labeled consumer electronics can  drastically reduce consumption during standby mode, in addition to saving  energy through advanced power management during normal use.   Avista 2011 Electric Integrated Resource Plan 767 Residential Energy Efficiency Equipment and Measure Data C-8 www.gepllc.com End‐Use  Equipment/  Measure Description  Electronics Personal Computers,  ENERGY STAR or  better  Improved power management can significantly reduce the annual energy  consumption of PCs and monitors in both standby and normal operation.  ENERGY STAR and Climate Savers labeled products provide increasing level of  energy efficiency.  Electronics Reduce Standby  Wattage  Representing a growing portion of home electricity consumption, plug‐in  electronics such as set‐top boxes, DVD players, gaming systems, digital video  recorders, and even battery chargers for mobile phones and laptop computers  are often designed to supply a set voltage. When the units are not in use, this  voltage could be dropped significantly (~1 W) and thereby generate a  significant energy savings, assumed for this analysis to be between 4‐5% on  average. These savings are in excess of the measures already discussed for  computers and televisions.   Misc. Furnace Fans,  Electronically  Commutating Motor  In homes heated by a furnace, there is still substantial energy use by the fan  responsible for moving the hot air throughout the ductwork.  Application of an  Electronically Commutating Motor (ECM) ensures that motor speed matches  the heating requirements of the system and saves energy when compared to a  continuously operating standard motor.  Miscellaneous Pool Pump  High‐efficiency motors and two‐speed pumps provide improved energy  efficiency for this load.   Miscellaneous Pool Pump Timer A pool pump timer allows the pump to turn off automatically, eliminating the  wasted energy associated with unnecessary pumping.    Miscellaneous Trees for Shading Planting of shade trees, suitable to the local climate, can reduce the need for  air conditioning and provide non‐energy benefits as well.   Cooling / Space  Heating /  Interior Lighting  Home Energy  Management System  A centralized home energy management system can be used to control and  schedule cooling, space heating, lighting, and possibly appliances as well. Some  designs also allow the homeowner to remotely control loads via the Internet.  Cooling / Space  Heating   Solar Photovoltaic Adding a solar photovoltaic (PV) system to the home can meet a portion of the  home’s electric load and in some cases nearly the entire load, depending on  the PV system size, orientation, solar resource, and other factors. For this  analysis, we assume a grid‐connected system and apply the electricity savings  to the home’s cooling and space heating loads.  Cooling / Space  Heating /  Interior Lighting  Advanced New  Construction Designs  Advanced new construction designs use an integrated approach to the design  of new buildings to account for the interaction of building systems. Typically,  designs specify the building orientation, building shell, building mechanical  systems, and controls strategies with the goal of optimizing building energy  efficiency and comfort. Options that may be evaluated and incorporated  include passive solar strategies, increased thermal mass, natural ventilation,  daylighting strategies, and shading strategies, This measure was modeled for  new construction only.  Cooling / Space  Heating /  Interior Lighting  ENERGY STAR Homes    This measure was modeled for new construction only.  Cooling / Space  Heating /  Interior Lighting  Energy‐Efficient  Manufactured  Homes  This measure was modeled for new construction only.  Avista 2011 Electric Integrated Resource Plan 768 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-9 An EnerNOC Company Table C-2 Energy Efficiency Equipment Data — Single Family, Existing Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                  $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)134               $278 15 0.41           Cooling Central AC SEER 15 (CEE Tier 2)184               $556 15 0.28           Cooling Central AC SEER 16 (CEE Tier 3)226               $834 15 0.23           Cooling Central AC Ductless Mini‐Split System 405               $4,399 20 0.14           Cooling Room AC EER 9.8 ‐                  $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)62                  $104 10 0.33           Cooling Room AC EER 11 73                  $282 10 0.15           Cooling Room AC EER 11.5 99                  $626 10 0.09           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                  $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star) 492               $1,000 15 0.43           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2) 675               $2,318 15 0.26           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3) 829               $3,505 15 0.21           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 1,486            $5,655 20 0.45           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                  $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 516               $1,500 14 0.28           Space Heating Electric Resistance Electric Resistance ‐                  $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                  $0 15 ‐             Space Heating Supplemental Supplemental ‐                  $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                  $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 173               $41 15 5.79           Water Heating Water Heater Geothermal Heat Pump 2,269            $6,586 15 0.47           Water Heating Water Heater Solar 2,493            $5,653 15 0.60           Interior Lighting* Screw‐in Incandescent  ‐                  $0 4 ‐             Interior Lighting* Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting* Screw‐in CFL 38                  $2 6 14.44        Interior Lighting* Screw‐in LED 40                  $80 12 0.90           Interior Lighting* Linear Fluorescent T12 ‐                  $0 6 ‐             Interior Lighting* Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting* Linear Fluorescent Super T8 6                    $7 6 1.16           Interior Lighting* Linear Fluorescent T5 10                  $10 6 0.71           Interior Lighting* Linear Fluorescent LED 18                  $55 10 0.14           Interior Lighting* Pin‐based Halogen ‐                  $0 4 ‐             Interior Lighting* Pin‐based CFL 13                  $4 6 1.00           Interior Lighting* Pin‐based LED 14                  $17 10 0.77           Exterior Lighting* Screw‐in Incandescent  ‐                  $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 22.43        Exterior Lighting* Screw‐in LED 37                  $79 12 0.89           Exterior Lighting* High Intensity/Flood Incandescent ‐                  $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 7.40           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 4.03           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 9.14           Exterior Lighting* High Intensity/Flood LED 66                  $79 10 0.82           Appliances Clothes Washer Baseline ‐                  $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)45                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 88                  $487 10 0.16           Appliances Clothes Dryer Baseline ‐                  $0 13 ‐             Appliances Clothes Dryer Moisture Detection 98                  $48 13 2.39           Appliances Dishwasher Baseline ‐                  $0 9 ‐             Appliances Dishwasher Energy Star 41                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)53                  $1 9 31.05        Appliances Refrigerator Baseline ‐                  $0 13 ‐             Appliances Refrigerator Energy Star 108               $89 13 1.28           Appliances Refrigerator Baseline (2014)144               $0 13 ‐             Appliances Refrigerator Energy Star (2014)230               $89 13 ‐             * Savings and costs are per unit, e.g., per lamp. Avista 2011 Electric Integrated Resource Plan 769 Residential Energy Efficiency Equipment and Measure Data C-10 www.gepllc.com Table C-2 Energy Efficiency Equipment Data — Single Family, Existing Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Freezer Baseline ‐                  $0 11 ‐             Appliances Freezer Energy Star 114               $32 11 3.03           Appliances Freezer Baseline (2014)152               $0 11 ‐             Appliances Freezer Energy Star (2014)243               $32 11 ‐             Appliances Second Refrigerator Baseline ‐                  $0 13 ‐             Appliances Second Refrigerator Energy Star 111               $89 13 1.31           Appliances Second Refrigerator Baseline (2014)148               $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)237               $89 13 ‐             Appliances Stove Baseline ‐                  $0 13 ‐             Appliances Stove Convection Oven 9                    $2 13 7.00           Appliances Stove Induction (High Efficiency) 46                  $1,432 13 0.05           Appliances Microwave Baseline ‐                  $0 9 ‐             Electronics Personal Computers Baseline ‐                  $0 5 ‐             Electronics Personal Computers Energy Star 108               $1 5 35.63        Electronics Personal Computers Climate Savers 154               $175 5 0.35           Electronics TVs Baseline ‐                  $0 11 ‐             Electronics TVs Energy Star 87                  $1 11 133.21      Electronics Devices and Gadgets Devices and Gadgets ‐                  $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                  $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump 138               $85 15 1.96           Miscellaneous Pool Pump Two‐Speed Pump 551               $579 15 1.15           Miscellaneous Furnace Fan Baseline ‐                  $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 127               $1 18 281.65      Miscellaneous Miscellaneous Miscellaneous ‐                  $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 770 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-11 An EnerNOC Company Table C-3 Energy Efficiency Equipment Data — Multi Family, Existing Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost (/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                   $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)67                  $93 15 0.62           Cooling Central AC SEER 15 (CEE Tier 2)133                $185 15 0.61           Cooling Central AC SEER 16 (CEE Tier 3)187                $278 15 0.57           Cooling Central AC Ductless Mini‐Split System 245                $2,012 20 0.19           Cooling Room AC EER 9.8 ‐                   $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)32                  $52 10 0.35           Cooling Room AC EER 11 38                  $141 10 0.15           Cooling Room AC EER 11.5 52                  $313 10 0.09           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                   $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star)238                $1,246 15 0.17           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2)467                $2,315 15 0.18           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3)659                $3,277 15 0.18           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 862                $5,022 20 0.27           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                   $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 248                $1,500 14 0.14           Space Heating Electric Resistance Electric Resistance ‐                   $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                   $0 15 ‐             Space Heating Supplemental Supplemental ‐                   $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                   $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 107                $41 15 3.61           Water Heating Water Heater Solar 1,539            $5,653 15 0.38           Interior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Interior Lighting* Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting* Screw‐in CFL 38                  $2 6 10.47        Interior Lighting* Screw‐in LED 40                  $80 12 0.65           Interior Lighting* Linear Fluorescent T12 ‐                   $0 6 ‐             Interior Lighting* Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting* Linear Fluorescent Super T8 6                    $7 6 1.16           Interior Lighting* Linear Fluorescent T5 10                  $10 6 0.71           Interior Lighting* Linear Fluorescent LED 18                  $55 10 0.14           Interior Lighting* Pin‐based Halogen ‐                   $0 4 ‐             Interior Lighting* Pin‐based CFL 13                  $4 6 1.00           Interior Lighting* Pin‐based LED 14                  $17 10 0.77           Exterior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 32.52        Exterior Lighting* Screw‐in LED 37                  $79 12 1.29           Exterior Lighting* High Intensity/Flood Incandescent ‐                   $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 7.40           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 4.03           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 9.14           Exterior Lighting* High Intensity/Flood LED 66                  $79 10 0.82           Appliances Clothes Washer Baseline ‐                   $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)23                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 44                  $487 10 0.08           Appliances Clothes Dryer Baseline ‐                   $0 13 ‐             Appliances Clothes Dryer Moisture Detection 93                  $48 13 2.28           Appliances Dishwasher Baseline ‐                   $0 9 ‐             Appliances Dishwasher Energy Star 15                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)19                  $1 9 11.14        Appliances Refrigerator Baseline ‐                   $0 13 ‐             Appliances Refrigerator Energy Star 92                  $89 13 1.09           Appliances Refrigerator Baseline (2014)123                $0 13 ‐             Appliances Refrigerator Energy Star (2014)196                $89 13 ‐             * Savings and costs are per unit, e.g., per lamp. Avista 2011 Electric Integrated Resource Plan 771 Residential Energy Efficiency Equipment and Measure Data C-12 www.gepllc.com Table C-3 Energy Efficiency Equipment Data—Multi Family, Existing Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Freezer Baseline ‐                   $0 11 ‐             Appliances Freezer Energy Star 108                $32 11 2.88           Appliances Freezer Baseline (2014)145                $0 11 ‐             Appliances Freezer Energy Star (2014)231                $32 11 ‐             Appliances Second Refrigerator Baseline ‐                   $0 13 ‐             Appliances Second Refrigerator Energy Star 93                  $89 13 1.11           Appliances Second Refrigerator Baseline (2014)124                $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)199                $89 13 ‐             Appliances Stove Baseline ‐                   $0 13 ‐             Appliances Stove Convection Oven 4                    $2 13 2.99           Appliances Stove Induction (High Efficiency) 20                  $1,432 13 0.02           Appliances Microwave Baseline ‐                   $0 9 ‐             Electronics Personal Computers Baseline ‐                   $0 5 ‐             Electronics Personal Computers Energy Star 86                  $1 5 29.28        Electronics Personal Computers Climate Savers 123                $175 5 0.29           Electronics TVs Baseline ‐                   $0 11 ‐             Electronics TVs Energy Star 43                  $1 11 67.65        Electronics Devices and Gadgets Devices and Gadgets ‐                   $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                   $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump ‐                   $85 15 ‐             Miscellaneous Pool Pump Two‐Speed Pump ‐                   $579 15 ‐             Miscellaneous Furnace Fan Baseline ‐                   $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 10                  $1 18 21.87        Miscellaneous Miscellaneous Miscellaneous ‐                   $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 772 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-13 An EnerNOC Company Table C-4 Energy Efficiency Equipment Data — Mobile Home, Existing Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost (/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                   $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)80                  $278 15 0.24           Cooling Central AC SEER 15 (CEE Tier 2)110                $556 15 0.17           Cooling Central AC SEER 16 (CEE Tier 3)134                $834 15 0.14           Cooling Central AC Ductless Mini‐Split System 241                $4,399 20 0.08           Cooling Room AC EER 9.8 ‐                   $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)37                  $52 10 0.40           Cooling Room AC EER 11 44                  $141 10 0.17           Cooling Room AC EER 11.5 59                  $313 10 0.11           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                   $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star)282                $1,246 15 0.20           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2)387                $2,315 15 0.15           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3)475                $3,277 15 0.13           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 852                $5,022 20 0.27           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                   $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 295                $1,500 14 0.16           Space Heating Electric Resistance Electric Resistance ‐                   $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                   $0 15 ‐             Space Heating Supplemental Supplemental ‐                   $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                   $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95)88                  $41 15 2.95           Water Heating Water Heater Solar 1,271            $5,653 15 0.31           Interior Lighting*Screw‐in Incandescent  ‐                   $0 4 ‐             Interior Lighting*Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting*Screw‐in CFL 38                  $2 6 13.00        Interior Lighting*Screw‐in LED 40                  $80 12 0.81           Interior Lighting*Linear Fluorescent T12 ‐                   $0 6 ‐             Interior Lighting*Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting*Linear Fluorescent Super T8 6                    $7 6 1.04           Interior Lighting*Linear Fluorescent T5 10                  $10 6 0.64           Interior Lighting*Linear Fluorescent LED 18                  $55 10 0.13           Interior Lighting*Pin‐based Halogen ‐                   $0 4 ‐             Interior Lighting*Pin‐based CFL 13                  $4 6 1.00           Interior Lighting*Pin‐based LED 14                  $17 10 0.70           Exterior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 20.19        Exterior Lighting* Screw‐in LED 37                  $79 12 0.80           Exterior Lighting* High Intensity/Flood Incandescent ‐                   $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 6.66           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 3.63           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 8.23           Exterior Lighting* High Intensity/Flood LED 66                  $79 10 0.74           Appliances Clothes Washer Baseline ‐                   $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)46                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 89                  $487 10 0.16           Appliances Clothes Dryer Baseline ‐                   $0 13 ‐             Appliances Clothes Dryer Moisture Detection 99                  $48 13 2.43           Appliances Dishwasher Baseline ‐                   $0 9 ‐             Appliances Dishwasher Energy Star 41                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)54                  $1 9 31.57        Appliances Refrigerator Baseline ‐                   $0 13 ‐             Appliances Refrigerator Energy Star 110                $89 13 1.30           Appliances Refrigerator Baseline (2014)146                $0 13 ‐             Appliances Refrigerator Energy Star (2014)234                $89 13 ‐             * Savings and costs are per unit, e.g., per lamp Avista 2011 Electric Integrated Resource Plan 773 Residential Energy Efficiency Equipment and Measure Data C-14 www.gepllc.com Table C-4 Energy Efficiency Equipment Data — Mobile Home, Existing Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Freezer Baseline ‐                   $0 11 ‐             Appliances Freezer Energy Star 116                $32 11 3.08           Appliances Freezer Baseline (2014)155                $0 11 ‐             Appliances Freezer Energy Star (2014)248                $32 11 ‐             Appliances Second Refrigerator Baseline ‐                   $0 13 ‐             Appliances Second Refrigerator Energy Star 113                $89 13 1.34           Appliances Second Refrigerator Baseline (2014)150                $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)241                $89 13 ‐             Appliances Stove Baseline ‐                   $0 13 ‐             Appliances Stove Convection Oven 8                    $2 13 6.30           Appliances Stove Induction (High Efficiency) 41                  $1,432 13 0.04           Appliances Microwave Baseline ‐                   $0 9 ‐             Electronics Personal Computers Baseline ‐                   $0 5 ‐             Electronics Personal Computers Energy Star 101                $1 5 33.39        Electronics Personal Computers Climate Savers 144                $175 5 0.33           Electronics TVs Baseline ‐                   $0 11 ‐             Electronics TVs Energy Star 87                  $1 11 133.21      Electronics Devices and Gadgets Devices and Gadgets ‐                   $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                   $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump 138                $85 15 1.96           Miscellaneous Pool Pump Two‐Speed Pump 551                $579 15 1.15           Miscellaneous Furnace Fan Baseline ‐                   $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 127                $1 18 281.65      Miscellaneous Miscellaneous Miscellaneous ‐                   $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 774 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-15 An EnerNOC Company Table C-5 Energy Efficiency Equipment Data — Limited Income, Existing Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost (/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                   $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)76                  $185 15 0.35           Cooling Central AC SEER 15 (CEE Tier 2)104                $370 15 0.24           Cooling Central AC SEER 16 (CEE Tier 3)127                $556 15 0.19           Cooling Central AC Ductless Mini‐Split System 229                $2,394 20 0.15           Cooling Room AC EER 9.8 ‐                   $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)65                  $104 10 0.35           Cooling Room AC EER 11 77                  $282 10 0.15           Cooling Room AC EER 11.5 104                $626 10 0.09           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                   $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star)192                $1,246 15 0.13           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2)263                $2,315 15 0.10           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3)323                $3,277 15 0.09           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 579                $5,022 20 0.18           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                   $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 201                $1,500 14 0.11           Space Heating Electric Resistance Electric Resistance ‐                   $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                   $0 15 ‐             Space Heating Supplemental Supplemental ‐                   $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                   $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 116                $41 15 3.94           Water Heating Water Heater Solar 1,679            $5,653 15 0.41           Interior Lighting*Screw‐in Incandescent  ‐                   $0 4 ‐             Interior Lighting*Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting*Screw‐in CFL 38                  $2 6 13.85        Interior Lighting*Screw‐in LED 40                  $80 12 0.86           Interior Lighting*Linear Fluorescent T12 ‐                   $0 6 ‐             Interior Lighting*Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting*Linear Fluorescent Super T8 6                    $7 6 1.16           Interior Lighting*Linear Fluorescent T5 10                  $10 6 0.71           Interior Lighting*Linear Fluorescent LED 18                  $55 10 0.14           Interior Lighting*Pin‐based Halogen ‐                   $0 4 ‐             Interior Lighting*Pin‐based CFL 13                  $4 6 1.00           Interior Lighting*Pin‐based LED 14                  $17 10 0.77           Exterior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 32.52        Exterior Lighting* Screw‐in LED 37                  $79 12 1.29           Exterior Lighting* High Intensity/Flood Incandescent ‐                   $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 7.40           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 4.03           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 9.14           Exterior Lighting* High Intensity/Flood LED 66                  $79 10 0.82           Appliances Clothes Washer Baseline ‐                   $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)20                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 38                  $487 10 0.07           Appliances Clothes Dryer Baseline ‐                   $0 13 ‐             Appliances Clothes Dryer Moisture Detection 104                $48 13 2.56           Appliances Dishwasher Baseline ‐                   $0 9 ‐             Appliances Dishwasher Energy Star 12                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)15                  $1 9 9.07           Appliances Refrigerator Baseline ‐                   $0 13 ‐             Appliances Refrigerator Energy Star 92                  $89 13 1.09           Appliances Refrigerator Baseline (2014)123                $0 13 ‐             Appliances Refrigerator Energy Star (2014)196                $89 13 ‐             * Savings and costs are per unit, e.g., per lamp Avista 2011 Electric Integrated Resource Plan 775 Residential Energy Efficiency Equipment and Measure Data C-16 www.gepllc.com Table C-5 Energy Efficiency Equipment Data — Limited Income, Existing Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Freezer Baseline ‐                   $0 11 ‐             Appliances Freezer Energy Star 108                $32 11 2.88           Appliances Freezer Baseline (2014)145                $0 11 ‐             Appliances Freezer Energy Star (2014)231                $32 11 ‐             Appliances Second Refrigerator Baseline ‐                   $0 13 ‐             Appliances Second Refrigerator Energy Star 93                  $89 13 1.11           Appliances Second Refrigerator Baseline (2014)124                $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)199                $89 13 ‐             Appliances Stove Baseline ‐                   $0 13 ‐             Appliances Stove Convection Oven 5                    $2 13 3.59           Appliances Stove Induction (High Efficiency) 24                  $1,432 13 0.02           Appliances Microwave Baseline ‐                   $0 9 ‐             Electronics Personal Computers Baseline ‐                   $0 5 ‐             Electronics Personal Computers Energy Star 89                  $1 5 30.10        Electronics Personal Computers Climate Savers 127                $175 5 0.29           Electronics TVs Baseline ‐                   $0 11 ‐             Electronics TVs Energy Star 49                  $1 11 77.80        Electronics Devices and Gadgets Devices and Gadgets ‐                   $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                   $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump 57                  $85 15 0.83           Miscellaneous Pool Pump Two‐Speed Pump 226                $579 15 0.49           Miscellaneous Furnace Fan Baseline ‐                   $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 54                  $1 18 123.18      Miscellaneous Miscellaneous Miscellaneous ‐                   $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 776 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-17 An EnerNOC Company Table C-6 Energy Efficiency Equipment Data —Single Family, New Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost (/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                   $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)180                $278 15 0.55           Cooling Central AC SEER 15 (CEE Tier 2)240                $556 15 0.36           Cooling Central AC SEER 16 (CEE Tier 3)290                $834 15 0.29           Cooling Central AC Ductless Mini‐Split System 543                $4,399 20 0.19           Cooling Room AC EER 9.8 ‐                   $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)76                  $104 10 0.41           Cooling Room AC EER 11 90                  $282 10 0.18           Cooling Room AC EER 11.5 122                $626 10 0.11           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                   $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star)588                $1,000 15 0.51           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2)783                $2,318 15 0.30           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3)946                $3,505 15 0.24           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 1,775            $5,655 20 0.54           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                   $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 630                $1,500 14 0.35           Space Heating Electric Resistance Electric Resistance ‐                   $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                   $0 15 ‐             Space Heating Supplemental Supplemental ‐                   $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                   $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 219                $41 15 7.35           Water Heating Water Heater Geothermal Heat Pump 2,878            $6,586 15 0.60           Interior Lighting*Water Heater Solar 3,163            $5,653 15 0.77           Interior Lighting*Screw‐in Incandescent  ‐                   $0 4 ‐             Interior Lighting*Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting*Screw‐in CFL 38                  $2 6 14.05        Interior Lighting*Screw‐in LED 40                  $80 12 0.87           Interior Lighting*Linear Fluorescent T12 ‐                   $0 6 ‐             Interior Lighting*Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting*Linear Fluorescent Super T8 6                    $7 6 1.16           Interior Lighting*Linear Fluorescent T5 10                  $10 6 0.71           Interior Lighting*Linear Fluorescent LED 18                  $55 10 0.14           Interior Lighting*Pin‐based Halogen ‐                   $0 4 ‐             Interior Lighting*Pin‐based CFL 13                  $4 6 1.00           Exterior Lighting* Pin‐based LED 14                  $17 10 0.77           Exterior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 21.82        Exterior Lighting* Screw‐in LED 37                  $79 12 0.87           Exterior Lighting* High Intensity/Flood Incandescent ‐                   $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 7.40           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 4.03           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 9.14           Exterior Lighting High Intensity/Flood LED 66                  $79 10 0.82           Appliances Clothes Washer Baseline ‐                   $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)58                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 112                $487 10 0.21           Appliances Clothes Dryer Baseline ‐                   $0 13 ‐             Appliances Clothes Dryer Moisture Detection 117                $48 13 2.86           Appliances Dishwasher Baseline ‐                   $0 9 ‐             Appliances Dishwasher Energy Star 47                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)62                  $1 9 36.25        Appliances Refrigerator Baseline ‐                   $0 13 ‐             Appliances Refrigerator Energy Star 102                $89 13 1.20           Appliances Refrigerator Baseline (2014)135                $0 13 ‐             * Savings and costs are per unit, e.g., per lamp Avista 2011 Electric Integrated Resource Plan 777 Residential Energy Efficiency Equipment and Measure Data C-18 www.gepllc.com Table C-6 Energy Efficiency Equipment Data —Single Family, New Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Refrigerator Energy Star (2014)217                $89 13 ‐             Appliances Freezer Baseline ‐                   $0 11 ‐             Appliances Freezer Energy Star 116                $32 11 3.08           Appliances Freezer Baseline (2014)155                $0 11 ‐             Appliances Freezer Energy Star (2014)248                $32 11 ‐             Appliances Second Refrigerator Baseline ‐                   $0 13 ‐             Appliances Second Refrigerator Energy Star 116                $89 13 1.37           Appliances Second Refrigerator Baseline (2014)154                $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)247                $89 13 ‐             Appliances Stove Baseline ‐                   $0 13 ‐             Appliances Stove Convection Oven 11                  $2 13 8.51           Appliances Stove Induction (High Efficiency) 56                  $1,432 13 0.06           Appliances Microwave Baseline ‐                   $0 9 ‐             Electronics Personal Computers Baseline ‐                   $0 5 ‐             Electronics Personal Computers Energy Star 111                $1 5 36.63        Electronics Personal Computers Climate Savers 158                $175 5 0.36           Electronics TVs Baseline ‐                   $0 11 ‐             Electronics TVs Energy Star 96                  $1 11 148.53      Electronics Devices and Gadgets Devices and Gadgets ‐                   $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                   $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump 156                $85 15 2.22           Miscellaneous Pool Pump Two‐Speed Pump 623                $579 15 1.30           Miscellaneous Furnace Fan Baseline ‐                   $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 155                $1 18 345.87      Miscellaneous Miscellaneous Miscellaneous ‐                   $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 778 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-19 An EnerNOC Company Table C-7 Energy Efficiency Equipment Data — Multi Family, New Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost (/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                   $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)85                  $93 15 0.78           Cooling Central AC SEER 15 (CEE Tier 2)166                $185 15 0.76           Cooling Central AC SEER 16 (CEE Tier 3)234                $278 15 0.71           Cooling Central AC Ductless Mini‐Split System 308                $2,012 20 0.24           Cooling Room AC EER 9.8 ‐                   $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)37                  $52 10 0.39           Cooling Room AC EER 11 43                  $141 10 0.17           Cooling Room AC EER 11.5 59                  $313 10 0.10           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                   $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star)292                $1,246 15 0.21           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2)571                $2,315 15 0.22           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3)804                $3,277 15 0.21           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 1,058            $5,022 20 0.33           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                   $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 282                $1,500 14 0.15           Space Heating Electric Resistance Electric Resistance ‐                   $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                   $0 15 ‐             Space Heating Supplemental Supplemental ‐                   $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                   $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 124                $41 15 4.19           Water Heating Water Heater Solar 1,786            $5,653 15 0.44           Interior Lighting*Screw‐in Incandescent  ‐                   $0 4 ‐             Interior Lighting*Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting*Screw‐in CFL 38                  $2 6 10.18        Interior Lighting*Screw‐in LED 40                  $80 12 0.63           Interior Lighting*Linear Fluorescent T12 ‐                   $0 6 ‐             Interior Lighting*Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting*Linear Fluorescent Super T8 6                    $7 6 1.16           Interior Lighting*Linear Fluorescent T5 10                  $10 6 0.71           Interior Lighting*Linear Fluorescent LED 18                  $55 10 0.14           Interior Lighting*Pin‐based Halogen ‐                   $0 4 ‐             Interior Lighting*Pin‐based CFL 13                  $4 6 1.00           Interior Lighting*Pin‐based LED 14                  $17 10 0.77           Exterior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 31.63        Exterior Lighting* Screw‐in LED 37                  $79 12 1.26           Exterior Lighting* High Intensity/Flood Incandescent ‐                   $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 7.40           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 4.03           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 9.14           Exterior Lighting* High Intensity/Flood LED 66                  $79 10 0.82           Appliances Clothes Washer Baseline ‐                   $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)26                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 51                  $487 10 0.09           Appliances Clothes Dryer Baseline ‐                   $0 13 ‐             Appliances Clothes Dryer Moisture Detection 105                $48 13 2.56           Appliances Dishwasher Baseline ‐                   $0 9 ‐             Appliances Dishwasher Energy Star 16                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)21                  $1 9 12.38        Appliances Refrigerator Baseline ‐                   $0 13 ‐             Appliances Refrigerator Energy Star 108                $89 13 1.28           Appliances Refrigerator Baseline (2014)144                $0 13 ‐             Appliances Refrigerator Energy Star (2014)230                $89 13 ‐             * Savings and costs are per unit, e.g., per lamp Avista 2011 Electric Integrated Resource Plan 779 Residential Energy Efficiency Equipment and Measure Data C-20 www.gepllc.com Table C-7 Energy Efficiency Equipment Data — Multi Family, New Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Freezer Baseline ‐                   $0 11 ‐             Appliances Freezer Energy Star 115                $32 11 3.06           Appliances Freezer Baseline (2014)154                $0 11 ‐             Appliances Freezer Energy Star (2014)246                $32 11 ‐             Appliances Second Refrigerator Baseline ‐                   $0 13 ‐             Appliances Second Refrigerator Energy Star 103                $89 13 1.21           Appliances Second Refrigerator Baseline (2014)137                $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)219                $89 13 ‐             Appliances Stove Baseline ‐                   $0 13 ‐             Appliances Stove Convection Oven 4                    $2 13 3.31           Appliances Stove Induction (High Efficiency) 22                  $1,432 13 0.02           Appliances Microwave Baseline ‐                   $0 9 ‐             Electronics Personal Computers Baseline ‐                   $0 5 ‐             Electronics Personal Computers Energy Star 88                  $1 5 29.69        Electronics Personal Computers Climate Savers 125                $175 5 0.29           Electronics TVs Baseline ‐                   $0 11 ‐             Electronics TVs Energy Star 45                  $1 11 71.54        Electronics Devices and Gadgets Devices and Gadgets ‐                   $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                   $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump ‐                   $85 15 ‐             Miscellaneous Pool Pump Two‐Speed Pump ‐                   $579 15 ‐             Miscellaneous Furnace Fan Baseline ‐                   $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 11                  $1 18 24.36        Miscellaneous Miscellaneous Miscellaneous ‐                   $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 780 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-21 An EnerNOC Company Table C-8 Energy Efficiency Equipment Data — Mobile Home, New Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost (/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                   $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)100                $278 15 0.30           Cooling Central AC SEER 15 (CEE Tier 2)133                $556 15 0.20           Cooling Central AC SEER 16 (CEE Tier 3)161                $834 15 0.16           Cooling Central AC Ductless Mini‐Split System 301                $4,399 20 0.11           Cooling Room AC EER 9.8 ‐                   $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)42                  $52 10 0.45           Cooling Room AC EER 11 50                  $141 10 0.20           Cooling Room AC EER 11.5 67                  $313 10 0.12           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                   $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star)313                $1,246 15 0.22           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2)417                $2,315 15 0.16           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3)505                $3,277 15 0.13           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 946                $5,022 20 0.30           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                   $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 336                $1,500 14 0.18           Space Heating Electric Resistance Electric Resistance ‐                   $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                   $0 15 ‐             Space Heating Supplemental Supplemental ‐                   $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                   $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 102                $41 15 3.42           Water Heating Water Heater Solar 1,474            $5,653 15 0.36           Interior Lighting*Screw‐in Incandescent  ‐                   $0 4 ‐             Interior Lighting*Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting*Screw‐in CFL 38                  $2 6 12.64        Interior Lighting*Screw‐in LED 40                  $80 12 0.79           Interior Lighting*Linear Fluorescent T12 ‐                   $0 6 ‐             Interior Lighting*Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting*Linear Fluorescent Super T8 6                    $7 6 1.04           Interior Lighting*Linear Fluorescent T5 10                  $10 6 0.64           Interior Lighting*Linear Fluorescent LED 18                  $55 10 0.13           Interior Lighting*Pin‐based Halogen ‐                   $0 4 ‐             Interior Lighting*Pin‐based CFL 13                  $4 6 1.00           Interior Lighting*Pin‐based LED 14                  $17 10 0.70           Exterior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 19.63        Exterior Lighting* Screw‐in LED 37                  $79 12 0.78           Exterior Lighting* High Intensity/Flood Incandescent ‐                   $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 6.66           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 3.63           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 8.23           Exterior Lighting* High Intensity/Flood LED 66                  $79 10 0.74           Appliances Clothes Washer Baseline ‐                   $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)54                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 104                $487 10 0.19           Appliances Clothes Dryer Baseline ‐                   $0 13 ‐             Appliances Clothes Dryer Moisture Detection 111                $48 13 2.73           Appliances Dishwasher Baseline ‐                   $0 9 ‐             Appliances Dishwasher Energy Star 46                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)60                  $1 9 35.11        Appliances Refrigerator Baseline ‐                   $0 13 ‐             Appliances Refrigerator Energy Star 129                $89 13 1.52           Appliances Refrigerator Baseline (2014)172                $0 13 ‐             Appliances Refrigerator Energy Star (2014)275                $89 13 ‐             * Savings and costs are per unit, e.g., per lamp Avista 2011 Electric Integrated Resource Plan 781 Residential Energy Efficiency Equipment and Measure Data C-22 www.gepllc.com Table C-8 Energy Efficiency Equipment Data — Mobile Home, New Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Freezer Baseline ‐                   $0 11 ‐             Appliances Freezer Energy Star 124                $32 11 3.28           Appliances Freezer Baseline (2014)165                $0 11 ‐             Appliances Freezer Energy Star (2014)263                $32 11 ‐             Appliances Second Refrigerator Baseline ‐                   $0 13 ‐             Appliances Second Refrigerator Energy Star 124                $89 13 1.47           Appliances Second Refrigerator Baseline (2014)165                $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)264                $89 13 ‐             Appliances Stove Baseline ‐                   $0 13 ‐             Appliances Stove Convection Oven 9                    $2 13 6.98           Appliances Stove Induction (High Efficiency) 46                  $1,432 13 0.05           Appliances Microwave Baseline ‐                   $0 9 ‐             Electronics Personal Computers Baseline ‐                   $0 5 ‐             Electronics Personal Computers Energy Star 103                $1 5 33.86        Electronics Personal Computers Climate Savers 146                $175 5 0.33           Electronics TVs Baseline ‐                   $0 11 ‐             Electronics TVs Energy Star 91                  $1 11 140.87      Electronics Devices and Gadgets Devices and Gadgets ‐                   $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                   $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump 154                $85 15 2.20           Miscellaneous Pool Pump Two‐Speed Pump 617                $579 15 1.29           Miscellaneous Furnace Fan Baseline ‐                   $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 141                $1 18 313.76      Miscellaneous Miscellaneous Miscellaneous ‐                   $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 782 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-23 An EnerNOC Company Table C-9 Energy Efficiency Equipment Data — Limited Income, New Vintage End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost (/HH)  Lifetime  (yrs) BC Ratio Cooling Central AC SEER 13 ‐                   $0 15 ‐             Cooling Central AC SEER 14 (Energy Star)95                  $185 15 0.43           Cooling Central AC SEER 15 (CEE Tier 2)126                $370 15 0.29           Cooling Central AC SEER 16 (CEE Tier 3)152                $556 15 0.23           Cooling Central AC Ductless Mini‐Split System 286                $2,394 20 0.18           Cooling Room AC EER 9.8 ‐                   $0 10 ‐             Cooling Room AC EER 10.8 (Energy Star)74                  $104 10 0.40           Cooling Room AC EER 11 87                  $282 10 0.17           Cooling Room AC EER 11.5 118                $626 10 0.11           Combined Heating/Cooling Air Source Heat Pump SEER 13 ‐                   $0 15 ‐             Combined Heating/Cooling Air Source Heat Pump SEER 14 (Energy Star)213                $1,246 15 0.15           Combined Heating/Cooling Air Source Heat Pump SEER 15 (CEE Tier 2)284                $2,315 15 0.11           Combined Heating/Cooling Air Source Heat Pump SEER 16 (CEE Tier 3)343                $3,277 15 0.09           Combined Heating/Cooling Air Source Heat Pump Ductless Mini‐Split System 643                $5,022 20 0.20           Combined Heating/Cooling Geothermal Heat Pump Standard ‐                   $0 14 ‐             Combined Heating/Cooling Geothermal Heat Pump High Efficiency 228                $1,500 14 0.13           Space Heating Electric Resistance Electric Resistance ‐                   $0 20 ‐             Space Heating Electric Furnace 3400 BTU/KW ‐                   $0 15 ‐             Space Heating Supplemental Supplemental ‐                   $0 5 ‐             Water Heating Water Heater Baseline (EF=0.90)‐                   $0 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 135                $41 15 4.57           Water Heating Water Heater Solar 1,949            $5,653 15 0.48           Interior Lighting*Screw‐in Incandescent  ‐                   $0 4 ‐             Interior Lighting*Screw‐in Infrared Halogen 14                  $4 5 ‐             Interior Lighting*Screw‐in CFL 38                  $2 6 13.47        Interior Lighting*Screw‐in LED 40                  $80 12 0.84           Interior Lighting*Linear Fluorescent T12 ‐                   $0 6 ‐             Interior Lighting*Linear Fluorescent T8 6                    ($1) 6 1.00           Interior Lighting*Linear Fluorescent Super T8 6                    $7 6 1.16           Interior Lighting*Linear Fluorescent T5 10                  $10 6 0.71           Interior Lighting*Linear Fluorescent LED 18                  $55 10 0.14           Interior Lighting*Pin‐based Halogen ‐                   $0 4 ‐             Interior Lighting*Pin‐based CFL 13                  $4 6 1.00           Interior Lighting*Pin‐based LED 14                  $17 10 0.77           Exterior Lighting* Screw‐in Incandescent  ‐                   $0 4 ‐             Exterior Lighting* Screw‐in Infrared Halogen 12                  $4 5 ‐             Exterior Lighting* Screw‐in CFL 27                  $3 6 31.63        Exterior Lighting* Screw‐in LED 37                  $79 12 1.26           Exterior Lighting* High Intensity/Flood Incandescent ‐                   $0 4 ‐             Exterior Lighting* High Intensity/Flood Infrared Halogen 34                  $4 4 ‐             Exterior Lighting* High Intensity/Flood CFL 60                  $4 5 7.40           Exterior Lighting* High Intensity/Flood Metal Halide 22                  $31 5 4.03           Exterior Lighting* High Intensity/Flood High Pressure Sodium 22                  $23 5 9.14           Exterior Lighting* High Intensity/Flood LED 66                  $79 10 0.82           Appliances Clothes Washer Baseline ‐                   $0 10 ‐             Appliances Clothes Washer Energy Star (MEF > 1.8)23                  $0 10 1.00           Appliances Clothes Washer Horizontal Axis 44                  $487 10 0.08           Appliances Clothes Dryer Baseline ‐                   $0 13 ‐             Appliances Clothes Dryer Moisture Detection 117                $48 13 2.87           Appliances Dishwasher Baseline ‐                   $0 9 ‐             Appliances Dishwasher Energy Star 13                  $1 9 ‐             Appliances Dishwasher Energy Star (2011)17                  $1 9 10.08        Appliances Refrigerator Baseline ‐                   $0 13 ‐             Appliances Refrigerator Energy Star 108                $89 13 1.28           Appliances Refrigerator Baseline (2014)144                $0 13 ‐             Appliances Refrigerator Energy Star (2014)230                $89 13 ‐             * Savings and costs are per unit, e.g., per lamp Avista 2011 Electric Integrated Resource Plan 783 Residential Energy Efficiency Equipment and Measure Data C-24 www.gepllc.com Table C-9 Energy Efficiency Equipment Data — Limited Income, New Vintage (cont.) End Use Technology Efficiency Definition Savings  (kWh/yr/HH)  Incremental  Cost ($/HH)  Lifetime  (yrs) BC Ratio Appliances Freezer Baseline ‐                   $0 11 ‐             Appliances Freezer Energy Star 115                $32 11 3.06           Appliances Freezer Baseline (2014)154                $0 11 ‐             Appliances Freezer Energy Star (2014)246                $32 11 ‐             Appliances Second Refrigerator Baseline ‐                   $0 13 ‐             Appliances Second Refrigerator Energy Star 103                $89 13 1.21           Appliances Second Refrigerator Baseline (2014)137                $0 13 ‐             Appliances Second Refrigerator Energy Star (2014)219                $89 13 ‐             Appliances Stove Baseline ‐                   $0 13 ‐             Appliances Stove Convection Oven 5                    $2 13 3.98           Appliances Stove Induction (High Efficiency) 26                  $1,432 13 0.03           Appliances Microwave Baseline ‐                   $0 9 ‐             Electronics Personal Computers Baseline ‐                   $0 5 ‐             Electronics Personal Computers Energy Star 90                  $1 5 30.52        Electronics Personal Computers Climate Savers 129                $175 5 0.30           Electronics TVs Baseline ‐                   $0 11 ‐             Electronics TVs Energy Star 52                  $1 11 82.28        Electronics Devices and Gadgets Devices and Gadgets ‐                   $0 5 ‐             Miscellaneous Pool Pump Baseline Pump ‐                   $0 15 ‐             Miscellaneous Pool Pump High Efficiency Pump 63                  $85 15 0.93           Miscellaneous Pool Pump Two‐Speed Pump 254                $579 15 0.54           Miscellaneous Furnace Fan Baseline ‐                   $0 18 ‐             Miscellaneous Furnace Fan Furnace Fan with ECM 60                  $1 18 137.23      Miscellaneous Miscellaneous Miscellaneous ‐                   $0 5 ‐             Avista 2011 Electric Integrated Resource Plan 784 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-25 An EnerNOC Company Table C-10 Energy-Efficiency Measure Data—Single Family, Existing Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Early Replacement Cooling 10% 0% 0% 8% $2,895 15 0.05 Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 41% 100% $125 4 0.70 Room AC ‐ Removal of Second Unit Cooling 100% 0% 0% 25% $75 5 2.45 Attic Fan ‐ Installation Cooling 1% 0% 12% 23% $116 18 0.08 Attic Fan ‐ Photovoltaic ‐ Installation Cooling 1% 0% 13% 45% $350 19 0.06 Ceiling Fan ‐ Installation Cooling 11% 0% 51% 75% $160 15 0.81 Whole‐House Fan ‐ Installation Cooling 9% 0% 7% 19% $200 18 0.62 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $125 4 1.49 Insulation ‐ Ducting Cooling 3% 0% 15% 75% $500 18 0.78 Insulation ‐ Ducting Space Heating 4% 4% 15% 75% $500 18 0.78 Repair and Sealing ‐ Ducting Cooling 10% 0% 12% 50% $500 18 2.08 Repair and Sealing ‐ Ducting Space Heating 15% 15% 12% 50% $500 18 2.08 Thermostat ‐ Clock/Programmable Cooling 8% 0% 55% 56% $114 11 2.89 Thermostat ‐ Clock/Programmable Space Heating 9% 5% 55% 56% $114 11 2.89 Doors ‐ Storm and Thermal Cooling 1% 0% 38% 75% $320 12 0.25 Doors ‐ Storm and Thermal Space Heating 2% 2% 38% 75% $320 12 0.25 Insulation ‐ Infiltration Control Cooling 3% 0% 46% 90% $266 12 1.72 Insulation ‐ Infiltration Control Space Heating 10% 10% 46% 90% $266 12 1.72 Insulation ‐ Ceiling Cooling 3% 0% 68% 72% $594 20 1.11 Insulation ‐ Ceiling Space Heating 10% 5% 68% 72% $594 20 1.11 Insulation ‐ Radiant Barrier Cooling 5% 0% 5% 90% $923 12 0.41 Insulation ‐ Radiant Barrier Space Heating 2% 1% 5% 90% $923 12 0.41 Roofs ‐ High Reflectivity Cooling 6% 0% 5% 10% $1,550 15 0.05 Windows ‐ Reflective Film Cooling 7% 0% 5% 45% $267 10 0.21 Windows ‐ High Efficiency/Energy Star Cooling 12% 0% 83% 90% $7,500 25 0.38 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 83% 90% $7,500 25 0.38 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 24% 25% $750 15 0.10 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 0% 10% 80% $2,975 15 0.03 Exterior Lighting ‐ Photosensor Control Exterior Lighting 15% 0% 24% 45% $90 8 0.21 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 10% 45% $72 8 0.35 Water Heater ‐ Faucet Aerators Water Heating 4% 2% 53% 90% $24 25 8.78 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 17% 38% $180 13 1.05 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 75% 80% $96 10 4.56 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 54% 75% $15 10 15.53 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 17% 75% $40 5 2.99 Water Heater ‐ Timer Water Heating 8% 4% 17% 40% $194 10 1.06 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 3.28 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 1.76 Refrigerator ‐ Early Replacement Appliances 15% 15% 0% 20% $1,203 13 0.08 Refrigerator ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 3.99 Freezer ‐ Early Replacement Appliances 15% 15% 0% 20% $484 11 0.18 Freezer ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 3.76 Home Energy Management System Cooling 10% 0% 20% 38% $300 20 2.46 Home Energy Management System Space Heating 10% 5% 20% 38% $300 20 2.46 Home Energy Management System Interior Lighting 10% 5% 20% 38% $300 20 2.46 Photovoltaics Cooling 50% 0% 0% 48% $17,000 15 0.10 Photovoltaics Space Heating 25% 25% 0% 48% $17,000 15 0.10 Pool ‐ Pump Timer Miscellaneous 60% 0% 59% 90% $160 15 4.92 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.43 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 25% $1,500 15 0.75 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $3,675 15 1.22 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $13,769 15 0.95 Avista 2011 Electric Integrated Resource Plan 785 Residential Energy Efficiency Equipment and Measure Data C-26 www.gepllc.com Table C-11 Energy-Efficiency Measure Data — Multi Family, Existing Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Early Replacement Cooling 10% 0% 0% 8% $2,895 15 0.02 Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 33% 100% $100 4 0.59 Room AC ‐ Removal of Second Unit Cooling 100% 0% 0% 25% $75 5 1.28 Ceiling Fan ‐ Installation Cooling 11% 0% 32% 75% $80 15 0.49 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $100 4 1.05 Insulation ‐ Ducting Cooling 3% 0% 13% 75% $375 18 1.16 Insulation ‐ Ducting Space Heating 4% 4% 13% 75% $375 18 1.16 Repair and Sealing ‐ Ducting Cooling 4% 0% 12% 50% $500 18 0.95 Repair and Sealing ‐ Ducting Space Heating 4% 4% 12% 50% $500 18 0.95 Thermostat ‐ Clock/Programmable Cooling 8% 0% 27% 68% $114 11 2.39 Thermostat ‐ Clock/Programmable Space Heating 6% 3% 27% 68% $114 11 2.39 Doors ‐ Storm and Thermal Cooling 1% 0% 17% 75% $320 12 0.35 Doors ‐ Storm and Thermal Space Heating 2% 2% 17% 75% $320 12 0.35 Insulation ‐ Infiltration Control Cooling 1% 0% 19% 90% $266 12 2.95 Insulation ‐ Infiltration Control Space Heating 13% 13% 19% 90% $266 12 2.95 Insulation ‐ Ceiling Cooling 13% 0% 27% 30% $215 20 5.67 Insulation ‐ Ceiling Space Heating 13% 13% 27% 30% $215 20 5.67 Insulation ‐ Radiant Barrier Cooling 4% 0% 5% 90% $923 12 0.52 Insulation ‐ Radiant Barrier Space Heating 4% 4% 5% 90% $923 12 0.52 Roofs ‐ High Reflectivity Cooling 13% 0% 3% 10% $1,550 15 0.03 Windows ‐ Reflective Film Cooling 7% 0% 5% 45% $167 10 0.10 Windows ‐ High Efficiency/Energy Star Cooling 13% 0% 70% 90% $2,500 25 0.56 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 70% 90% $2,500 25 0.56 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 6% 10% $256 15 0.14 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 0% 10% 50% $2,975 15 0.00 Exterior Lighting ‐ Photosensor Control Exterior Lighting 20% 0% 7% 45% $90 8 0.04 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 6% 45% $72 8 0.05 Water Heater ‐ Faucet Aerators Water Heating 5% 2% 43% 90% $24 25 6.63 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 6% 38% $180 13 0.65 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 71% 75% $96 10 2.84 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 54% 75% $15 10 9.66 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 17% 75% $40 5 1.86 Water Heater ‐ Timer Water Heating 8% 4% 5% 40% $194 10 0.66 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 2.04 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 0.58 Refrigerator ‐ Early Replacement Appliances 15% 15% 0% 20% $1,203 13 0.07 Refrigerator ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 3.36 Freezer ‐ Early Replacement Appliances 15% 15% 0% 20% $484 11 0.17 Freezer ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 3.57 Home Energy Management System Cooling 10% 0% 5% 13% $300 20 2.46 Home Energy Management System Space Heating 10% 5% 5% 13% $300 20 2.46 Home Energy Management System Interior Lighting 10% 5% 5% 13% $300 20 2.46 Photovoltaics Cooling 50% 0% 0% 12% $8,500 15 0.22 Photovoltaics Space Heating 25% 25% 0% 12% $8,500 15 0.22 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.13 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 10% $1,500 15 0.47 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $2,845 15 0.99 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $10,946 15 0.72 Avista 2011 Electric Integrated Resource Plan 786 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-27 An EnerNOC Company Table C-12 Energy-Efficiency Measure Data — Mobile Home, Existing Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Early Replacement Cooling 10% 0% 0% 8% $2,895 15 0.03 Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 59% 100% $100 4 0.63 Room AC ‐ Removal of Second Unit Cooling 100% 0% 0% 25% $75 5 1.46 Ceiling Fan ‐ Installation Cooling 11% 0% 60% 75% $80 15 0.79 Whole‐House Fan ‐ Installation Cooling 9% 0% 5% 19% $150 18 0.41 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $125 4 1.02 Insulation ‐ Ducting Cooling 3% 0% 15% 75% $375 18 0.94 Insulation ‐ Ducting Space Heating 4% 4% 15% 75% $375 18 0.94 Repair and Sealing ‐ Ducting Cooling 10% 0% 12% 50% $500 18 2.08 Repair and Sealing ‐ Ducting Space Heating 15% 15% 12% 50% $500 18 2.08 Thermostat ‐ Clock/Programmable Cooling 8% 0% 51% 56% $114 11 2.78 Thermostat ‐ Clock/Programmable Space Heating 9% 5% 51% 56% $114 11 2.78 Doors ‐ Storm and Thermal Cooling 1% 0% 38% 75% $320 12 0.25 Doors ‐ Storm and Thermal Space Heating 2% 2% 38% 75% $320 12 0.25 Insulation ‐ Infiltration Control Cooling 3% 0% 46% 90% $266 12 1.80 Insulation ‐ Infiltration Control Space Heating 10% 10% 46% 90% $266 12 1.80 Insulation ‐ Ceiling Cooling 3% 0% 79% 81% $707 20 1.00 Insulation ‐ Ceiling Space Heating 10% 5% 79% 81% $707 20 1.00 Insulation ‐ Radiant Barrier Cooling 2% 0% 5% 90% $923 12 0.35 Insulation ‐ Radiant Barrier Space Heating 1% 1% 5% 90% $923 12 0.35 Roofs ‐ High Reflectivity Cooling 6% 0% 5% 10% $1,550 15 0.02 Windows ‐ Reflective Film Cooling 7% 0% 5% 45% $167 10 0.16 Windows ‐ High Efficiency/Energy Star Cooling 12% 0% 47% 90% $7,500 25 0.37 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 47% 90% $7,500 25 0.37 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 67% 72% $750 15 0.09 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 0% 10% 80% $2,975 15 0.03 Exterior Lighting ‐ Photosensor Control Exterior Lighting 15% 0% 23% 45% $90 8 0.19 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 10% 45% $72 8 0.32 Water Heater ‐ Faucet Aerators Water Heating 4% 2% 79% 90% $24 25 4.47 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 17% 38% $180 13 0.53 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 92% 95% $96 10 2.32 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 54% 75% $15 10 7.91 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 17% 75% $40 5 1.52 Water Heater ‐ Timer Water Heating 8% 4% 17% 40% $194 10 0.54 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 1.67 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 1.65 Refrigerator ‐ Early Replacement Appliances 15% 15% 0% 20% $1,203 13 0.08 Refrigerator ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 4.06 Freezer ‐ Early Replacement Appliances 15% 15% 0% 20% $484 11 0.18 Freezer ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 3.82 Home Energy Management System Cooling 10% 0% 20% 38% $300 20 2.28 Home Energy Management System Space Heating 10% 5% 20% 38% $300 20 2.28 Home Energy Management System Interior Lighting 10% 5% 20% 38% $300 20 2.28 Photovoltaics Cooling 50% 0% 0% 48% $17,000 15 0.09 Photovoltaics Space Heating 25% 25% 0% 48% $17,000 15 0.09 Pool ‐ Pump Timer Miscellaneous 60% 0% 50% 90% $160 15 4.92 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.21 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 10% $1,500 15 0.38 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $2,616 15 0.88 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $11,135 15 0.62 Avista 2011 Electric Integrated Resource Plan 787 Residential Energy Efficiency Equipment and Measure Data C-28 www.gepllc.com Table C-13 Energy-Efficiency Measure Data — Limited Income, Existing Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Early Replacement Cooling 10% 0% 0% 8% $2,895 15 0.03 Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 25% 100% $100 4 0.61 Room AC ‐ Removal of Second Unit Cooling 100% 0% 0% 25% $75 5 2.56 Attic Fan ‐ Installation Cooling 1% 0% 3% 23% $116 18 0.05 Attic Fan ‐ Photovoltaic ‐ Installation Cooling 1% 0% 2% 11% $350 19 0.03 Ceiling Fan ‐ Installation Cooling 11% 0% 41% 75% $80 15 0.89 Whole‐House Fan ‐ Installation Cooling 9% 0% 5% 19% $150 18 0.46 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $125 4 0.82 Insulation ‐ Ducting Cooling 3% 0% 13% 75% $395 18 0.90 Insulation ‐ Ducting Space Heating 4% 4% 13% 75% $395 18 0.90 Repair and Sealing ‐ Ducting Cooling 10% 0% 12% 50% $500 18 2.07 Repair and Sealing ‐ Ducting Space Heating 15% 15% 12% 50% $500 18 2.07 Thermostat ‐ Clock/Programmable Cooling 8% 0% 27% 68% $114 11 2.63 Thermostat ‐ Clock/Programmable Space Heating 9% 5% 27% 68% $114 11 2.63 Doors ‐ Storm and Thermal Cooling 1% 0% 17% 75% $320 12 0.25 Doors ‐ Storm and Thermal Space Heating 2% 2% 17% 75% $320 12 0.25 Insulation ‐ Infiltration Control Cooling 3% 0% 19% 90% $266 12 1.78 Insulation ‐ Infiltration Control Space Heating 10% 10% 19% 90% $266 12 1.78 Insulation ‐ Ceiling Cooling 3% 0% 36% 41% $215 20 2.44 Insulation ‐ Ceiling Space Heating 10% 5% 36% 41% $215 20 2.44 Insulation ‐ Radiant Barrier Cooling 2% 0% 5% 90% $923 12 0.35 Insulation ‐ Radiant Barrier Space Heating 1% 1% 5% 90% $923 12 0.35 Roofs ‐ High Reflectivity Cooling 6% 0% 3% 10% $1,550 15 0.03 Windows ‐ Reflective Film Cooling 7% 0% 5% 45% $167 10 0.18 Windows ‐ High Efficiency/Energy Star Cooling 12% 0% 68% 90% $2,500 25 0.51 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 68% 90% $2,500 25 0.51 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 8% 10% $256 15 0.16 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 50% 10% 50% $2,975 15 0.01 Exterior Lighting ‐ Photosensor Control Exterior Lighting 15% 0% 8% 45% $90 8 0.06 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 6% 45% $72 8 0.10 Water Heater ‐ Faucet Aerators Water Heating 4% 2% 46% 90% $24 25 5.95 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 6% 38% $180 13 0.71 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 73% 75% $96 10 3.09 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 54% 75% $15 10 10.53 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 17% 75% $40 5 2.03 Water Heater ‐ Timer Water Heating 8% 4% 5% 40% $194 10 0.72 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 2.23 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 0.77 Refrigerator ‐ Early Replacement Appliances 15% 15% 0% 20% $1,203 13 0.07 Refrigerator ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 3.36 Freezer ‐ Early Replacement Appliances 15% 15% 0% 20% $484 11 0.17 Freezer ‐ Remove Second Unit Appliances 100% 100% 0% 25% $75 5 3.57 Home Energy Management System Cooling 10% 0% 5% 13% $300 20 2.00 Home Energy Management System Space Heating 10% 5% 5% 13% $300 20 2.00 Home Energy Management System Interior Lighting 10% 5% 5% 13% $300 20 2.00 Photovoltaics Cooling 50% 0% 0% 48% $8,500 15 0.17 Photovoltaics Space Heating 25% 25% 0% 48% $8,500 15 0.17 Pool ‐ Pump Timer Miscellaneous 60% 0% 50% 90% $160 15 2.02 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.24 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 20% $1,500 15 0.51 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $2,970 15 1.03 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $10,798 15 0.69 Avista 2011 Electric Integrated Resource Plan 788 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-29 An EnerNOC Company Table C-14 Energy-Efficiency Measure Data — Single Family, New Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 41% 100% $125 4 0.78 Attic Fan ‐ Installation Cooling 1% 0% 13% 23% $97 18 0.15 Attic Fan ‐ Photovoltaic ‐ Installation Cooling 1% 0% 4% 11% $200 19 0.15 Ceiling Fan ‐ Installation Cooling 10% 0% 53% 75% $160 15 1.09 Whole‐House Fan ‐ Installation Cooling 9% 0% 4% 19% $200 18 0.92 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $125 4 1.69 Insulation ‐ Ducting Cooling 3% 0% 50% 75% $250 18 1.31 Insulation ‐ Ducting Space Heating 4% 4% 50% 75% $250 18 1.31 Thermostat ‐ Clock/Programmable Cooling 8% 0% 91% 95% $114 11 2.91 Thermostat ‐ Clock/Programmable Space Heating 8% 4% 91% 95% $114 11 2.91 Doors ‐ Storm and Thermal Cooling 1% 0% 13% 75% $180 12 0.45 Doors ‐ Storm and Thermal Space Heating 2% 2% 13% 75% $180 12 0.45 Insulation ‐ Ceiling Cooling 3% 0% 68% 71% $634 20 0.99 Insulation ‐ Ceiling Space Heating 8% 6% 68% 71% $634 20 0.99 Insulation ‐ Radiant Barrier Cooling 2% 0% 25% 90% $923 12 0.37 Insulation ‐ Radiant Barrier Space Heating 1% 1% 25% 90% $923 12 0.37 Insulation ‐ Foundation Cooling 3% 0% 20% 90% $358 20 1.35 Insulation ‐ Foundation Space Heating 6% 6% 20% 90% $358 20 1.35 Insulation ‐ Wall Cavity Cooling 2% 0% 20% 90% $236 20 1.15 Insulation ‐ Wall Cavity Space Heating 3% 3% 20% 90% $236 20 1.15 Insulation ‐ Wall Sheathing Cooling 1% 0% 64% 90% $300 20 0.89 Insulation ‐ Wall Sheathing Space Heating 3% 3% 64% 90% $300 20 0.89 Roofs ‐ High Reflectivity Cooling 5% 0% 5% 90% $517 15 0.17 Windows ‐ Reflective Film Cooling 7% 0% 2% 45% $267 10 0.31 Windows ‐ High Efficiency/Energy Star Cooling 12% 0% 100% 100% $2,200 25 0.62 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 100% 100% $2,200 25 0.62 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 24% 27% $500 15 0.16 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 0% 10% 80% $2,975 15 0.04 Exterior Lighting ‐ Photosensor Control Exterior Lighting 13% 0% 13% 45% $90 8 0.19 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 16% 45% $72 8 0.36 Water Heater ‐ Faucet Aerators Water Heating 4% 2% 38% 90% $24 25 11.03 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 8% 41% $50 13 4.71 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 90% 95% $48 10 11.33 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $15 10 19.30 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 5% 75% $40 5 3.70 Water Heater ‐ Timer Water Heating 8% 4% 5% 40% $194 10 1.31 Water Heater ‐ Drainwater Heat Reocvery Water Heating 9% 5% 1% 90% $899 15 0.47 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 4.06 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 1.99 Home Energy Management System Cooling 10% 0% 20% 68% $250 20 3.16 Home Energy Management System Space Heating 10% 5% 20% 68% $250 20 3.16 Home Energy Management System Interior Lighting 10% 5% 20% 68% $250 20 3.16 Photovoltaics Cooling 50% 0% 1% 48% $15,800 15 0.12 Photovoltaics Space Heating 25% 25% 1% 48% $15,800 15 0.12 Pool ‐ Pump Timer Miscellaneous 60% 0% 55% 90% $160 15 5.43 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.64 Advanced New Construction Designs Cooling 40% 0% 2% 45% $4,500 18 1.09 Advanced New Construction Designs Space Heating 40% 40% 2% 45% $4,500 18 1.09 Advanced New Construction Designs Interior Lighting 20% 20% 2% 45% $4,500 18 1.09 Energy Star Homes Cooling 20% 0% 12% 75% $5,000 18 0.75 Energy Star Homes Space Heating 20% 20% 12% 75% $5,000 18 0.75 Energy Star Homes Interior Lighting 20% 20% 12% 75% $5,000 18 0.75 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 25% $1,500 15 0.94 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $3,675 15 1.53 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $13,769 15 1.14 Avista 2011 Electric Integrated Resource Plan 789 Residential Energy Efficiency Equipment and Measure Data C-30 www.gepllc.com Table C-15 Energy-Efficiency Measure Data — Multi Family, New Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 33% 100% $100 4 0.62 Ceiling Fan ‐ Installation Cooling 10% 0% 18% 75% $80 15 0.77 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $100 4 1.12 Insulation ‐ Ducting Cooling 2% 0% 50% 75% $200 18 1.18 Insulation ‐ Ducting Space Heating 2% 2% 50% 75% $200 18 1.18 Thermostat ‐ Clock/Programmable Cooling 8% 0% 77% 80% $114 11 2.29 Thermostat ‐ Clock/Programmable Space Heating 5% 3% 77% 80% $114 11 2.29 Doors ‐ Storm and Thermal Cooling 1% 0% 19% 75% $180 12 0.66 Doors ‐ Storm and Thermal Space Heating 2% 2% 19% 75% $180 12 0.66 Insulation ‐ Ceiling Cooling 12% 0% 27% 48% $152 20 10.12 Insulation ‐ Ceiling Space Heating 16% 16% 27% 48% $152 20 10.12 Insulation ‐ Radiant Barrier Cooling 2% 0% 5% 90% $923 12 0.50 Insulation ‐ Radiant Barrier Space Heating 3% 3% 5% 90% $923 12 0.50 Insulation ‐ Wall Cavity Cooling 2% 0% 4% 90% $63 20 6.14 Insulation ‐ Wall Cavity Space Heating 4% 4% 4% 90% $63 20 6.14 Insulation ‐ Wall Sheathing Cooling 1% 0% 55% 90% $210 20 1.59 Insulation ‐ Wall Sheathing Space Heating 3% 3% 55% 90% $210 20 1.59 Roofs ‐ High Reflectivity Cooling 8% 0% 0% 90% $517 15 0.10 Windows ‐ Reflective Film Cooling 7% 0% 2% 45% $167 10 0.17 Windows ‐ High Efficiency/Energy Star Cooling 13% 0% 100% 100% $2,200 25 0.63 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 100% 100% $2,200 25 0.63 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 6% 9% $256 15 0.14 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 0% 10% 50% $2,975 15 0.01 Exterior Lighting ‐ Photosensor Control Exterior Lighting 20% 0% 1% 45% $90 8 0.04 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 11% 45% $72 8 0.05 Water Heater ‐ Faucet Aerators Water Heating 5% 2% 11% 90% $24 25 7.63 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 0% 41% $50 13 2.68 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 66% 75% $48 10 6.45 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $15 10 10.99 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 5% 75% $40 5 2.11 Water Heater ‐ Timer Water Heating 8% 4% 5% 40% $194 10 0.75 Water Heater ‐ Drainwater Heat Reocvery Water Heating 9% 5% 1% 90% $899 15 0.27 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 2.31 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 0.63 Home Energy Management System Cooling 10% 0% 5% 68% $250 20 3.19 Home Energy Management System Space Heating 10% 5% 5% 68% $250 20 3.19 Home Energy Management System Interior Lighting 10% 5% 5% 68% $250 20 3.19 Photovoltaics Cooling 50% 0% 0% 12% $7,900 15 0.26 Photovoltaics Space Heating 25% 25% 0% 12% $7,900 15 0.26 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.23 Advanced New Construction Designs Cooling 40% 0% 2% 45% $2,500 18 1.47 Advanced New Construction Designs Space Heating 40% 40% 2% 45% $2,500 18 1.47 Advanced New Construction Designs Interior Lighting 20% 20% 2% 45% $2,500 18 1.47 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 10% $1,500 15 0.53 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $2,845 15 1.13 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $10,946 15 0.84 Avista 2011 Electric Integrated Resource Plan 790 Residential Energy Efficiency Equipment and Measure Data Global Energy Partners C-31 An EnerNOC Company Table C-16 Energy-Efficiency Measure Data — Mobile Home, New Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 59% 100% $100 4 0.66 Ceiling Fan ‐ Installation Cooling 10% 0% 57% 75% $80 15 0.95 Whole‐House Fan ‐ Installation Cooling 9% 0% 4% 19% $150 18 0.53 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $125 4 1.09 Insulation ‐ Ducting Cooling 3% 0% 50% 75% $200 18 1.59 Insulation ‐ Ducting Space Heating 4% 4% 50% 75% $200 18 1.59 Thermostat ‐ Clock/Programmable Cooling 8% 0% 57% 75% $114 11 2.77 Thermostat ‐ Clock/Programmable Space Heating 8% 4% 57% 75% $114 11 2.77 Doors ‐ Storm and Thermal Cooling 1% 0% 13% 75% $180 12 0.49 Doors ‐ Storm and Thermal Space Heating 2% 2% 13% 75% $180 12 0.49 Insulation ‐ Ceiling Cooling 3% 0% 79% 81% $176 20 3.02 Insulation ‐ Ceiling Space Heating 8% 6% 79% 81% $176 20 3.02 Insulation ‐ Radiant Barrier Cooling 2% 0% 25% 90% $923 12 0.36 Insulation ‐ Radiant Barrier Space Heating 1% 1% 25% 90% $923 12 0.36 Insulation ‐ Wall Cavity Cooling 2% 0% 20% 90% $197 20 1.35 Insulation ‐ Wall Cavity Space Heating 3% 3% 20% 90% $197 20 1.35 Insulation ‐ Wall Sheathing Cooling 1% 0% 64% 90% $300 20 0.96 Insulation ‐ Wall Sheathing Space Heating 3% 3% 64% 90% $300 20 0.96 Roofs ‐ High Reflectivity Cooling 5% 0% 5% 90% $517 15 0.07 Windows ‐ Reflective Film Cooling 7% 0% 2% 45% $167 10 0.21 Windows ‐ High Efficiency/Energy Star Cooling 12% 0% 85% 90% $2,200 25 0.57 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 85% 90% $2,200 25 0.57 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 67% 72% $500 15 0.14 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 50% 10% 80% $2,975 15 0.03 Exterior Lighting ‐ Photosensor Control Exterior Lighting 13% 0% 13% 45% $90 8 0.17 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 16% 45% $72 8 0.32 Water Heater ‐ Faucet Aerators Water Heating 4% 2% 57% 90% $24 25 5.14 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 8% 41% $50 13 2.20 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 92% 95% $48 10 5.28 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $15 10 9.00 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 5% 75% $40 5 1.72 Water Heater ‐ Timer Water Heating 8% 4% 5% 40% $194 10 0.61 Water Heater ‐ Drainwater Heat Reocvery Water Heating 9% 5% 1% 90% $899 15 0.22 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 1.89 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 1.79 Home Energy Management System Cooling 10% 0% 20% 68% $250 20 2.94 Home Energy Management System Space Heating 10% 5% 20% 68% $250 20 2.94 Home Energy Management System Interior Lighting 10% 5% 20% 68% $250 20 2.94 Photovoltaics Cooling 50% 0% 1% 48% $15,800 15 0.10 Photovoltaics Space Heating 25% 25% 1% 48% $15,800 15 0.10 Pool ‐ Pump Timer Miscellaneous 60% 0% 35% 90% $160 15 5.38 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.28 Advanced New Construction Designs Cooling 30% 0% 2% 45% $4,500 18 0.52 Advanced New Construction Designs Space Heating 30% 30% 2% 45% $4,500 18 0.52 Advanced New Construction Designs Interior Lighting 20% 20% 2% 45% $4,500 18 0.52 Energy Efficient Manufactured Homes Cooling 20% 0% 10% 75% $3,500 18 0.88 Energy Efficient Manufactured Homes Space Heating 20% 20% 10% 75% $3,500 18 0.88 Energy Efficient Manufactured Homes Interior Lighting 20% 20% 10% 75% $3,500 18 0.88 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 10% $1,500 15 0.44 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $2,616 15 1.00 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $11,738 15 0.69 Avista 2011 Electric Integrated Resource Plan 791 Residential Energy Efficiency Equipment and Measure Data C-32 www.gepllc.com Table C-17 Energy-Efficiency Measure Data — Limited Income, New Vintage   Note: Costs are per household.  Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Central AC ‐ Maintenance and Tune‐Up Cooling 10% 0% 25% 100% $100 4 0.65 Attic Fan ‐ Installation Cooling 1% 0% 15% 23% $97 18 0.07 Attic Fan ‐ Photovoltaic ‐ Installation Cooling 1% 0% 5% 11% $200 19 0.07 Ceiling Fan ‐ Installation Cooling 10% 0% 33% 75% $80 15 1.03 Whole‐House Fan ‐ Installation Cooling 9% 0% 4% 19% $150 18 0.58 Air Source Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 25% 90% $125 4 0.87 Insulation ‐ Ducting Cooling 3% 0% 50% 75% $210 18 1.47 Insulation ‐ Ducting Space Heating 4% 4% 50% 75% $210 18 1.47 Thermostat ‐ Clock/Programmable Cooling 8% 0% 29% 30% $114 11 2.54 Thermostat ‐ Clock/Programmable Space Heating 8% 4% 29% 30% $114 11 2.54 Doors ‐ Storm and Thermal Cooling 1% 0% 19% 75% $180 12 0.46 Doors ‐ Storm and Thermal Space Heating 2% 2% 19% 75% $180 12 0.46 Insulation ‐ Ceiling Cooling 3% 0% 36% 48% $152 20 3.20 Insulation ‐ Ceiling Space Heating 8% 6% 36% 48% $152 20 3.20 Insulation ‐ Radiant Barrier Cooling 2% 0% 5% 90% $923 12 0.36 Insulation ‐ Radiant Barrier Space Heating 1% 1% 5% 90% $923 12 0.36 Insulation ‐ Foundation Cooling 3% 0% 4% 90% $358 20 1.37 Insulation ‐ Foundation Space Heating 6% 6% 4% 90% $358 20 1.37 Insulation ‐ Wall Cavity Cooling 2% 0% 4% 90% $63 20 3.46 Insulation ‐ Wall Cavity Space Heating 3% 3% 4% 90% $63 20 3.46 Insulation ‐ Wall Sheathing Cooling 1% 0% 59% 90% $210 20 1.19 Insulation ‐ Wall Sheathing Space Heating 3% 3% 59% 90% $210 20 1.19 Roofs ‐ High Reflectivity Cooling 5% 0% 0% 90% $517 15 0.08 Windows ‐ Reflective Film Cooling 7% 0% 2% 45% $167 10 0.23 Windows ‐ High Efficiency/Energy Star Cooling 12% 0% 78% 90% $2,200 25 0.55 Windows ‐ High Efficiency/Energy Star Space Heating 7% 5% 78% 90% $2,200 25 0.55 Interior Lighting ‐ Occupancy Sensor Interior Lighting 9% 5% 8% 9% $256 15 0.17 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 50% 50% 10% 50% $2,975 15 0.01 Exterior Lighting ‐ Photosensor Control Exterior Lighting 13% 0% 0% 45% $90 8 0.06 Exterior Lighting ‐ Timeclock Installation Exterior Lighting 20% 0% 11% 45% $72 8 0.10 Water Heater ‐ Faucet Aerators Water Heating 4% 2% 11% 90% $24 25 6.84 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 0% 41% $50 13 2.92 Water Heater ‐ Low Flow Showerheads Water Heating 17% 9% 21% 75% $48 10 7.03 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $15 10 11.97 Water Heater ‐ Thermostat Setback Water Heating 9% 5% 5% 75% $40 5 2.29 Water Heater ‐ Timer Water Heating 8% 4% 5% 40% $194 10 0.81 Water Heater ‐ Drainwater Heat Reocvery Water Heating 9% 5% 1% 90% $899 15 0.29 Water Heater ‐ Hot Water Saver Water Heating 9% 4% 5% 50% $35 5 2.52 Electronics ‐ Reduce Standby Wattage Electronics 5% 5% 5% 90% $20 8 0.83 Home Energy Management System Cooling 10% 0% 5% 68% $250 20 2.50 Home Energy Management System Space Heating 10% 5% 5% 68% $250 20 2.50 Home Energy Management System Interior Lighting 10% 5% 5% 68% $250 20 2.50 Photovoltaics Cooling 50% 0% 0% 48% $7,900 15 0.20 Photovoltaics Space Heating 25% 25% 0% 48% $7,900 15 0.20 Pool ‐ Pump Timer Miscellaneous 60% 0% 35% 90% $160 15 2.21 Trees for Shading Cooling 1% 0% 10% 68% $40 20 0.30 Advanced New Construction Designs Cooling 30% 0% 2% 45% $2,500 18 1.25 Advanced New Construction Designs Space Heating 30% 30% 2% 45% $2,500 18 1.25 Advanced New Construction Designs Interior Lighting 20% 20% 2% 45% $2,500 18 1.25 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 20% $1,500 15 0.58 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $2,970 15 1.18 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 45% $10,798 15 0.81 Avista 2011 Electric Integrated Resource Plan 792 Global Energy Partners D-1 An EnerNOC Company APPENDIX D COMMERCIAL ENERGY EFFICIENCY EQUIPMENT AND MEASURE DATA This appendix presents detailed information for all commercial and industrial energy efficiency equipment and measures that were evaluated in LoadMAP. Several sets of tables are provided. Table D-1 provides brief descriptions for all equipment and measures that were assessed for potenital. Tables D-2 through D-9 list the detailed unit-level data for the equipment measures for each of the C&I segments — small/medium commercial, large commercial, extra-large commercial, and extra-large industial — and for existing and new construction, respectively. Savings are in kWh/yr/sq.ft., and incremental costs are in $/sq.ft. The B/C ratio is zero if the measure represents the baseline technology or if the technology is not available in the first year of the forecast (2012). The B/C ratio is calculated within LoadMAP for each year of the forecast and is available once the technology or measure becomes available. Tables D-10 through D-17 list the detailed unit-level data for the non-equipment energy efficiency measures for each of the segments and for existing and new construction, respectively. Because these measures can produce energy-use savings for multiple end-use loads (e.g., insulation affects heating and cooling energy use) savings are expressed as a percentage of the end-use loads. Base saturation indicates the percentage of buildings in which the measure is already installed. Applicability/Feasibility is the product of two factors that account for whether the measure is applicable to the building. Cost is expressed in $/sq.ft. The detailed measure-level tables present the results of the benefit/cost (B/C) analysis for the first year of the forecast. The B/C ratio is zero if the measure represents the baseline technology or if the measure is not available in the first year of the forecast (2012). The B/C ratio is calculated within LoadMAP for each year of the forecast and is available once the technology or measure becomes available. Note that Tables D-2 through D-17 present information for Washington. For Idaho, savings and B/C ratios may be slightly different due to weather-related usage, differences in the states’ market profiles, and different retail electricity prices. Although Idaho-specific values are not presented here, they are available within the LoadMAP files. Avista 2011 Electric Integrated Resource Plan 793 Commercial Energy Efficiency Equipment and Measure Data D-2 www.gepllc.com Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Cooling Central Cooling Systems Commercial buildings are often cooled with a central chiller plant that  creates chilled water for distribution throughout the facility. Chillers can  be air source or water source, which include heat rejection via a  condenser loop and cooling tower. Because of the wide variety of  system types and sizes, savings and cost values for efficiency  improvements in chiller systems represent an average over air‐ and  water‐cooled systems, as well as screw, reciprocating, and centrifugal  technologies. Under this simplified approach, each central system is  characterized by an aggregate efficiency value (inclusive of chiller,  pumps, motors and condenser loop equipment), in kW/ton with a  further efficiency upgrade through the application of variable  refrigerant flow technology.   Cooling Chilled Water Variable Flow  System  The chilled water variable flow system is essentially a single chilled  water loop with variable volume and speed. A single set of pumps  operated by a VSD eliminates the need for separate distribution pumps  and makes the chilled water flow throughout the entire system be  variable. The use of adjustable flow limiting valves is designed to  optimize water flow. Such valves provide flow limiting, shut‐off and  adjustment functions, automatically compensating for changes in  system pressure to maximize energy efficiency.  Cooling Packaged Cooling Systems /  Rooftop Units (RTUs) and  Heat Pumps    Packaged cooling systems are simple to install and maintain, and are  commonly used in small and medium‐sized commercial buildings.   Applications range from a single supply system with air intake filters,  supply fan, and cooling coil, or can become more complex with the  addition of a return air duct, return air fan, and various controls to  optimize performance. For packaged RTUs, varying Energy Efficiency  Ratios (EER) were considered, as well as ductless or “mini‐split” systems  with variable refrigerant flow. For heat pumps, units with increasing EER  and COP levels were evaluated, as well as a ductless mini‐split system.   Cooling Packaged Terminal Air  Conditioners (PTAC)  Window (or wall) mounted room air conditioners (and heat pumps) are  designed to cool (or heat) a single room or space.  This type of unit  incorporates a complete air‐cooled refrigeration and air‐handling  system in an individual package.  Conditioned air is discharged in  response to thermostatic control to meet room requirements.  Each  unit has a self‐contained, air‐cooled direct expansion (DX) cooling  system, a heat pump or other fuel‐based heating system and associated  controls. The energy savings increase with each incremental increase in  efficiency, measured in terms of EER level.    Space Heating Convert to Gas This fuel‐switching measure is the replacement of an electric furnace  with a gas furnace. This measure eliminates all prior electricity  consumption and demand due to electric space heating. In this study, it  is assumed this measure can be implemented only in buildings within  500 feet of a gas main.  Avista 2011 Electric Integrated Resource Plan 794 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-3 An EnerNOC Company Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Cooling, Space  Heating,  Interior  Lighting  Energy Management  System  An energy management system (EMS) allows managers/owners to  monitor and control the major energy‐consuming systems within a  commercial building.  At the minimum, the EMS can be used to monitor  and record energy consumption of the different end‐uses in a building,  and can control operation schedules of the HVAC and lighting systems.   The monitoring function helps building managers/owners to identify  systems that are operating inefficiently so that actions can be taken to  correct the problem.  The EMS can also provide preventive maintenance  scheduling that will reduce the cost of operations and maintenance in  the long run.  The control functionality of the EMS allows the building  manager/owner to operate building systems from one central location.   The operation schedules set via the EMS help to prevent building  systems from operating during unwanted or unoccupied periods. This  analysis assumes that this measure is limited to buildings with a central  HVAC system.  Cooling, Space  Heating  Economizer Economizers allow outside air (when it is cool and dry enough) to be  brought into the building space to meet cooling loads instead of using  mechanically cooled interior air.  A dual enthalpy economizer consists of  indoor and outdoor temperature and humidity sensors, dampers,  motors, and motor controls.  Economizers are most applicable to  temperate climates and savings will be smaller in extremely hot or  humid areas.  Cooling VSD on Water Pumps The part‐load efficiency of chilled water loop pumps can be improved  substantially by varying the speed of the motor drive according to the  building demand for cooling.  There is also a reduction in piping losses  associated with this measure that has a major impact on the energy use  for a building.  However, pump speeds can generally only be reduced to  a minimum specified rate, because chillers and the control valves may  require a minimum flow rate to operate.  There are two major types of  variable speed drives:  mechanical and electronic.  An additional benefit  of variable‐speed drives is the ability to start and stop the motor  gradually, thus extending the life of the motor and associated  machinery.  This analysis assumes that electronic variable speed drives  are installed.  Cooling Turbocor Compressor Turbocor compressors use oil‐free magnetic bearings to reduce friction  losses and couples that with a two‐stage centrifugal compressor to  reduce central chiller energy consumption.  Cooling High‐Efficiency Cooling  Tower Fans  High efficiency cooling tower fans utilize variable frequency drives in the  cooling tower design. VFDs improve fan performance by adjusting fan  speed and rotation as conditions change.  Avista 2011 Electric Integrated Resource Plan 795 Commercial Energy Efficiency Equipment and Measure Data D-4 www.gepllc.com Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Cooling Condenser Water  Temperature Reset  Chilled water reset controls save energy by improving chiller  performance through increasing the supply chilled water temperature,  which allows increased suction pressure during low load periods.   Raising the chilled water temperature also reduces chilled water piping  losses.  However, the primary savings from the chilled water reset  measure results from chiller efficiency improvement.  This is due partly  to the smaller temperature difference between chilled water and  ambient air, and partly due to the sensitivity of chiller performance to  suction temperature.  Cooling Maintenance  Filters, coils, and fins require regular cleaning and maintenance for the  heat pump or roof top unit to function effectively and efficiently  throughout its years of service. Neglecting necessary maintenance leads  to a steady decline in performance while energy use increases.   Maintenance can increase the efficiency of poorly performing  equipment by as much as 10%.  Cooling Evaporative Precooler Evaporative precooling can improve the performance of air conditioning  systems, most commonly RTUs. These systems typically use indirect  evaporative cooling as a first stage to pre‐cool outside air. If the  evaporative system cannot meet the full cooling load, the air steam is  further cooled with conventional refrigerative air conditioning  technology.     Cooling Roof‐ High Reflectivity  (Cool Roof)  The color and material of a building structure surface will determine the  amount of solar radiation absorbed by that surface and subsequently  transferred into a building. This is called solar absorptance. By using a  material or painting the roof with a light color (and a lower solar  absorptance), the roof will absorb less solar radiation and consequently  reduce the cooling load.   Cooling, Space  Heating  Green Roofs A green roof covers a section or the entire building roof with a  waterproof membrane and vegetative material. Like cool roofs, green  roofs can reduce solar absorptance and they can also provide insulation.  They also provide non‐energy benefits by absorbing rainwater and thus  reducing storm water run‐off, providing wildlife habitat, and reducing  so‐called urban heat island effects.  Cooling, Space  Heating,  Ventilation  HVAC Retrocommissioning Over time, the performance of complex mechanical systems providing  heating and cooling to existing commercial spaces degrades as a result  of inappropriate changes to or overrides of controls, deteriorating  equipment, clogged filters, changing demands and schedules, and  pressure imbalances. Retrocommissioning is a comprehensive analysis  of an entire system in which an engineer assesses shortcomings in  system performance, and then optimizes through a process of tune‐up,  maintenance, and reprogramming of control or automation software.  Energy efficiency programs throughout the country promote  retrocommissioning as a means of greatly reducing energy consumption  in existing buildings.  Avista 2011 Electric Integrated Resource Plan 796 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-5 An EnerNOC Company Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Cooling, Space  Heating,  Ventilation,  Interior  Lighting  Comprehensive  Retrocommissioning  Comprehensive retrocommissioning covers not only HVAC and lighting,  but other existing building systems as well. For example, it can improve  efficiency of non‐HVAC motors, vertical transport systems, and  domestic hot water systems.   Cooling, Space  Heating,  Ventilation,  Interior  Lighting/Exteri or Lighting  HVAC Commissioning     Lighting Commissioning     Comprehensive  Commissioning  For new construction and major renovations, commissioning ensures  that building systems are properly designed, specified, and installed to  meet the design intent and provide high‐efficiency performance. As the  names suggests, HVAC Commissioning and Lighting Commissioning  focus only on HVAC and lighting equipment and controls.  Comprehensive commissioning addresses these systems but usually  begins earlier in the design process, and may also address domestic hot  water, non‐HVAC fans, vertical transport, telecommunications, fire  protection, and other building systems.  Cooling, Space  Heating,  Interior  Lighting  Advanced New  Construction Designs  Advanced new construction designs use an integrated approach to the  design of new buildings to account for the interaction of building  systems. Typically, architects and engineers work closely to specify the  building orientation, building shell, building mechanical systems, and  controls strategies with the goal of optimizing building energy efficiency  and comfort. Options that may be evaluated and incorporated include  passive solar strategies, increased thermal mass, daylighting strategies,  and shading strategies, This measure was modeled for new construction  only.  Cooling, Space  Heating  Programmable Thermostat A programmable thermostat can be added to most heating/cooling  systems.  They are typically used during winter to lower temperatures  at night and in summer to increase temperatures during the afternoon.   There are two‐setting models, and well as models that allow separate  programming for each day of the week.  The energy savings from this  type of thermostat are identical to those of a "setback" strategy with  standard thermostats, but the convenience of a programmable  thermostat makes it a much more attractive option.  In this analysis, the  baseline is assumed to have no thermostat setback.  Cooling, Space  Heating  Duct Repair and Sealing An ideal duct system would be free of leaks.  Leakage in unsealed ducts  varies considerably because of the differences in fabricating machinery  used, the methods for assembly, installation workmanship, and age of  the ductwork.  Air leaks from the system to the outdoors result in a  direct loss proportional to the amount of leakage and the difference in  enthalpy between the outdoor air and the conditioned air.  To seal  ducts, a wide variety of sealing methods and products exist.  Each has a  relatively short shelf life, and no documented research has identified  the aging characteristics of sealant applications.  This analysis assumes  that the baseline air loss from ducts has doubled, and conducting repair  and sealing of the ducts will restore leakage from ducts to the original  baseline level.  Avista 2011 Electric Integrated Resource Plan 797 Commercial Energy Efficiency Equipment and Measure Data D-6 www.gepllc.com Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Cooling, Space  Heating  Duct Insulation Air distribution ducts can be insulated to reduce heating or cooling  losses.  Best results can be achieved by covering the entire surface area  with insulation.  Insulation material inhibits the transfer of heat through  the air‐supply duct.  Several types of ducts and duct insulation are  available, including flexible duct, pre‐insulated duct, duct board, duct  wrap, tacked, or glued rigid insulation, and waterproof hard shell  materials for exterior ducts.    Cooling, Space  Heating  Insulation – Radiant Barrier Radiant barriers inhibit heat transfer by thermal radiation. When a  radiant barrier is installed beneath the roofing material much of the  heat radiated from a hot roof is reflected back to the roof limiting the  amount of heat emitted downwards.   Cooling, Space  Heating  High‐Efficiency Windows High‐efficiency windows, such as those labeled under the ENERGY STAR  Program, are designed to reduce a building's energy bill while increasing  comfort for the occupants at the same time.  High‐efficiency windows  have reducing properties that reduce the amount of heat transfer  through the glazing surface.  For example, some windows have a low‐E  coating, which is a thin film of metallic oxide coating on the glass  surface that allows passage of short‐wave solar energy through glass  and prevents long‐wave energy from escaping.  Another example is  double‐pane glass that reduces conductive and convective heat  transfer.  There are also double‐pane glasses that are gas‐filled (usually  argon) to further increase the insulating properties of the window.  Cooling, Space  Heating  Ceiling and Wall Cavity   Insulation  Thermal insulation is material or combinations of materials that are  used to inhibit the flow of heat energy by conductive, convective, and  radiative transfer modes.  Thus, thermal insulation can conserve energy  by reducing the heat loss or gain of a building.  The type of building  construction defines insulating possibilities.  Typical insulating materials  include:  loose‐fill (blown) cellulose; loose‐fill (blown) fiberglass; and  rigid polystyrene.  Ventilation Cooking – Exhaust Hoods  with Sensor Controls  Improved exhaust hoods involve installing variable‐speed controls on  commercial kitchen hoods. These controls provide ventilation based on  actual cooking loads. When grills, broilers, stoves, fryers or other  kitchen appliances are not being used, the controls automatically sense  the reduced load and decrease the fan speed accordingly. This results in  lower energy consumption because the system is only running as  needed rather than at 100% capacity at all times.  Ventilation Variable Air Volume A variable air volume ventilation system modulates the air flow rate as  needed based on the interior conditions of the building to reduce fan  load, improve dehumidification, and reduce energy usage.  Ventilation Fans – Energy Efficient  Motors  High‐efficiency motors are essentially interchangeable with standard  motors, but differences in construction make them more efficient.   Energy‐efficient motors achieve their improved efficiency by reducing  the losses that occur in the conversion of electrical energy to  mechanical energy.  This analysis assumes that the efficiency of supply  fans is increased by 5% due to installing energy‐efficient motors.  Avista 2011 Electric Integrated Resource Plan 798 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-7 An EnerNOC Company Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Ventilation Fans – Variable Speed  Control (VSD)  The part‐load efficiency of ventilation fans can be improved  substantially by varying the speed of the motor drive.  There are two  major types of variable speed controls:  mechanical and electronic.  An  additional benefit of variable‐speed controls is the ability to start and  stop the motor gradually, thus extending the life of the motor and  associated machinery. This analysis assumes that electronic variable  speed controls are installed.  Water Heating High‐Efficiency Water  Heater Systems  Efficient electric water heaters are characterized by a high recovery or  thermal efficiency (percentage of delivered electric energy which is  transferred to the water) and low standby losses (the ratio of heat lost  per hour to the content of the stored water). Included in the savings  associated with high‐efficiency electric water heaters are timers that  allow temperature setpoints to change with hot water demand  patterns. For example, the heating element could be shut off  throughout the night, increasing the overall energy factor of the unit. In  addition, tank and pipe insulation reduces standby losses and therefore  reduces the demands on the water heater. This analysis considers  conventional electric water heaters with efficiency greater than 96%, as  well as geothermal heat pump water heaters for effective efficiency  greater than one. Solar water heating was evaluated as well.  Water Heating Convert to Gas This fuel‐switching measure is the replacement of an electric water  heater with a gas‐fired water heater. This measure will eliminate all  prior electricity consumption and demand due to electric water heating.  In this study, it is assumed that this measure can be implemented only  in buildings within 500 feet of a gas main.  Water Heating Heat Pump Water Heater Heat pump water heaters use heat pump technology to extract heat  from the ambient surroundings and transfer it to a hot water tank.  These devices are available as an alternative to conventional tank water  heaters of 55 gallons or larger.    Water Heating Faucet Aerators/Low Flow  Nozzles  A faucet aerator or low flow nozzle spreads the stream from a faucet  helping to reduce water usage. The amount of water passing through  the aerator is measured in gallons per minute (GPM) and the lower the  GPM the more water the aerator conserves.   Water Heating Pipe Insulation Insulating hot water pipes decreases the amount of energy lost during  distribution of hot water throughout the building. Insulating pipes will  result in quicker delivery of hot water and allows lowering the water  heating set point. There are several different types of insulation, the  most common being polyethylene and neoprene.        Water Heating High‐Efficiency Circulation  Pump  A high efficiency circulation pump uses an electronically commutated  motor (ECM) to improve motor efficiency over a larger range of partial  loads. In addition, an ECM allows for improved low RPM performance  with greater torque and smaller pump dimensions.  Avista 2011 Electric Integrated Resource Plan 799 Commercial Energy Efficiency Equipment and Measure Data D-8 www.gepllc.com Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Water Heating Tank Blanket/Insulation Insulation levels on domestic hot water heaters can be increased by  installing a fiberglass blanket on the outside of the tank. This increase in  insulation reduces standby losses and thus saves energy.  Water heater  insulation is available either by the blanket or by square foot of  fiberglass insulation with R‐values ranging from 5 to 14.    Water Heating Thermostat Setback Installing a setback thermostat on the water heater can lead to  significant energy savings during periods when there is no one in the  building.    Water Heating Hot Water Saver A hot water saver is a plumbing device that attaches to the showerhead  and that pauses the flow of water until the water is hot enough for use.  The water is re‐started by the flip of a switch.  Interior  Lighting,  Exterior  Lighting  Lamp Replacement  (Interior Screw‐in, HID, and  Linear Fluorescent   Exterior Screw‐in, HID, and  Linear Fluorescent)  Commercial lighting differs from the residential sector in that efficiency  changes typically require more than the simple purchase and quick  installation of a screw‐in compact fluorescent lamp. Restrictions  regarding ballasts, fixtures, and circuitry limit the potential for direct  substitution of one lamp type for another. However, such replacements  do exist. For example, screw‐in incandescent lamps can readily be  replaced with CFLs or LEDs. Also, during the buildout for a leased office  space, the management could decide to replace all T12 lamps and  magnetic ballasts with T8/electronic ballast configurations. This type of  decision‐making is modeled on a stock turnover basis because of the  time between opportunities for upgrades.  Interior  Lighting,  Exterior  Lighting  Lighting  Retrocommissioning  Lighting retrocommissioning projects in existing commercial buildings  do not require an event such as a tenant turnover, a major renovation,  or an update to electrical circuits to drive its adoption. Rather, a  decision‐maker can decide at any time to perform a comprehensive  audit of a facility's lighting systems, followed by an upgrade of  equipment (lamps, ballasts, fixtures, reflectors), controls (occupancy  sensors, daylighting controls, and central automation).   Interior  Lighting   Delamping and Install  Reflectors  While sometimes included in lighting retrofit projects, delamping is  often performed as a separate energy efficiency measure in which a  lighting engineer analyzes the lighting provided by current systems  compared to the requirements of building occupants. This often leads  to the removal of unnecessary lamps corresponding to an overall  reduction in energy usage. .In addition, installing a reflector in each  fixture can improve light distribution from the remaining lamps.    Interior  Lighting,  Exterior  Lighting  Lighting Time Clocks and  Timers  While outdoor lighting is typically required only at night, in many cases  lighting remains on during daylight hours. A simple timer can set a  diurnal schedule for outdoor lighting and thus reduce the operating  hours by as much as 50%.  Interior  Lighting  Central Lighting Controls Central lighting control systems provide building‐wide control of interior  lighting to ensure that lights are properly scheduled based on expected  building occupancy. Individual zones or circuits can be controlled.  Avista 2011 Electric Integrated Resource Plan 800 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-9 An EnerNOC Company Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Interior  Lighting  Photocell Controlled T8  Dimming Ballasts  Photocells, in concert with dimming ballasts, can detect when adequate  daylighting is available and dim or turn off lights to reduce electricity  consumption. Usually one photocell is used to control a group of  fixtures, a zone, or a circuit.   Interior  Lighting  Bi‐Level Fixture with  Occupancy  Sensor  Bi‐level fixtures with occupancy sensors detect when a space is  unoccupied and reduce light output to a lower level. These devices   Interior  Lighting  High Bay Fixtures Fluorescent fixtures designed for high‐bay applications have several  advantages over similar HID fixtures: lower energy consumption, lower  lumen depreciation rates, better dimming options, faster start‐up and  restrike, better color rendition, more pupil lumens, and reduced glare.   Interior  Lighting  Occupancy Sensor The installation of occupancy sensors allows lights to be turned off  during periods when a space is unoccupied, virtually eliminating the  wasted energy due to lights being left on. There are several types of  occupancy sensors in the market.   Interior  Lighting  LED Exit Lighting The lamps inside exit signs represent a significant energy end‐use, since  they usually operate 24 hours per day.  Many old exit signs use  incandescent lamps, which consume approximately 40 watts per sign.   The incandescent lamps can be replaced with LED lamps that are  specially designed for this specific purpose.  In comparison, the LED  lamps consume approximately 2‐5 watts.  Interior  Lighting  Task Lighting In commercial facilities, individual work areas can use task lighting  instead of brightly lighting the entire area.  Significant energy savings  can be realized by focusing light directly where it is needed and  lowering the general lighting level.  An example of task lighting is the  common desk lamp.  A 25W desk lamp can be installed in place of a  typical lamp in a fixture.  Interior  Lighting,  Cooling  Hotel Guestroom Controls Hotel guestrooms can be fitted with occupancy controls that turn off  energy‐using equipment when the guest is not using the room.  The  occupancy controls comes in several forms, but this analysis assumes  the simplest kind, which is a simple switch near the room’s entry where  the guest can deposit their room key or card. If the key or card is  present, then lights, TV, and air conditioning can receive power and  operate. When the guest leaves and takes the key, all equipment shuts  off.  Exterior  Lighting  Daylighting Controls Daylighting controls use a photosensor to detect ambient light and turn  off exterior lights accordingly.   Avista 2011 Electric Integrated Resource Plan 801 Commercial Energy Efficiency Equipment and Measure Data D-10 www.gepllc.com Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Exterior  Lighting  Photovoltaic Lighting Outdoor photovoltaic (PV) lighting systems use PV panels (or modules),  which convert sunlight to electricity.  The electricity is stored in  batteries for use at night.  They can be cost effective relative to  installing power cables and/or step down transformers for relatively  small lighting loads. The "nightly run time" listings on most "off‐the‐ shelf" products are based on specific sunlight conditions. Systems  located in places that receive less sunlight than the system is designed  for will operate for fewer hours per night than expected. Nightly run  times may also vary depending on how clear the sky is on any given day.  Shading of the PV panel by landscape features (vegetation, buildings,  etc.) will also have a large impact on battery charging and performance.   Open areas with no shading, such as parking lots, are ideal places where  PV lighting systems can be used.  Exterior  Lighting  Cold Cathode Lighting Cold cathode lighting does not use an external heat source to provide  thermionic emission of electrons. Cold cathode lighting is typically used  for exterior signage or where temperatures are likely to drop below  freezing.  Exterior  Lighting  Induction Lamps Induction lamps use a contactless bulb and rely on electromagnetic  fields to transfer power. This allows for the lamp to utilize more  efficient materials that would otherwise react with metal electrodes. In  addition, the lack of an electrode significantly extends lamp life while  reducing lumen depreciation.  Office  Equipment  Desktop and Laptop  Computing Equipment  ENERGY STAR labeled office equipment saves energy by powering down  and "going to sleep" when not in use.  ENERGY STAR labeled computers  automatically power down to 15 watts or less when not in use and may  actually last longer than conventional products because they spend a  large portion of time in a low‐power sleep mode.  ENERGY STAR labeled  computers also generate less heat than conventional models. The  ClimateSavers Initiative, made up of leading computer processor  manufacturers, has stated a goal of reducing power consumption in  active mode by 50% by integrating innovative power management into  the chip design process.  Office  Equipment  Monitors ENERGY STAR labeled office equipment saves energy by powering down  and "going to sleep" when not in use.  ENERGY STAR labeled monitors  automatically power down to 15 watts or less when not in use.  Office  Equipment  Servers In addition to the "sleep" mode a reductions and the efficient  processors being designed by members of the ClimateSavers Initiative,  servers have additional energy‐saving opportunities through  "virtualization" and other architecture solutions that involve optimal  matching of computation tasks to hardware requirements  Avista 2011 Electric Integrated Resource Plan 802 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-11 An EnerNOC Company Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Office  Equipment  Printers/Copiers/ Fax/ POS  Terminals  ENERGY STAR labeled office equipment saves energy by powering down  and "going to sleep" when not in use.  ENERGY STAR labeled copiers are  equipped with a feature that allows them to automatically turn off after  a period of inactivity, reducing a copier's annual electricity costs by over  60%.  High‐speed copiers that include a duplexing unit that is set to  automatically make double‐sided copies can reduce paper costs and  help to save trees.  Office  Equipment  ENERGY STAR Power  Supply  Power supplies with an efficient ac‐dc or ac‐ac conversion process can  obtain the ENERGY STAR label. These devices can be used to power  computers, phones, and other office equipment.   Refrigeration Walk‐in Refrigeration  Systems  Standard compressors typically operate at approximately 65%  efficiency. High‐efficiency models are available that can improve  compressor efficiency by 15%.  Refrigeration Glass Door and Solid Door  Refrigeration Units (Reach‐ in /Open Display  Case/Vending Machine)    Door Gasket Replacement    High Efficiency Case  Lighting  In addition to walk‐in, "cold‐storage" refrigeration, a significant amount  of energy in the commercial sector can be attributed to "reach‐in" units.  These stand‐alone appliances can range from a residential‐style  refrigerator/freezer unit in an office kitchen or the breakroom of a retail  store to the refrigerated display cases in some grocery or convenience  stores. As in the case of residential units, these refrigerators can be  designed to perform at higher efficiency through a combination of  compressor equipment upgrades, default temperature settings, and  defrost patterns.   Other measures for these units are replacing aging door gaskets that no  longer adequately seal the case, and replacing inefficient display lights  with CFL or LED systems to reduce internal heat gains in the cases.   Refrigeration Open Display Case Glass doors can be used to enclose multi‐deck display cases for  refrigerated items in supermarkets.  In addition, more efficient units are  designed to perform at higher efficiency through a combination of  compressor equipment upgrades, default temperature settings, and  defrost patterns.  Refrigeration Anti‐Sweat Heater/ Auto  Door Closer Controls  Anti‐sweat heaters are used in virtually all low‐temperature display  cases and many medium‐temperature cases to control humidity and  prevent the condensation of water vapor on the sides and doors and on  the products contained in the cases.  Typically, these heaters stay on all  the time, even though they only need to be on about half the time.  Anti‐sweat heater controls can come in the form of humidity sensors or  time clocks.  Avista 2011 Electric Integrated Resource Plan 803 Commercial Energy Efficiency Equipment and Measure Data D-12 www.gepllc.com Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Refrigeration Floating Head Pressure  Controls  Floating head pressure control allows the pressure in the condenser to  "float" with ambient temperatures. This method reduces refrigeration  compression ratios, improves system efficiency and extends the  compressor life. The greatest savings with a floating head pressure  approach occurs when the ambient temperatures are low, such as in  the winter season.  Floating head pressure control is most practical for  new installations. However, retrofits installation can be completed with  some existing refrigeration systems. Installing floating head pressure  control increases the capacity of the compressor when temperatures  are low, which may lead to short cycling.  Refrigeration Bare Suction Lines Insulating bare suction lines reduces heat   Refrigeration Night Covers Night covers can be used on open refrigeration cases when a facility is  closed or few customers are in the store.   Refrigeration Strip Curtain Strip curtains at the entrances to large walk‐in coolers or freezers, such  as those used in supermarkets, reduce air transfer between the  refrigerated space and the surrounding space.   Refrigeration Icemakers In certain building types (restaurant, hotel), the production of ice is a  significant usage of electricity. By optimizing the timing of ice  production and the type of output to the specific application, icemakers  are assumed to deliver electricity savings.  Refrigeration Vending Machine ‐  Controller  Cold beverage vending machines usually operate 24 hours a day  regardless of whether the surrounding area is occupied or not.  The  result is that the vending machine consumes energy unnecessarily,  because it will operate all night to keep the beverage cold even when  there would be no customer until the next morning.  A vending machine  controller can reduce energy consumption without compromising the  temperature of the vended product. The controller uses an infrared  sensor to monitor the surrounding area’s occupancy and will power  down the vending machine when the area is unoccupied.  It will also  monitor the room’s temperature and will re ‐power the machine at one  to three hour intervals independent of occupancy to ensure that the  product stays cold.    Food Service Kitchen Equipment Commercial cooking and food preparation equipment represent a  significant contribution to energy consumption in restaurants and other  food service applications. By replacing old units with efficient ones, this  energy consumption can be greatly reduced. These measures include  fryers, commercial ovens, dishwashers, hot food containers and  miscellaneous other food preparation equipment. Savings range  between 15 and 65%, depending on the specific unit being replaced.  Cooling, Space  Heating,  Interior  Lighting, Food  Preparation,  Refrigeration  Custom Measures Custom measures were included in the CPA analysis to serve as a “catch  all” for measures for which costs and savings are not easily quantified  and that could be part of a program such as Avista’s existing Site‐ Specific incentive program. Costs and energy savings were assumed  such that the measures passed the economic screen.   Avista 2011 Electric Integrated Resource Plan 804 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-13 An EnerNOC Company Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Miscellaneous Non‐HVAC motor Because the Small/Medium Commercial and Large Commercial  segments include some industrial customers, the CPA analysis included  equipment upgrades for non‐HVAC motors. This equipment measure  also incorporates improvements for vertical transport. Premium  efficiency motors reduce the amount of lost energy going into heat  rather than power.  Since less heat is generated, less energy is needed  to cool the motor with a fan.  Therefore, the initial cost of energy  efficient motors is generally higher than for standard motors. However  their life‐cycle costs can make them far more economical because of  savings they generate in operating expense.  Premium efficiency motors can provide savings of 0.5% to 3% over  standard motors.  The savings results from the fact that energy efficient  motors run cooler than their standard counterparts, resulting in an  increase in the life of the motor insulation and bearing.  In general, an  efficient motor is a more reliable motor because there are fewer  winding failures, longer periods between needed maintenance, and  fewer forced outages.  For example, using copper instead of aluminum  in the windings, and increasing conductor cross‐sectional area, lowers a  motor’s I2R losses.  Miscellaneous Pumps – Variable Speed  Control  The part‐load efficiency of chilled and hot water loop pumps can be  improved substantially by varying the speed of the motor drive  according to the building demand for heating or cooling. There is also a  reduction in piping losses associated with this measure that has a major  impact on the heating loads and energy use for a building. However,  pump speeds can generally only be reduced to a minimum specified  rate, because chillers, boilers, and the control valves may require a  minimum flow rate to operate. There are two major types of variable  speed controls:  mechanical and electronic.  An additional benefit of  variable‐speed drives is the ability to start and stop the motor gradually,  thus extending the life of the motor and associated machinery. This  analysis assumes that electronic variable speed controls are installed.  Miscellaneous Laundry – High Efficiency   Clothes Washer  High efficiency clothes washers use designs that require less water.   These machines use sensors to match the hot water needs to the load,  preventing energy waste. There are two designs:  top‐loading and front‐ loading. Further energy and water savings can be achieved through  advanced technologies such as inverter‐drive or combination washer‐ dryer units.  Miscellaneous ENERGY STAR Water Cooler An ENERGY STAR water cooler has more insulation and improved  chilling mechanisms, resulting in about half the energy use of a standard  cooler.  Miscellaneous Industrial Process  Improvements   Because the Avista C&I sector segmentation was based on Avista’s rate  classes, the commercial building segments include a small percentage  or industrial business types. This measure was included to account for  energy efficiency potential that could be achieved through various  process improvements at these customers.   Avista 2011 Electric Integrated Resource Plan 805 Commercial Energy Efficiency Equipment and Measure Data D-14 www.gepllc.com Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Machine Drive. Motors, Premium  Efficiency  Premium efficiency motors reduce the amount of lost energy going into  heat rather than power.  Since less heat is generated, less energy is  needed to cool the motor with a fan.  Therefore, the initial cost of  energy efficient motors is generally higher than for standard motors.   However their life‐cycle costs can make them far more economical  because of savings they generate in operating expense.  Premium efficiency motors can provide savings of 0.5% to 3% over  standard motors.  The savings results from the fact that energy efficient  motors run cooler than their standard counterparts, resulting in an  increase in the life of the motor insulation and bearing.  In general, an  efficient motor is a more reliable motor because there are fewer  winding failures, longer periods between needed maintenance, and  fewer forced outages.  For example, using copper instead of aluminum  in the windings, and increasing conductor cross‐sectional area, lowers a  motor’s I2R losses.  This analysis assumes 75% loading factor (for peak efficiency) for 1800  rpm motor.  Hours of operation vary depending on horsepower size. In  addition, improved drives and controls are assumed to be implemented  along with the motors, resulting in savings as high as 10% of annual  energy consumption  Machine Drive Motors – Variable  Frequency Drive  In addition to energy savings, VFDs increase motor and system life and  provide a greater degree of control over the motor system. Especially  for motor systems handling fluids, VFDs can efficiently respond to  changing operating conditions.   Machine Drive Magnetic Adjustable  Speed Drive  To allow for adjustable speed operation, this technology uses magnetic  induction to couple a drive to its load. Varying the magnetic slip within  the coupling controls the speed of the output shaft.  Magnetic drives  perform best at the upper end of the speed range due to the energy  consumed by the slip. Unlike traditional ASDs, magnetically coupled  ASDs create no power distortion on the electrical system. However,  magnetically coupled ASD efficiency is best when power needs are  greatest. VFDs may show greater efficiency when the average load  speed is below 90% of the motor speed, however this occurs when  power demands are reduced.  Machine Drive Compressed Air – System  Controls, Optimization and  Improvements,  Maintenance  Controls for compressed air systems can shift load from two partially  loaded compressors to one compressor in order to maximize  compression efficiency and may also involve the addition of VFDs.  Improvements include installing high‐efficiency motors. Maintenance  includes fixing air leaks and replacing air filters.  Machine Drive Fan Systems – Controls,  Optimization and  Maintenance  Certain practices require a consistent flow rate, such as indoor air  quality and clean room ventilation. To achieve this, fan flow controls  can be used to maintain precise volume flow control ensuring a  constant air delivery even on fluctuating pressure conditions. This is  done through programmable circuitry to electronically control fan  motor speed. Motors can be configured to accept a signal from a  controller that would vary the flow rate in direct proportion to the  signal.  Avista 2011 Electric Integrated Resource Plan 806 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-15 An EnerNOC Company Table D-1 Commercial and Industrial Energy-Efficiency Equipment/Measure Descriptions End‐Use  Energy Efficiency  Measure Description  Machine Drive Pumping Systems –  Controls, Optimization and  Maintenance  Pumping systems optimization includes installing VFDs, correctly  resizing the motors, and installing timers and automated on‐off  controls. Maintenance includes repairing diaphragms and fixing piping  leaks.  Process Process  Cooling/Refrigeration  Because of the customized nature of industrial cooling and refrigeration  applications, a variety of opportunities are summarized as a general  improvement in cooling and cold storage equipment. Costs and savings  were developed using average values for this group of measures from  the Sixth Plan industrial supply curve workbooks.  Process Process Heating Because of the customized nature of industrial heating applications, a  variety of opportunities are summarized as a general improvement in  process heating equipment, such as arc furnaces. Costs and savings  were developed using average values for this group of measures from  the Sixth Plan industrial supply curve workbooks.  Process Electrochemical Process Because of the customized nature of industrial electrochemical  applications, a variety of opportunities are summarized as a general  improvement in equipment and processes. Costs and savings were  developed using average values for this group of measures from the  Sixth Plan industrial supply curve workbooks.  Process Refrigeration – System  Controls, Maintenance,  and Optimization  Because refrigeration equipment performance degrades over time and  control settings are frequently overridden, these measures account for  savings that can be achieved through system maintenance and controls  optimization.  Avista 2011 Electric Integrated Resource Plan 807 Commercial Energy Efficiency Equipment and Measure Data D-16 www.gepllc.com Table D-2 Energy Efficiency Equipment Data — Small/Medium Comm., Existing Vintage    Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 1.5 kw/ton, COP 2.3 ‐               $0.00 20 ‐             Cooling Central Chiller 1.3 kw/ton, COP 2.7 0.29             $0.39 20 ‐             Cooling Central Chiller 1.26 kw/ton, COP 2.8 0.35             $0.50 20 0.51           Cooling Central Chiller 1.0 kw/ton, COP 3.5 0.73             $0.62 20 1.90           Cooling Central Chiller 0.97 kw/ton, COP 3.6 0.77             $0.74 20 1.39           Cooling Central Chiller Variable Refrigerant Flow 1.01             $11.57 20 0.07           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.22             $0.18 16 ‐             Cooling RTU EER 11.2 0.43             $0.35 16 ‐             Cooling RTU EER 12.0 0.57             $0.58 16 0.49           Cooling RTU Ductless VRF 0.69             $5.12 16 0.05           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.09             $0.08 14 0.86           Cooling PTAC EER 10.8 0.21             $0.16 14 1.00           Cooling PTAC EER 11 0.25             $0.43 14 0.43           Cooling PTAC EER 11.5 0.33             $0.96 14 0.27           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 0.57             $0.39 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 0.90             $1.18 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 1.20             $1.57 15 0.98           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 1.31             $1.96 15 0.68           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 1.46             $11.50 20 0.10           Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 1.30             $1.22 15 1.07           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.23             $0.09 4 ‐             Interior Lighting Interior Screw‐in CFL 0.94             $0.03 7 16.50        Interior Lighting Interior Screw‐in LED 1.04             $1.18 12 0.84           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.30             ($0.07) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.30             ($0.03) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.91             $0.25 6 1.73           Interior Lighting Linear Fluorescent T5 0.95             $0.43 6 1.06           Interior Lighting Linear Fluorescent LED 0.99             $3.74 15 0.33           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.14             $0.05 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.60             $0.02 7 17.60        Exterior Lighting Exterior Screw‐in Metal Halides 0.60             $0.05 4 3.16           Exterior Lighting Exterior Screw‐in LED 0.66             $0.64 12 0.90           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.22             ($0.13) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.24             $0.55 9 0.37           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.01             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.04             $0.02 6 1.12           Exterior Lighting Linear Fluorescent T5 0.04             $0.03 6 0.69           Exterior Lighting Linear Fluorescent LED 0.05             $0.24 15 0.22           Water Heating Water Heater Baseline (EF=0.90)‐               $0.00 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 0.10             $0.02 15 5.23           Water Heating Water Heater Geothermal Heat Pump 1.33             $3.53 15 0.43           Water Heating Water Heater Solar 1.46             $3.03 15 0.55           Food Preparation Fryer Standard ‐               $0.00 12 ‐             Food Preparation Fryer Efficient 0.03             $0.04 12 0.80           Food Preparation Oven Standard ‐               $0.00 12 ‐             Avista 2011 Electric Integrated Resource Plan 808 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-17 An EnerNOC Company Table D-2 Energy Efficiency Equipment Data — Small/Med. Comm., Existing Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Food Preparation Oven Efficient 0.39             $0.36 12 1.02           Food Preparation Dishwasher Standard ‐               $0.00 12 ‐             Food Preparation Dishwasher Efficient 0.02             $0.05 12 0.36           Food Preparation Hot Food Container Standard ‐               $0.00 12 ‐             Food Preparation Hot Food Container Efficient 0.40             $0.16 12 2.29           Food Preparation Food Prep Standard ‐               $0.00 12 ‐             Food Preparation Food Prep Efficient 0.00             $0.03 12 0.07           Refrigeration Walk in Refrigeration Standard ‐               $0.00 18 ‐             Refrigeration Walk in Refrigeration Efficient ‐               $0.09 18 ‐             Refrigeration Glass Door Display Standard ‐               $0.00 18 ‐             Refrigeration Glass Door Display Efficient 0.16             $0.00 18 56.08        Refrigeration Solid Door Refrigerator Standard ‐               $0.00 18 ‐             Refrigeration Solid Door Refrigerator Efficient 0.19             $0.02 18 9.87           Refrigeration Open Display Case Standard ‐               $0.00 18 ‐             Refrigeration Open Display Case Efficient 0.00             $0.00 18 0.24           Refrigeration Vending Machine Base ‐               $0.00 10 ‐             Refrigeration Vending Machine Base (2012)0.11             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency 0.13             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency (2012)0.20             $0.00 10 46.48        Refrigeration Icemaker Standard ‐               $0.00 12 ‐             Refrigeration Icemaker Efficient 0.05             $0.00 12 12.76        Office Equipment Desktop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Desktop Computer Energy Star 0.19             $0.00 4 23.04        Office Equipment Desktop Computer Climate Savers 0.27             $0.36 4 0.23           Office Equipment Laptop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Laptop Computer Energy Star 0.02             $0.00 4 7.34           Office Equipment Laptop Computer Climate Savers 0.03             $0.12 4 0.08           Office Equipment Server Standard ‐               $0.00 3 ‐             Office Equipment Server Energy Star 0.12             $0.01 3 2.14           Office Equipment Monitor Standard ‐               $0.00 4 ‐             Office Equipment Monitor Energy Star 0.22             $0.00 4 19.68        Office Equipment Printer/copier/fax Standard ‐               $0.00 6 ‐             Office Equipment Printer/copier/fax Energy Star 0.09             $0.04 6 0.98           Office Equipment POS Terminal Standard ‐               $0.00 4 ‐             Office Equipment POS Terminal Energy Star 0.03             $0.00 4 2.96           Miscellaneous Non‐HVAC Motor Standard ‐               $0.00 15 ‐             Miscellaneous Non‐HVAC Motor Standard (2015)0.01             $0.00 15 ‐             Miscellaneous Non‐HVAC Motor High Efficiency 0.05             $0.06 15 0.95           Miscellaneous Non‐HVAC Motor High Efficiency (2015)0.06             $0.06 15 ‐             Miscellaneous Non‐HVAC Motor Premium 0.07             $0.11 15 0.72           Miscellaneous Non‐HVAC Motor Premium (2015)0.08             $0.11 15 ‐             Miscellaneous Other Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Miscellaneous Other Miscellaneous Miscellaneous (2013)0.00             $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 809 Commercial Energy Efficiency Equipment and Measure Data D-18 www.gepllc.com Table D-3 Energy Efficiency Equipment Data — Large Commercial, Existing Vintage    Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 1.5 kw/ton, COP 2.3 ‐               $0.00 20 ‐             Cooling Central Chiller 1.3 kw/ton, COP 2.7 0.30             $0.26 20 ‐             Cooling Central Chiller 1.26 kw/ton, COP 2.8 0.36             $0.33 20 0.83           Cooling Central Chiller 1.0 kw/ton, COP 3.5 0.75             $0.41 20 3.11           Cooling Central Chiller 0.97 kw/ton, COP 3.6 0.79             $0.49 20 2.28           Cooling Central Chiller Variable Refrigerant Flow 1.04             $7.63 20 0.11           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.22             $0.13 16 ‐             Cooling RTU EER 11.2 0.45             $0.25 16 ‐             Cooling RTU EER 12.0 0.59             $0.41 16 0.75           Cooling RTU Ductless VRF 0.72             $3.67 16 0.07           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.09             $0.09 14 0.86           Cooling PTAC EER 10.8 0.21             $0.17 14 1.00           Cooling PTAC EER 11 0.25             $0.46 14 0.43           Cooling PTAC EER 11.5 0.34             $1.03 14 0.27           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 0.46             $0.18 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 0.73             $0.55 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 0.97             $0.73 15 1.85           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 1.07             $0.91 15 1.28           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 1.19             $5.35 20 0.19           Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 1.03             $1.22 15 0.86           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.19             $0.08 4 ‐             Interior Lighting Interior Screw‐in CFL 0.78             $0.03 7 14.13        Interior Lighting Interior Screw‐in LED 0.87             $1.11 12 0.72           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.31             ($0.08) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.30             ($0.03) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.89             $0.25 6 1.66           Interior Lighting Linear Fluorescent T5 0.92             $0.42 6 1.02           Interior Lighting Linear Fluorescent LED 0.97             $3.67 15 0.32           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.08             $0.01 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.34             $0.01 7 34.02        Exterior Lighting Exterior Screw‐in Metal Halides 0.34             $0.02 4 6.10           Exterior Lighting Exterior Screw‐in LED 0.38             $0.19 12 1.73           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.19             ($0.11) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.20             $0.45 9 0.37           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.01             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.04             $0.02 6 1.18           Exterior Lighting Linear Fluorescent T5 0.04             $0.03 6 0.72           Exterior Lighting Linear Fluorescent LED 0.05             $0.24 15 0.23           Water Heating Water Heater Baseline (EF=0.90)‐               $0.00 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 0.12             $0.02 15 5.71           Water Heating Water Heater Geothermal Heat Pump 1.54             $3.53 15 0.46           Water Heating Water Heater Solar 1.69             $3.03 15 0.60           Food Preparation Fryer Standard ‐               $0.00 12 ‐             Food Preparation Fryer Efficient 0.07             $0.02 12 3.52           Food Preparation Oven Standard ‐               $0.00 12 ‐             Avista 2011 Electric Integrated Resource Plan 810 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-19 An EnerNOC Company Table D-3 Energy Efficiency Equipment Data — Large Commercial, Existing Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Food Preparation Oven Efficient 0.75             $0.46 12 1.43           Food Preparation Dishwasher Standard ‐               $0.00 12 ‐             Food Preparation Dishwasher Efficient 0.07             $0.10 12 0.58           Food Preparation Hot Food Container Standard ‐               $0.00 12 ‐             Food Preparation Hot Food Container Efficient 0.35             $0.30 12 0.99           Food Preparation Food Prep Standard ‐               $0.00 12 ‐             Food Preparation Food Prep Efficient 0.01             $0.03 12 0.24           Refrigeration Walk in Refrigeration Standard ‐               $0.00 18 ‐             Refrigeration Walk in Refrigeration Efficient 0.15             $1.26 18 0.13           Refrigeration Glass Door Display Standard ‐               $0.00 18 ‐             Refrigeration Glass Door Display Efficient 0.13             $0.01 18 24.96        Refrigeration Solid Door Refrigerator Standard ‐               $0.00 18 ‐             Refrigeration Solid Door Refrigerator Efficient 0.30             $0.08 18 4.39           Refrigeration Open Display Case Standard ‐               $0.00 18 ‐             Refrigeration Open Display Case Efficient 0.00             $0.04 18 0.16           Refrigeration Vending Machine Base ‐               $0.00 10 ‐             Refrigeration Vending Machine Base (2012)0.13             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency 0.15             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency (2012)0.23             $0.00 10 20.70        Refrigeration Icemaker Standard ‐               $0.00 12 ‐             Refrigeration Icemaker Efficient 0.11             $0.02 12 5.62           Office Equipment Desktop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Desktop Computer Energy Star 0.35             $0.00 4 47.46        Office Equipment Desktop Computer Climate Savers 0.50             $0.32 4 0.46           Office Equipment Laptop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Laptop Computer Energy Star 0.02             $0.00 4 15.12        Office Equipment Laptop Computer Climate Savers 0.04             $0.06 4 0.17           Office Equipment Server Standard ‐               $0.00 3 ‐             Office Equipment Server Energy Star 0.13             $0.01 3 4.41           Office Equipment Monitor Standard ‐               $0.00 4 ‐             Office Equipment Monitor Energy Star 0.19             $0.01 4 9.14           Office Equipment Printer/copier/fax Standard ‐               $0.00 6 ‐             Office Equipment Printer/copier/fax Energy Star 0.08             $0.02 6 2.02           Office Equipment POS Terminal Standard ‐               $0.00 4 ‐             Office Equipment POS Terminal Energy Star 0.01             $0.00 4 2.94           Miscellaneous Non‐HVAC Motor Standard ‐               $0.00 15 ‐             Miscellaneous Non‐HVAC Motor Standard (2015)0.01             $0.00 15 ‐             Miscellaneous Non‐HVAC Motor High Efficiency 0.06             $0.06 15 0.92           Miscellaneous Non‐HVAC Motor High Efficiency (2015)0.06             $0.06 15 ‐             Miscellaneous Non‐HVAC Motor Premium 0.08             $0.13 15 0.69           Miscellaneous Non‐HVAC Motor Premium (2015)0.09             $0.13 15 ‐             Miscellaneous Other Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Miscellaneous Other Miscellaneous Miscellaneous (2013)0.00             $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 811 Commercial Energy Efficiency Equipment and Measure Data D-20 www.gepllc.com Table D-4 Energy Efficiency Equipment Data — Extra Large Commercial, Existing Vintage    Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 0.75 kw/ton, COP 4.7 ‐               $0.00 20 ‐             Cooling Central Chiller 0.60 kw/ton, COP 5.9 0.43             $0.09 20 ‐             Cooling Central Chiller 0.58 kw/ton, COP 6.1 0.49             $0.18 20 0.66           Cooling Central Chiller 0.55 kw/Ton, COP 6.4 0.57             $0.25 20 0.91           Cooling Central Chiller 0.51 kw/ton, COP 6.9 0.69             $0.44 20 0.78           Cooling Central Chiller 0.50 kw/Ton, COP 7.0 0.72             $0.53 20 0.69           Cooling Central Chiller 0.48 kw/ton, COP 7.3 0.77             $0.62 20 0.68           Cooling Central Chiller Variable Refrigerant Flow 1.00             $10.92 20 0.05           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.20             $0.24 16 ‐             Cooling RTU EER 11.2 0.41             $0.45 16 ‐             Cooling RTU EER 12.0 0.53             $0.75 16 0.37           Cooling RTU Ductless VRF 0.65             $6.64 16 0.03           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.08             $0.06 14 1.09           Cooling PTAC EER 10.8 0.19             $0.12 14 1.28           Cooling PTAC EER 11 0.22             $0.32 14 0.55           Cooling PTAC EER 11.5 0.30             $0.71 14 0.34           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 0.50             $0.24 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 0.79             $0.73 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 1.06             $0.97 15 1.34           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 1.16             $1.21 15 0.93           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 1.29             $7.10 20 0.14           Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 1.21             $1.22 15 1.01           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.30             $0.14 4 ‐             Interior Lighting Interior Screw‐in CFL 1.25             $0.06 7 13.22        Interior Lighting Interior Screw‐in LED 1.38             $1.90 12 0.67           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.13             ($0.05) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.20             ($0.03) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.59             $0.21 6 1.31           Interior Lighting Linear Fluorescent T5 0.61             $0.35 6 0.80           Interior Lighting Linear Fluorescent LED 0.64             $3.08 15 0.25           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.02             $0.00 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.10             $0.00 7 37.00        Exterior Lighting Exterior Screw‐in Metal Halides 0.10             $0.00 4 6.64           Exterior Lighting Exterior Screw‐in LED 0.11             $0.05 12 1.89           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.26             ($0.16) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.28             $0.64 9 0.37           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.00             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.01             $0.00 6 1.12           Exterior Lighting Linear Fluorescent T5 0.01             $0.01 6 0.69           Exterior Lighting Linear Fluorescent LED 0.01             $0.06 15 0.22           Water Heating Water Heater Baseline (EF=0.90)‐               $0.00 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 0.19             $0.02 15 9.79           Water Heating Water Heater Geothermal Heat Pump 2.47             $3.53 15 0.80           Water Heating Water Heater Solar 2.72             $3.03 15 1.02           Food Preparation Fryer Standard ‐               $0.00 12 ‐             Avista 2011 Electric Integrated Resource Plan 812 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-21 An EnerNOC Company Table D-4 Energy Efficiency Equipment Data — Extra Large Commercial, Existing Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Food Preparation Fryer Efficient 0.03             $0.00 12 6.02           Food Preparation Oven Standard ‐               $0.00 12 ‐             Food Preparation Oven Efficient 0.85             $0.38 12 2.11           Food Preparation Dishwasher Standard ‐               $0.00 12 ‐             Food Preparation Dishwasher Efficient 0.03             $0.04 12 0.57           Food Preparation Hot Food Container Standard ‐               $0.00 12 ‐             Food Preparation Hot Food Container Efficient 0.17             $0.22 12 0.73           Food Preparation Food Prep Standard ‐               $0.00 12 ‐             Food Preparation Food Prep Efficient 0.00             $0.03 12 0.15           Refrigeration Walk in Refrigeration Standard ‐               $0.00 18 ‐             Refrigeration Walk in Refrigeration Efficient 0.06             $0.05 18 1.42           Refrigeration Glass Door Display Standard ‐               $0.00 18 ‐             Refrigeration Glass Door Display Efficient 0.04             $0.00 18 78.11        Refrigeration Solid Door Refrigerator Standard ‐               $0.00 18 ‐             Refrigeration Solid Door Refrigerator Efficient 0.27             $0.02 18 12.81        Refrigeration Open Display Case Standard ‐               $0.00 18 ‐             Refrigeration Open Display Case Efficient 0.01             $0.03 18 0.34           Refrigeration Vending Machine Base ‐               $0.00 10 ‐             Refrigeration Vending Machine Base (2012)0.13             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency 0.16             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency (2012)0.24             $0.00 10 68.21        Refrigeration Icemaker Standard ‐               $0.00 12 ‐             Refrigeration Icemaker Efficient 0.05             $0.00 12 17.60        Office Equipment Desktop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Desktop Computer Energy Star 0.25             $0.00 4 32.37        Office Equipment Desktop Computer Climate Savers 0.35             $0.33 4 0.32           Office Equipment Laptop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Laptop Computer Energy Star 0.02             $0.00 4 10.31        Office Equipment Laptop Computer Climate Savers 0.04             $0.10 4 0.12           Office Equipment Server Standard ‐               $0.00 3 ‐             Office Equipment Server Energy Star 0.06             $0.00 3 3.01           Office Equipment Monitor Standard ‐               $0.00 4 ‐             Office Equipment Monitor Energy Star 0.11             $0.01 4 6.80           Office Equipment Printer/copier/fax Standard ‐               $0.00 6 ‐             Office Equipment Printer/copier/fax Energy Star 0.02             $0.01 6 1.38           Office Equipment POS Terminal Standard ‐               $0.00 4 ‐             Office Equipment POS Terminal Energy Star 0.00             $0.00 4 2.01           Miscellaneous Non‐HVAC Motor Standard ‐               $0.00 15 ‐             Miscellaneous Non‐HVAC Motor Standard (2015)0.01             $0.00 15 ‐             Miscellaneous Non‐HVAC Motor High Efficiency 0.03             $0.03 15 1.02           Miscellaneous Non‐HVAC Motor High Efficiency (2015)0.04             $0.03 15 ‐             Miscellaneous Non‐HVAC Motor Premium 0.05             $0.07 15 0.76           Miscellaneous Non‐HVAC Motor Premium (2015)0.05             $0.07 15 ‐             Miscellaneous Other Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Miscellaneous Other Miscellaneous Miscellaneous (2013) 0.00             $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 813 Commercial Energy Efficiency Equipment and Measure Data D-22 www.gepllc.com Table D-5 Energy Efficiency Equipment Data — Extra Large Industrial, Existing Vintage     Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 0.75 kw/ton, COP 4.7 ‐               $0.00 20 ‐             Cooling Central Chiller 0.60 kw/ton, COP 5.9 1.61             $0.33 20 ‐             Cooling Central Chiller 0.58 kw/ton, COP 6.1 1.82             $0.66 20 0.68           Cooling Central Chiller 0.55 kw/Ton, COP 6.4 2.15             $0.93 20 0.94           Cooling Central Chiller 0.51 kw/ton, COP 6.9 2.58             $1.59 20 0.80           Cooling Central Chiller 0.50 kw/Ton, COP 7.0 2.68             $1.92 20 0.71           Cooling Central Chiller 0.48 kw/ton, COP 7.3 2.90             $2.25 20 0.70           Cooling Central Chiller Variable Refrigerant Flow 3.74             $39.62 20 0.06           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.56             $0.39 16 ‐             Cooling RTU EER 11.2 1.12             $0.73 16 ‐             Cooling RTU EER 12.0 1.47             $1.22 16 0.62           Cooling RTU Ductless VRF 1.79             $10.83 16 0.06           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.20             $0.06 14 2.79           Cooling PTAC EER 10.8 0.47             $0.11 14 3.27           Cooling PTAC EER 11 0.55             $0.31 14 1.41           Cooling PTAC EER 11.5 0.75             $0.69 14 0.87           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 1.07             $0.92 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 1.69             $2.75 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 2.25             $3.66 15 0.75           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 2.47             $4.58 15 0.52           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 2.74             $26.86 20 0.08           Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 7.66             $1.22 15 6.38           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.09             $0.04 4 ‐             Interior Lighting Interior Screw‐in CFL 0.38             $0.02 7 14.80        Interior Lighting Interior Screw‐in LED 0.42             $0.52 12 0.75           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.46             ($0.14) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.10             ($0.01) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.31             $0.08 6 1.73           Interior Lighting Linear Fluorescent T5 0.32             $0.14 6 1.06           Interior Lighting Linear Fluorescent LED 0.33             $1.21 15 0.33           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.01             $0.00 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.02             $0.00 7 15.02        Exterior Lighting Exterior Screw‐in Metal Halides 0.02             $0.00 4 2.69           Exterior Lighting Exterior Screw‐in LED 0.03             $0.03 12 0.77           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.07             ($0.04) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.08             $0.18 9 0.37           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.00             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.00             $0.00 6 1.16           Exterior Lighting Linear Fluorescent T5 0.00             $0.00 6 0.71           Exterior Lighting Linear Fluorescent LED 0.00             $0.01 15 0.22           Process Process Cooling/Refrigera Standard ‐               $0.00 10 ‐             Process Process Cooling/Refrigera Efficient 18.88           $5.59 10 2.49           Process Process Heating Standard ‐               $0.00 10 ‐             Process Process Heating Efficient 6.18             $0.57 10 7.97           Process Electrochemical Process Standard ‐               $0.00 10 ‐             Avista 2011 Electric Integrated Resource Plan 814 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-23 An EnerNOC Company Table D-5 Energy Efficiency Equipment Data — Extra Large Industrial, Existing Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Process Electrochemical Process Efficient 13.16           $2.64 10 3.67           Machine Drive Less than 5 HP Standard ‐               $0.00 10 ‐             Machine Drive Less than 5 HP High Efficiency 0.05             $0.02 10 2.08           Machine Drive Less than 5 HP Standard (2015)0.07             $0.00 10 ‐             Machine Drive Less than 5 HP Premium 0.07             $0.03 10 1.66           Machine Drive Less than 5 HP High Efficiency (2015)0.11             $0.02 10 ‐             Machine Drive Less than 5 HP Premium (2015)0.14             $0.03 10 ‐             Machine Drive 5‐24 HP Standard ‐               $0.00 10 ‐             Machine Drive 5‐24 HP High 0.11             $0.02 10 5.09           Machine Drive 5‐24 HP Premium 0.18             $0.03 10 4.07           Machine Drive 25‐99 HP Standard ‐               $0.00 10 ‐             Machine Drive 25‐99 HP High 0.31             $0.02 10 13.72        Machine Drive 25‐99 HP Premium 0.49             $0.03 10 10.97        Machine Drive 100‐249 HP Standard ‐               $0.00 10 ‐             Machine Drive 100‐249 HP High 0.12             $0.02 10 5.17           Machine Drive 100‐249 HP Premium 0.15             $0.03 10 3.44           Machine Drive 250‐499 HP Standard ‐               $0.00 10 ‐             Machine Drive 250‐499 HP High 0.35             $0.02 10 15.66        Machine Drive 250‐499 HP Premium 0.47             $0.03 10 10.44        Machine Drive 500 and more HP Standard ‐               $0.00 10 ‐             Machine Drive 500 and more HP High 0.59             $0.02 10 26.28        Machine Drive 500 and more HP Premium 0.78             $0.03 10 17.52        Miscellaneous Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 815 Commercial Energy Efficiency Equipment and Measure Data D-24 www.gepllc.com Table D-6 Energy Efficiency Equipment Data — Small/Medium Commercial, New Vintage   Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 1.5 kw/ton, COP 2.3 ‐               $0.00 20 ‐             Cooling Central Chiller 1.3 kw/ton, COP 2.7 0.29             $0.39 20 ‐             Cooling Central Chiller 1.26 kw/ton, COP 2.8 0.35             $0.50 20 0.51           Cooling Central Chiller 1.0 kw/ton, COP 3.5 0.73             $0.62 20 1.90           Cooling Central Chiller 0.97 kw/ton, COP 3.6 0.77             $0.74 20 1.39           Cooling Central Chiller Variable Refrigerant Flow 1.01             $11.57 20 0.07           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.22             $0.18 16 ‐             Cooling RTU EER 11.2 0.43             $0.35 16 ‐             Cooling RTU EER 12.0 0.57             $0.58 16 0.49           Cooling RTU Ductless VRF 0.69             $5.12 16 0.05           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.09             $0.08 14 0.86           Cooling PTAC EER 10.8 0.21             $0.16 14 1.00           Cooling PTAC EER 11 0.25             $0.43 14 0.43           Cooling PTAC EER 11.5 0.33             $0.96 14 0.27           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 0.57             $0.39 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 0.90             $1.18 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 1.20             $1.57 15 0.98           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 1.31             $1.96 15 0.68           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 1.46             $11.50 20 0.10           Combined Heating/Cooling Heat Pump Geothermal Heat Pump 1.75             $20.69 20 ‐             Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 1.64             $1.22 15 1.35           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.20             $0.09 4 ‐             Interior Lighting Interior Screw‐in CFL 0.85             $0.03 7 14.85        Interior Lighting Interior Screw‐in LED 0.93             $1.18 12 0.76           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.27             ($0.07) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.27             ($0.03) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.82             $0.25 6 1.56           Interior Lighting Linear Fluorescent T5 0.85             $0.43 6 0.95           Interior Lighting Linear Fluorescent LED 0.89             $3.74 15 0.30           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.13             $0.05 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.54             $0.02 7 15.84        Exterior Lighting Exterior Screw‐in Metal Halides 0.54             $0.05 4 2.84           Exterior Lighting Exterior Screw‐in LED 0.60             $0.64 12 0.81           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.20             ($0.13) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.22             $0.55 9 0.33           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.01             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.04             $0.02 6 1.01           Exterior Lighting Linear Fluorescent T5 0.04             $0.03 6 0.62           Exterior Lighting Linear Fluorescent LED 0.04             $0.24 15 0.20           Water Heating Water Heater Baseline (EF=0.90)‐               $0.00 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 0.10             $0.02 15 5.23           Water Heating Water Heater Geothermal Heat Pump 1.33             $3.53 15 0.43           Water Heating Water Heater Solar 1.46             $3.03 15 0.55           Food Preparation Fryer Standard ‐               $0.00 12 ‐             Food Preparation Fryer Efficient 0.03             $0.04 12 0.80           Avista 2011 Electric Integrated Resource Plan 816 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-25 An EnerNOC Company Table D-6 Energy Efficiency Equipment Data — Small/Medium Commercial, New Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Food Preparation Oven Standard ‐               $0.00 12 ‐             Food Preparation Oven Efficient 0.39             $0.36 12 1.02           Food Preparation Dishwasher Standard ‐               $0.00 12 ‐             Food Preparation Dishwasher Efficient 0.02             $0.05 12 0.36           Food Preparation Hot Food Container Standard ‐               $0.00 12 ‐             Food Preparation Hot Food Container Efficient 0.40             $0.16 12 2.29           Food Preparation Food Prep Standard ‐               $0.00 12 ‐             Food Preparation Food Prep Efficient 0.00             $0.03 12 0.07           Refrigeration Walk in Refrigeration Standard ‐               $0.00 18 ‐             Refrigeration Walk in Refrigeration Efficient ‐               $0.09 18 ‐             Refrigeration Glass Door Display Standard ‐               $0.00 18 ‐             Refrigeration Glass Door Display Efficient 0.16             $0.00 18 56.08        Refrigeration Solid Door Refrigerator Standard ‐               $0.00 18 ‐             Refrigeration Solid Door Refrigerator Efficient 0.19             $0.02 18 9.87           Refrigeration Open Display Case Standard ‐               $0.00 18 ‐             Refrigeration Open Display Case Efficient 0.00             $0.00 18 0.24           Refrigeration Vending Machine Base ‐               $0.00 10 ‐             Refrigeration Vending Machine Base (2012)0.11             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency 0.13             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency (2012)0.20             $0.00 10 46.48        Refrigeration Icemaker Standard ‐               $0.00 12 ‐             Refrigeration Icemaker Efficient 0.05             $0.00 12 12.76        Office Equipment Desktop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Desktop Computer Energy Star 0.19             $0.00 4 23.04        Office Equipment Desktop Computer Climate Savers 0.27             $0.36 4 0.23           Office Equipment Laptop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Laptop Computer Energy Star 0.02             $0.00 4 7.34           Office Equipment Laptop Computer Climate Savers 0.03             $0.12 4 0.08           Office Equipment Server Standard ‐               $0.00 3 ‐             Office Equipment Server Energy Star 0.12             $0.01 3 2.14           Office Equipment Monitor Standard ‐               $0.00 4 ‐             Office Equipment Monitor Energy Star 0.22             $0.00 4 19.68        Office Equipment Printer/copier/fax Standard ‐               $0.00 6 ‐             Office Equipment Printer/copier/fax Energy Star 0.09             $0.04 6 0.98           Office Equipment POS Terminal Standard ‐               $0.00 4 ‐             Office Equipment POS Terminal Energy Star 0.03             $0.00 4 2.96           Miscellaneous Non‐HVAC Motor Standard ‐               $0.00 15 ‐             Miscellaneous Non‐HVAC Motor Standard (2015)0.01             $0.00 15 ‐             Miscellaneous Non‐HVAC Motor High Efficiency 0.05             $0.06 15 0.95           Miscellaneous Non‐HVAC Motor High Efficiency (2015)0.06             $0.06 15 ‐             Miscellaneous Non‐HVAC Motor Premium 0.07             $0.11 15 0.72           Miscellaneous Non‐HVAC Motor Premium (2015)0.08             $0.11 15 ‐             Miscellaneous Other Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Miscellaneous Other Miscellaneous Miscellaneous (2013)0.00             $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 817 Commercial Energy Efficiency Equipment and Measure Data D-26 www.gepllc.com Table D-7 Energy Efficiency Equipment Data — Large Commercial, New Vintage    Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 1.5 kw/ton, COP 2.3 ‐               $0.00 20 ‐             Cooling Central Chiller 1.3 kw/ton, COP 2.7 0.32             $0.24 20 ‐             Cooling Central Chiller 1.26 kw/ton, COP 2.8 0.39             $0.31 20 0.97           Cooling Central Chiller 1.0 kw/ton, COP 3.5 0.80             $0.38 20 3.62           Cooling Central Chiller 0.97 kw/ton, COP 3.6 0.85             $0.45 20 2.66           Cooling Central Chiller Variable Refrigerant Flow 1.12             $7.06 20 0.12           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.22             $0.13 16 ‐             Cooling RTU EER 11.2 0.45             $0.25 16 ‐             Cooling RTU EER 12.0 0.59             $0.41 16 0.75           Cooling RTU Ductless VRF 0.72             $3.67 16 0.07           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.09             $0.09 14 0.86           Cooling PTAC EER 10.8 0.21             $0.17 14 1.00           Cooling PTAC EER 11 0.25             $0.46 14 0.43           Cooling PTAC EER 11.5 0.34             $1.03 14 0.27           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 0.46             $0.18 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 0.73             $0.55 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 0.97             $0.73 15 1.85           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 1.07             $0.91 15 1.28           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 1.19             $5.35 20 0.19           Combined Heating/Cooling Heat Pump Geothermal Heat Pump 1.42             $9.62 20 ‐             Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 1.30             $1.22 15 1.09           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.17             $0.08 4 ‐             Interior Lighting Interior Screw‐in CFL 0.71             $0.03 7 12.72        Interior Lighting Interior Screw‐in LED 0.78             $1.11 12 0.65           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.28             ($0.08) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.27             ($0.03) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.80             $0.25 6 1.49           Interior Lighting Linear Fluorescent T5 0.83             $0.42 6 0.92           Interior Lighting Linear Fluorescent LED 0.87             $3.67 15 0.29           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.07             $0.01 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.31             $0.01 7 30.62        Exterior Lighting Exterior Screw‐in Metal Halides 0.31             $0.02 4 5.49           Exterior Lighting Exterior Screw‐in LED 0.34             $0.19 12 1.56           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.17             ($0.11) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.18             $0.45 9 0.34           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.01             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.04             $0.02 6 1.06           Exterior Lighting Linear Fluorescent T5 0.04             $0.03 6 0.65           Exterior Lighting Linear Fluorescent LED 0.04             $0.24 15 0.20           Water Heating Water Heater Baseline (EF=0.90)‐               $0.00 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 0.12             $0.02 15 5.71           Water Heating Water Heater Geothermal Heat Pump 1.54             $3.53 15 0.46           Water Heating Water Heater Solar 1.69             $3.03 15 0.60           Food Preparation Fryer Standard ‐               $0.00 12 ‐             Food Preparation Fryer Efficient 0.07             $0.02 12 3.52           Avista 2011 Electric Integrated Resource Plan 818 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-27 An EnerNOC Company Table D-7 Energy Efficiency Equipment Data — Large Commercial, New Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Food Preparation Oven Standard ‐               $0.00 12 ‐             Food Preparation Oven Efficient 0.75             $0.46 12 1.43           Food Preparation Dishwasher Standard ‐               $0.00 12 ‐             Food Preparation Dishwasher Efficient 0.07             $0.10 12 0.58           Food Preparation Hot Food Container Standard ‐               $0.00 12 ‐             Food Preparation Hot Food Container Efficient 0.35             $0.30 12 0.99           Food Preparation Food Prep Standard ‐               $0.00 12 ‐             Food Preparation Food Prep Efficient 0.01             $0.03 12 0.24           Refrigeration Walk in Refrigeration Standard ‐               $0.00 18 ‐             Refrigeration Walk in Refrigeration Efficient 0.15             $1.26 18 0.13           Refrigeration Glass Door Display Standard ‐               $0.00 18 ‐             Refrigeration Glass Door Display Efficient 0.13             $0.01 18 24.96        Refrigeration Solid Door Refrigerator Standard ‐               $0.00 18 ‐             Refrigeration Solid Door Refrigerator Efficient 0.30             $0.08 18 4.39           Refrigeration Open Display Case Standard ‐               $0.00 18 ‐             Refrigeration Open Display Case Efficient 0.00             $0.04 18 0.16           Refrigeration Vending Machine Base ‐               $0.00 10 ‐             Refrigeration Vending Machine Base (2012)0.13             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency 0.15             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency (2012)0.23             $0.00 10 20.70        Refrigeration Icemaker Standard ‐               $0.00 12 ‐             Refrigeration Icemaker Efficient 0.11             $0.02 12 5.62           Office Equipment Desktop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Desktop Computer Energy Star 0.35             $0.00 4 47.46        Office Equipment Desktop Computer Climate Savers 0.50             $0.32 4 0.46           Office Equipment Laptop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Laptop Computer Energy Star 0.02             $0.00 4 15.12        Office Equipment Laptop Computer Climate Savers 0.04             $0.06 4 0.17           Office Equipment Server Standard ‐               $0.00 3 ‐             Office Equipment Server Energy Star 0.13             $0.01 3 4.41           Office Equipment Monitor Standard ‐               $0.00 4 ‐             Office Equipment Monitor Energy Star 0.19             $0.01 4 9.14           Office Equipment Printer/copier/fax Standard ‐               $0.00 6 ‐             Office Equipment Printer/copier/fax Energy Star 0.08             $0.02 6 2.02           Office Equipment POS Terminal Standard ‐               $0.00 4 ‐             Office Equipment POS Terminal Energy Star 0.01             $0.00 4 2.94           Miscellaneous Non‐HVAC Motor Standard ‐               $0.00 15 ‐             Miscellaneous Non‐HVAC Motor Standard (2015)0.01             $0.00 15 ‐             Miscellaneous Non‐HVAC Motor High Efficiency 0.06             $0.06 15 0.92           Miscellaneous Non‐HVAC Motor High Efficiency (2015)0.06             $0.06 15 ‐             Miscellaneous Non‐HVAC Motor Premium 0.08             $0.13 15 0.69           Miscellaneous Non‐HVAC Motor Premium (2015)0.09             $0.13 15 ‐             Miscellaneous Other Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Miscellaneous Other Miscellaneous Miscellaneous (2013) 0.00             $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 819 Commercial Energy Efficiency Equipment and Measure Data D-28 www.gepllc.com Table D-8 Energy Efficiency Equipment Data — Extra Large Commercial, New Vintage   Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 0.75 kw/ton, COP 4.7 ‐               $0.00 20 ‐             Cooling Central Chiller 0.60 kw/ton, COP 5.9 0.43             $0.09 20 ‐             Cooling Central Chiller 0.58 kw/ton, COP 6.1 0.49             $0.18 20 0.66           Cooling Central Chiller 0.55 kw/Ton, COP 6.4 0.57             $0.25 20 0.91           Cooling Central Chiller 0.51 kw/ton, COP 6.9 0.69             $0.44 20 0.78           Cooling Central Chiller 0.50 kw/Ton, COP 7.0 0.72             $0.53 20 0.69           Cooling Central Chiller 0.48 kw/ton, COP 7.3 0.77             $0.62 20 0.68           Cooling Central Chiller Variable Refrigerant Flow 1.00             $10.92 20 0.05           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.20             $0.24 16 ‐             Cooling RTU EER 11.2 0.41             $0.44 16 ‐             Cooling RTU EER 12.0 0.53             $0.73 16 0.37           Cooling RTU Ductless VRF 0.65             $6.51 16 0.04           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.08             $0.06 14 1.09           Cooling PTAC EER 10.8 0.19             $0.12 14 1.28           Cooling PTAC EER 11 0.22             $0.32 14 0.55           Cooling PTAC EER 11.5 0.30             $0.71 14 0.34           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 0.50             $0.24 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 0.79             $0.73 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 1.06             $0.97 15 1.34           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 1.16             $1.21 15 0.93           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 1.29             $7.10 20 0.14           Combined Heating/Cooling Heat Pump Geothermal Heat Pump 1.55             $12.77 20 ‐             Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 1.52             $1.22 15 1.27           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.27             $0.14 4 ‐             Interior Lighting Interior Screw‐in CFL 1.13             $0.06 7 11.90        Interior Lighting Interior Screw‐in LED 1.24             $1.90 12 0.61           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.11             ($0.05) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.18             ($0.03) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.53             $0.21 6 1.18           Interior Lighting Linear Fluorescent T5 0.55             $0.35 6 0.72           Interior Lighting Linear Fluorescent LED 0.58             $3.08 15 0.23           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.02             $0.00 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.09             $0.00 7 33.30        Exterior Lighting Exterior Screw‐in Metal Halides 0.09             $0.00 4 5.97           Exterior Lighting Exterior Screw‐in LED 0.10             $0.05 12 1.70           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.24             ($0.16) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.25             $0.64 9 0.33           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.00             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.01             $0.00 6 1.01           Exterior Lighting Linear Fluorescent T5 0.01             $0.01 6 0.62           Exterior Lighting Linear Fluorescent LED 0.01             $0.06 15 0.19           Water Heating Water Heater Baseline (EF=0.90)‐               $0.00 15 ‐             Water Heating Water Heater High Efficiency (EF=0.95) 0.19             $0.02 15 9.79           Water Heating Water Heater Geothermal Heat Pump 2.47             $3.53 15 0.80           Water Heating Water Heater Solar 2.72             $3.03 15 1.02           Avista 2011 Electric Integrated Resource Plan 820 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-29 An EnerNOC Company Table D-9 Energy Efficiency Equipment Data — Extra Large Commercial, New Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Food Preparation Fryer Standard ‐               $0.00 12 ‐             Food Preparation Fryer Efficient 0.03             $0.00 12 6.02           Food Preparation Oven Standard ‐               $0.00 12 ‐             Food Preparation Oven Efficient 0.85             $0.38 12 2.11           Food Preparation Dishwasher Standard ‐               $0.00 12 ‐             Food Preparation Dishwasher Efficient 0.03             $0.04 12 0.57           Food Preparation Hot Food Container Standard ‐               $0.00 12 ‐             Food Preparation Hot Food Container Efficient 0.17             $0.22 12 0.73           Food Preparation Food Prep Standard ‐               $0.00 12 ‐             Food Preparation Food Prep Efficient 0.00             $0.03 12 0.15           Refrigeration Walk in Refrigeration Standard ‐               $0.00 18 ‐             Refrigeration Walk in Refrigeration Efficient 0.06             $0.05 18 1.42           Refrigeration Glass Door Display Standard ‐               $0.00 18 ‐             Refrigeration Glass Door Display Efficient 0.04             $0.00 18 78.11        Refrigeration Solid Door Refrigerator Standard ‐               $0.00 18 ‐             Refrigeration Solid Door Refrigerator Efficient 0.27             $0.02 18 13.75        Refrigeration Open Display Case Standard ‐               $0.00 18 ‐             Refrigeration Open Display Case Efficient 0.01             $0.03 18 0.34           Refrigeration Vending Machine Base ‐               $0.00 10 ‐             Refrigeration Vending Machine Base (2012)0.13             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency 0.16             $0.00 10 ‐             Refrigeration Vending Machine High Efficiency (2012)0.24             $0.00 10 68.21        Refrigeration Icemaker Standard ‐               $0.00 12 ‐             Refrigeration Icemaker Efficient 0.05             $0.00 12 17.60        Office Equipment Desktop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Desktop Computer Energy Star 0.25             $0.00 4 32.37        Office Equipment Desktop Computer Climate Savers 0.35             $0.33 4 0.32           Office Equipment Laptop Computer Baseline ‐               $0.00 4 ‐             Office Equipment Laptop Computer Energy Star 0.02             $0.00 4 10.31        Office Equipment Laptop Computer Climate Savers 0.04             $0.10 4 0.12           Office Equipment Server Standard ‐               $0.00 3 ‐             Office Equipment Server Energy Star 0.06             $0.00 3 3.01           Office Equipment Monitor Standard ‐               $0.00 4 ‐             Office Equipment Monitor Energy Star 0.11             $0.01 4 6.80           Office Equipment Printer/copier/fax Standard ‐               $0.00 6 ‐             Office Equipment Printer/copier/fax Energy Star 0.02             $0.01 6 1.38           Office Equipment POS Terminal Standard ‐               $0.00 4 ‐             Office Equipment POS Terminal Energy Star 0.00             $0.00 4 2.01           Miscellaneous Non‐HVAC Motor Standard ‐               $0.00 15 ‐             Miscellaneous Non‐HVAC Motor Standard (2015)0.01             $0.00 15 ‐             Miscellaneous Non‐HVAC Motor High Efficiency 0.03             $0.03 15 1.02           Miscellaneous Non‐HVAC Motor High Efficiency (2015)0.04             $0.03 15 ‐             Miscellaneous Non‐HVAC Motor Premium 0.05             $0.07 15 0.76           Miscellaneous Non‐HVAC Motor Premium (2015)0.05             $0.07 15 ‐             Miscellaneous Other Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Miscellaneous Other Miscellaneous Miscellaneous (2013)0.00             $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 821 Commercial Energy Efficiency Equipment and Measure Data D-30 www.gepllc.com Table D-9 Energy Efficiency Equipment Data — Extra Large Industrial, New Vintage    Note: Costs and savings are per sq. ft. End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Cooling Central Chiller 0.75 kw/ton, COP 4.7 ‐               $0.00 20 ‐             Cooling Central Chiller 0.60 kw/ton, COP 5.9 1.61             $0.33 20 ‐             Cooling Central Chiller 0.58 kw/ton, COP 6.1 1.82             $0.66 20 0.68           Cooling Central Chiller 0.55 kw/Ton, COP 6.4 2.15             $0.93 20 0.94           Cooling Central Chiller 0.51 kw/ton, COP 6.9 2.58             $1.59 20 0.80           Cooling Central Chiller 0.50 kw/Ton, COP 7.0 2.68             $1.92 20 0.71           Cooling Central Chiller 0.48 kw/ton, COP 7.3 2.90             $2.25 20 0.70           Cooling Central Chiller Variable Refrigerant Flow 3.74             $39.62 20 0.06           Cooling RTU EER 9.2 ‐               $0.00 16 ‐             Cooling RTU EER 10.1 0.56             $0.39 16 ‐             Cooling RTU EER 11.2 1.12             $0.74 16 ‐             Cooling RTU EER 12.0 1.47             $1.23 16 0.62           Cooling RTU Ductless VRF 1.79             $10.88 16 0.06           Cooling PTAC EER 9.8 ‐               $0.00 14 ‐             Cooling PTAC EER 10.2 0.20             $0.06 14 2.79           Cooling PTAC EER 10.8 0.47             $0.11 14 3.27           Cooling PTAC EER 11 0.55             $0.31 14 1.41           Cooling PTAC EER 11.5 0.75             $0.69 14 0.87           Combined Heating/Cooling Heat Pump EER 9.3, COP 3.1 ‐               $0.00 15 ‐             Combined Heating/Cooling Heat Pump EER 10.3, COP 3.2 1.07             $0.92 15 ‐             Combined Heating/Cooling Heat Pump EER 11.0, COP 3.3 1.69             $2.75 15 ‐             Combined Heating/Cooling Heat Pump EER 11.7, COP 3.4 2.25             $3.66 15 0.75           Combined Heating/Cooling Heat Pump EER 12, COP 3.4 2.47             $4.58 15 0.52           Combined Heating/Cooling Heat Pump Ductless Mini‐Split System 2.74             $26.86 20 0.08           Combined Heating/Cooling Heat Pump Geothermal Heat Pump 3.29             $48.32 20 ‐             Space Heating Electric Resistance Standard ‐               $0.00 25 ‐             Space Heating Furnace Standard ‐               $0.00 18 ‐             Ventilation Ventilation Constant Volume ‐               $0.00 15 ‐             Ventilation Ventilation Variable Air Volume 9.66             $1.22 15 8.05           Interior Lighting Interior Screw‐in Incandescents ‐               $0.00 4 ‐             Interior Lighting Interior Screw‐in Infrared Halogen 0.08             $0.04 4 ‐             Interior Lighting Interior Screw‐in CFL 0.34             $0.02 7 13.32        Interior Lighting Interior Screw‐in LED 0.38             $0.52 12 0.68           Interior Lighting HID Metal Halides ‐               $0.00 6 ‐             Interior Lighting HID High Pressure Sodium 0.41             ($0.14) 9 1.00           Interior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Interior Lighting Linear Fluorescent T8 0.09             ($0.01) 6 1.00           Interior Lighting Linear Fluorescent Super T8 0.28             $0.08 6 1.56           Interior Lighting Linear Fluorescent T5 0.29             $0.14 6 0.96           Interior Lighting Linear Fluorescent LED 0.30             $1.21 15 0.30           Exterior Lighting Exterior Screw‐in Incandescent ‐               $0.00 4 ‐             Exterior Lighting Exterior Screw‐in Infrared Halogen 0.01             $0.00 4 ‐             Exterior Lighting Exterior Screw‐in CFL 0.02             $0.00 7 13.52        Exterior Lighting Exterior Screw‐in Metal Halides 0.02             $0.00 4 2.42           Exterior Lighting Exterior Screw‐in LED 0.02             $0.03 12 0.69           Exterior Lighting HID Metal Halides ‐               $0.00 6 ‐             Exterior Lighting HID High Pressure Sodium 0.07             ($0.04) 9 1.00           Exterior Lighting HID Low Pressure Sodium 0.07             $0.18 9 0.33           Exterior Lighting Linear Fluorescent T12 ‐               $0.00 6 ‐             Exterior Lighting Linear Fluorescent T8 0.00             ($0.00) 6 1.00           Exterior Lighting Linear Fluorescent Super T8 0.00             $0.00 6 1.05           Exterior Lighting Linear Fluorescent T5 0.00             $0.00 6 0.64           Exterior Lighting Linear Fluorescent LED 0.00             $0.01 15 0.20           Process Process Cooling/Refrigera Standard ‐               $0.00 10 ‐             Process Process Cooling/Refrigera Efficient 18.88           $5.59 10 2.49           Process Process Heating Standard ‐               $0.00 10 ‐             Process Process Heating Efficient 6.18             $0.57 10 7.97           Avista 2011 Electric Integrated Resource Plan 822 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-31 An EnerNOC Company Table D-9 Energy Efficiency Equipment Data — Extra Large Industrial, New Vintage (Cont.)   Note: Costs and savings are per sq. ft.  End Use Technology Efficiency Definition Savings  (kWh/yr)  Incremental  Cost  Lifetime  (yrs) BC Ratio Process Electrochemical Process Standard ‐               $0.00 10 ‐             Process Electrochemical Process Efficient 13.16           $2.64 10 3.67           Machine Drive Less than 5 HP Standard ‐               $0.00 10 ‐             Machine Drive Less than 5 HP High Efficiency 0.05             $0.02 10 2.08           Machine Drive Less than 5 HP Standard (2015)0.07             $0.00 10 ‐             Machine Drive Less than 5 HP Premium 0.07             $0.03 10 1.66           Machine Drive Less than 5 HP High Efficiency (2015)0.11             $0.02 10 ‐             Machine Drive Less than 5 HP Premium (2015)0.14             $0.03 10 ‐             Machine Drive 5‐24 HP Standard ‐               $0.00 10 ‐             Machine Drive 5‐24 HP High 0.11             $0.02 10 5.09           Machine Drive 5‐24 HP Premium 0.18             $0.03 10 4.07           Machine Drive 25‐99 HP Standard ‐               $0.00 10 ‐             Machine Drive 25‐99 HP High 0.31             $0.02 10 13.72        Machine Drive 25‐99 HP Premium 0.49             $0.03 10 10.97        Machine Drive 100‐249 HP Standard ‐               $0.00 10 ‐             Machine Drive 100‐249 HP High 0.12             $0.02 10 5.17           Machine Drive 100‐249 HP Premium 0.15             $0.03 10 3.44           Machine Drive 250‐499 HP Standard ‐               $0.00 10 ‐             Machine Drive 250‐499 HP High 0.35             $0.02 10 15.66        Machine Drive 250‐499 HP Premium 0.47             $0.03 10 10.44        Machine Drive 500 and more HP Standard ‐               $0.00 10 ‐             Machine Drive 500 and more HP High 0.59             $0.02 10 26.28        Machine Drive 500 and more HP Premium 0.78             $0.03 10 17.52        Miscellaneous Miscellaneous Miscellaneous ‐               $0.00 5 ‐             Avista 2011 Electric Integrated Resource Plan 823 Commercial Energy Efficiency Equipment and Measure Data D-32 www.gepllc.com Table D-10 Energy Efficiency Measure Data — Small/Med. Comm., Existing Vintage     Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio RTU ‐ Maintenance Cooling 14% 0% 14% 90% $0.08 4 0.75 RTU ‐ Evaporative Precooler Cooling 10% 0% 0% 0% $0.88 15 0.20 Chiller ‐ Chilled Water Reset Cooling 14% 0% 0% 0% $0.86 4 0.08 Chiller ‐ Chilled Water Variable‐Flow System Cooling 5% 0% 0% 0% $0.86 10 0.07 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 0% $0.90 20 0.70 Chiller ‐ VSD Cooling 27% 0% 0% 0% $1.17 20 0.48 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 0% 0% $0.04 10 0.01 Chiller ‐ Condenser Water Temprature Reset Cooling 10% 0% 0% 0% $0.87 14 0.18 Cooling ‐ Economizer Installation Cooling 6% 0% 45% 49% $0.15 15 0.71 Heat Pump ‐ Maintenance Combined Heating/Cooling 7% 7% 10% 95% $0.03 4 5.00 Insulation ‐ Ducting Cooling 6% 0% 9% 50% $0.41 20 0.71 Insulation ‐ Ducting Space Heating 3% 1% 9% 50% $0.41 20 0.71 Repair and Sealing ‐ Ducting Cooling 2% 0% 5% 25% $0.38 15 0.45 Repair and Sealing ‐ Ducting Space Heating 2% 1% 5% 25% $0.38 15 0.45 Energy Management System Cooling 6% 0% 24% 75% $0.35 14 0.72 Energy Management System Space Heating 5% 3% 24% 75% $0.35 14 0.72 Energy Management System Interior Lighting 2% 1% 24% 75% $0.35 14 0.72 Cooking ‐ Exhaust Hoods with Sensor Control Ventilation 25% 13% 1% 15% $0.04 10 7.36 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 11% 90% $0.05 10 1.38 Fans ‐ Variable Speed Control Ventilation 15% 5% 8% 90% $0.20 10 0.89 Retrocommissioning ‐ HVAC Cooling 9% 0% 15% 90% $0.60 4 0.50 Retrocommissioning ‐ HVAC Space Heating 9% 6% 15% 90% $0.60 4 0.50 Retrocommissioning ‐ HVAC Ventilation 9% 6% 15% 90% $0.60 4 0.50 Pumps ‐ Variable Speed Control Miscellaneous 1% 0% 0% 34% $0.44 10 1.01 Thermostat ‐ Clock/Programmable Cooling 5% 0% 34% 50% $0.13 11 1.12 Thermostat ‐ Clock/Programmable Space Heating 5% 1% 34% 50% $0.13 11 1.12 Insulation ‐ Ceiling Cooling 2% 0% 10% 18% $0.64 20 0.70 Insulation ‐ Ceiling Space Heating 17% 4% 10% 18% $0.64 20 0.70 Insulation ‐ Radiant Barrier Cooling 3% 0% 7% 13% $0.26 20 0.81 Insulation ‐ Radiant Barrier Space Heating 5% 2% 7% 13% $0.26 20 0.81 Roofs ‐ High Reflectivity Cooling 15% 0% 2% 95% $0.18 15 1.47 Windows ‐ High Efficiency Cooling 5% 0% 61% 75% $0.44 20 0.63 Windows ‐ High Efficiency Space Heating 3% 2% 61% 75% $0.44 20 0.63 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 81% 90% $0.65 8 0.34 Interior Lighting ‐ Photocell Controlled T8 Dimming Ballasts Interior Lighting 25% 13% 1% 45% $0.50 8 0.90 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 2% 50% $0.11 8 1.36 Interior Fluorescent ‐ Delamp and Install Reflectors Interior Lighting 20% 10% 18% 25% $0.50 11 0.97 Interior Fluorescent ‐ Bi‐Level Fixture w/Occupancy Sensor Interior Lighting 10% 5% 10% 23% $0.50 8 0.36 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 23% $0.70 11 1.73 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 7% 45% $0.20 8 1.11 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.26 Interior Screw‐in ‐ Task Lighting Interior Lighting 7% 4% 25% 75% $0.24 5 0.09 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 9% 56% $0.20 8 0.56 Water Heater ‐ Faucet Aerators/Low Flow Nozzles Water Heating 4% 1% 8% 90% $0.01 9 4.28 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 46% 50% $0.28 15 0.37 Water Heater ‐ High Efficiency Circulation Pump Water Heating 5% 4% 0% 0% $0.11 10 0.64 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 40% 50% $0.02 10 5.87 Water Heater ‐ Thermostat Setback Water Heating 4% 2% 5% 75% $0.11 10 0.47 Water Heater ‐ Hot Water Saver Water Heating 5% 1% 0% 0% $0.02 5 1.56 Refrigeration ‐ Anti‐Sweat Heater/Auto Door Closer Refrigeration 5% 3% 0% 75% $0.20 16 1.10 Refrigeration ‐ Floating Head Pressure Refrigeration 7% 4% 18% 38% $0.35 16 1.25 Refrigeration ‐ Door Gasket Replacement Refrigeration 4% 2% 5% 75% $0.10 8 0.10 Insulation ‐ Bare Suction Lines Refrigeration 3% 2% 5% 75% $0.10 8 0.21 Refrigeration ‐ Night Covers Refrigeration 6% 3% 5% 75% $0.05 8 1.02 Refrigeration ‐ Strip Curtain Refrigeration 4% 2% 5% 56% $0.02 8 0.00 Retrocommissioning ‐ Comprehensive Cooling 12% 0% 40% 90% $0.70 4 0.71 Retrocommissioning ‐ Comprehensive Space Heating 12% 9% 40% 90% $0.70 4 0.71 Retrocommissioning ‐ Comprehensive Interior Lighting 12% 9% 40% 90% $0.70 4 0.71 Office Equipment ‐ Energy Star Power Supply Office Equipment 1% 1% 10% 95% $0.00 7 61.20 Vending Machine ‐ Controller Refrigeration 15% 11% 2% 10% $0.27 10 1.09 LED Exit Lighting Interior Lighting 2% 2% 9% 86% $0.00 10 12.75 Retrocommissioning ‐ Lighting Interior Lighting 9% 6% 5% 90% $0.10 5 1.59 Retrocommissioning ‐ Lighting Exterior Lighting 9% 6% 5% 90% $0.10 5 1.59 Refrigeration ‐ High Efficiency Case Lighting Refrigeration 4% 2% 5% 75% $0.20 8 0.00 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 1.37 Exterior Lighting ‐ Induction Lamps Exterior Lighting 3% 3% 5% 56% $0.00 5 8.10 Laundry ‐ High Efficiency Clothes Washer Miscellaneous 0% 0% 5% 10% $0.00 10 36.95 Interior Lighting ‐ Hotel Guestroom Controls Interior Lighting 10% 5% 0% 0% $0.14 8 0.33 Miscellaneous ‐ Energy Star Water Cooler Miscellaneous 0% 0% 5% 95% $0.00 8 1.95 Industrial Process Improvements Miscellaneous 10% 8% 0% 23% $0.52 10 1.16 Custom Measures Cooling 10% 0% 10% 45% $1.50 15 0.59 Custom Measures Space Heating 10% 8% 10% 45% $1.50 15 0.59 Custom Measures Interior Lighting 10% 6% 10% 45% $1.50 15 0.59 Custom Measures Food Preparation 10% 7% 10% 45% $1.50 15 0.59 Custom Measures Refrigeration 10% 5% 10% 45% $1.50 15 0.59 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 19% $0.80 15 0.69 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $4.00 15 0.54 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 47% $8.04 15 1.08 Avista 2011 Electric Integrated Resource Plan 824 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-33 An EnerNOC Company Table D-11 Energy Efficiency Measure Data — Large Commercial, Existing Vintage     Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio RTU ‐ Maintenance Cooling 14% 0% 27% 90% $0.06 4 1.30 RTU ‐ Evaporative Precooler Cooling 10% 0% 0% 0% $0.88 15 0.21 Chiller ‐ Chilled Water Reset Cooling 19% 0% 15% 75% $0.18 4 0.50 Chiller ‐ Chilled Water Variable‐Flow System Cooling 5% 0% 30% 34% $0.18 10 0.31 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 66% $0.90 20 0.64 Chiller ‐ VSD Cooling 32% 0% 15% 66% $1.17 20 0.52 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 15% 41% $0.04 10 0.01 Chiller ‐ Condenser Water Temprature Reset Cooling 9% 0% 5% 75% $0.18 14 0.76 Cooling ‐ Economizer Installation Cooling 11% 0% 44% 49% $0.15 15 1.29 Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 10% 95% $0.06 4 3.04 Insulation ‐ Ducting Cooling 3% 0% 8% 50% $0.41 20 0.52 Insulation ‐ Ducting Space Heating 3% 1% 8% 50% $0.41 20 0.52 Repair and Sealing ‐ Ducting Cooling 2% 0% 5% 25% $0.38 15 0.43 Repair and Sealing ‐ Ducting Space Heating 2% 1% 5% 25% $0.38 15 0.43 Energy Management System Cooling 23% 0% 37% 90% $0.35 14 2.63 Energy Management System Space Heating 18% 12% 37% 90% $0.35 14 2.63 Energy Management System Interior Lighting 9% 6% 37% 90% $0.35 14 2.63 Cooking ‐ Exhaust Hoods with Sensor Control Ventilation 13% 7% 1% 11% $0.04 10 2.97 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 11% 90% $0.05 10 1.11 Fans ‐ Variable Speed Control Ventilation 15% 5% 2% 90% $0.20 10 0.71 Retrocommissioning ‐ HVAC Cooling 12% 0% 15% 90% $0.30 4 0.72 Retrocommissioning ‐ HVAC Space Heating 12% 9% 15% 90% $0.30 4 0.72 Retrocommissioning ‐ HVAC Ventilation 9% 6% 15% 90% $0.30 4 0.72 Pumps ‐ Variable Speed Control Miscellaneous 1% 0% 0% 34% $0.13 10 1.05 Thermostat ‐ Clock/Programmable Cooling 5% 0% 33% 50% $0.13 11 1.02 Thermostat ‐ Clock/Programmable Space Heating 5% 1% 33% 50% $0.13 11 1.02 Insulation ‐ Ceiling Cooling 1% 0% 9% 30% $0.85 20 0.45 Insulation ‐ Ceiling Space Heating 12% 3% 9% 30% $0.85 20 0.45 Insulation ‐ Radiant Barrier Cooling 2% 0% 7% 13% $0.26 20 0.64 Insulation ‐ Radiant Barrier Space Heating 5% 2% 7% 13% $0.26 20 0.64 Roofs ‐ High Reflectivity Cooling 5% 0% 2% 75% $0.08 15 1.08 Windows ‐ High Efficiency Cooling 12% 0% 72% 75% $0.88 20 0.74 Windows ‐ High Efficiency Space Heating 11% 8% 72% 75% $0.88 20 0.74 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 86% 90% $0.65 8 0.34 Interior Lighting ‐ Photocell Controlled T8 Dimming Ballasts Interior Lighting 25% 13% 1% 45% $0.45 8 0.96 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 2% 13% $0.29 8 0.42 Interior Fluorescent ‐ Delamp and Install Reflectors Interior Lighting 30% 15% 17% 38% $0.50 11 1.40 Interior Fluorescent ‐ Bi‐Level Fixture w/Occupancy Sensor Interior Lighting 10% 5% 10% 23% $0.40 8 0.43 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 23% $0.63 11 1.85 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 13% 45% $0.20 8 1.10 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.21 Interior Screw‐in ‐ Task Lighting Interior Lighting 10% 5% 10% 75% $0.24 5 0.13 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 9% 56% $0.20 8 0.55 Water Heater ‐ Faucet Aerators/Low Flow Nozzles Water Heating 4% 1% 3% 90% $0.03 9 1.62 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 0% 0% $0.28 15 0.42 Water Heater ‐ High Efficiency Circulation Pump Water Heating 5% 4% 0% 23% $0.11 10 0.70 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $0.04 10 3.28 Water Heater ‐ Thermostat Setback Water Heating 4% 2% 0% 0% $0.11 10 0.52 Water Heater ‐ Hot Water Saver Water Heating 5% 1% 0% 3% $0.04 5 0.88 Refrigeration ‐ Anti‐Sweat Heater/Auto Door Closer Refrigeration 5% 3% 0% 75% $0.20 16 0.58 Refrigeration ‐ Floating Head Pressure Refrigeration 7% 4% 38% 45% $0.35 16 0.95 Refrigeration ‐ Door Gasket Replacement Refrigeration 4% 2% 5% 75% $0.10 8 0.65 Insulation ‐ Bare Suction Lines Refrigeration 3% 2% 5% 75% $0.10 8 0.37 Refrigeration ‐ Night Covers Refrigeration 6% 3% 5% 75% $0.05 8 0.65 Refrigeration ‐ Strip Curtain Refrigeration 4% 2% 5% 56% $0.02 8 0.96 Retrocommissioning ‐ Comprehensive Cooling 12% 0% 40% 90% $0.35 4 1.06 Retrocommissioning ‐ Comprehensive Space Heating 12% 9% 40% 90% $0.35 4 1.06 Retrocommissioning ‐ Comprehensive Interior Lighting 12% 9% 40% 90% $0.35 4 1.06 Office Equipment ‐ Energy Star Power Supply Office Equipment 1% 1% 10% 95% $0.00 7 68.11 Vending Machine ‐ Controller Refrigeration 15% 11% 2% 10% $0.27 10 1.11 LED Exit Lighting Interior Lighting 2% 2% 9% 86% $0.00 10 12.29 Retrocommissioning ‐ Lighting Interior Lighting 9% 6% 5% 90% $0.05 5 3.07 Retrocommissioning ‐ Lighting Exterior Lighting 9% 6% 5% 90% $0.05 5 3.07 Refrigeration ‐ High Efficiency Case Lighting Refrigeration 4% 2% 5% 75% $0.20 8 0.52 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 1.14 Exterior Lighting ‐ Induction Lamps Exterior Lighting 3% 3% 5% 56% $0.00 5 6.50 Laundry ‐ High Efficiency Clothes Washer Miscellaneous 0% 0% 5% 10% $0.00 10 33.94 Interior Lighting ‐ Hotel Guestroom Controls Interior Lighting 10% 5% 1% 2% $0.14 8 0.32 Miscellaneous ‐ Energy Star Water Cooler Miscellaneous 0% 0% 5% 95% $0.00 8 1.78 Industrial Process Improvements Miscellaneous 10% 8% 0% 5% $0.52 10 1.18 Custom Measures Cooling 10% 0% 10% 45% $0.90 15 0.99 Custom Measures Space Heating 10% 8% 10% 45% $0.90 15 0.99 Custom Measures Interior Lighting 10% 8% 10% 45% $0.90 15 0.99 Custom Measures Food Preparation 10% 8% 10% 45% $0.90 15 0.99 Custom Measures Refrigeration 10% 8% 10% 45% $0.90 15 0.99 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 28% $0.80 15 0.77 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 0% $4.00 15 0.59 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 0% $6.00 15 1.04 Avista 2011 Electric Integrated Resource Plan 825 Commercial Energy Efficiency Equipment and Measure Data D-34 www.gepllc.com Table D-12 Energy Efficiency Measure Data — Extra Large Comm., Existing Vintage     Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio RTU ‐ Maintenance Cooling 14% 0% 47% 90% $0.06 4 1.15 RTU ‐ Evaporative Precooler Cooling 10% 0% 0% 0% $0.88 15 0.19 Chiller ‐ Chilled Water Reset Cooling 15% 0% 30% 75% $0.09 4 0.79 Chiller ‐ Chilled Water Variable‐Flow System Cooling 8% 0% 30% 34% $0.09 10 1.00 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 75% $0.90 20 0.66 Chiller ‐ VSD Cooling 28% 0% 3% 75% $1.17 20 0.47 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 25% 37% $0.04 10 0.01 Chiller ‐ Condenser Water Temprature Reset Cooling 9% 0% 0% 75% $0.09 14 1.49 Cooling ‐ Economizer Installation Cooling 11% 0% 73% 81% $0.15 15 1.20 Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 5% 95% $0.06 4 2.91 Insulation ‐ Ducting Cooling 8% 0% 2% 50% $0.41 20 0.77 Insulation ‐ Ducting Space Heating 3% 1% 2% 50% $0.41 20 0.77 Repair and Sealing ‐ Ducting Cooling 5% 0% 5% 25% $0.38 15 0.65 Repair and Sealing ‐ Ducting Space Heating 5% 3% 5% 25% $0.38 15 0.65 Energy Management System Cooling 12% 0% 80% 90% $0.35 14 1.21 Energy Management System Space Heating 9% 6% 80% 90% $0.35 14 1.21 Energy Management System Interior Lighting 5% 3% 80% 90% $0.35 14 1.21 Cooking ‐ Exhaust Hoods with Sensor Control Ventilation 13% 7% 1% 8% $0.04 10 3.46 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 11% 90% $0.05 10 1.30 Fans ‐ Variable Speed Control Ventilation 15% 5% 2% 90% $0.20 10 0.83 Retrocommissioning ‐ HVAC Cooling 12% 0% 15% 90% $0.20 4 1.00 Retrocommissioning ‐ HVAC Space Heating 12% 9% 15% 90% $0.20 4 1.00 Retrocommissioning ‐ HVAC Ventilation 9% 6% 15% 90% $0.20 4 1.00 Pumps ‐ Variable Speed Control Miscellaneous 1% 0% 1% 34% $0.44 10 1.01 Thermostat ‐ Clock/Programmable Cooling 3% 0% 25% 50% $0.13 11 0.69 Thermostat ‐ Clock/Programmable Space Heating 3% 1% 25% 50% $0.13 11 0.69 Insulation ‐ Ceiling Cooling 1% 0% 2% 9% $0.85 20 0.48 Insulation ‐ Ceiling Space Heating 12% 3% 2% 9% $0.85 20 0.48 Insulation ‐ Radiant Barrier Cooling 1% 0% 2% 13% $0.26 20 0.57 Insulation ‐ Radiant Barrier Space Heating 4% 2% 2% 13% $0.26 20 0.57 Roofs ‐ High Reflectivity Cooling 10% 0% 0% 95% $0.18 15 0.90 Windows ‐ High Efficiency Cooling 6% 0% 95% 100% $2.10 20 0.37 Windows ‐ High Efficiency Space Heating 2% 2% 95% 100% $2.10 20 0.37 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 78% 90% $0.65 8 0.26 Interior Lighting ‐ Photocell Controlled T8 Dimming Ballasts Interior Lighting 25% 13% 3% 45% $0.40 8 0.72 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 2% 10% $0.29 8 0.45 Interior Fluorescent ‐ Delamp and Install Reflectors Interior Lighting 30% 15% 3% 25% $0.50 11 0.93 Interior Fluorescent ‐ Bi‐Level Fixture w/Occupancy Sensor Interior Lighting 10% 5% 10% 23% $0.20 8 0.57 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 23% $0.56 11 1.38 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 42% 45% $0.20 8 0.84 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.23 Interior Screw‐in ‐ Task Lighting Interior Lighting 10% 5% 5% 75% $0.24 5 0.18 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 12% 56% $0.20 8 0.42 Water Heater ‐ Faucet Aerators/Low Flow Nozzles Water Heating 4% 1% 2% 90% $0.03 9 2.66 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 0% 0% $0.28 15 0.70 Water Heater ‐ High Efficiency Circulation Pump Water Heating 5% 4% 0% 23% $0.11 10 1.19 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $0.04 10 5.48 Water Heater ‐ Thermostat Setback Water Heating 4% 0% 0% 0% $0.11 10 0.72 Water Heater ‐ Hot Water Saver Water Heating 5% 1% 0% 0% $0.04 5 1.45 Refrigeration ‐ Anti‐Sweat Heater/Auto Door Closer Refrigeration 5% 3% 10% 75% $0.20 16 0.02 Refrigeration ‐ Floating Head Pressure Refrigeration 7% 4% 10% 38% $0.35 16 0.34 Refrigeration ‐ Door Gasket Replacement Refrigeration 4% 2% 5% 75% $0.10 8 0.13 Insulation ‐ Bare Suction Lines Refrigeration 3% 2% 5% 75% $0.10 8 0.28 Refrigeration ‐ Night Covers Refrigeration 6% 3% 5% 75% $0.05 8 0.29 Refrigeration ‐ Strip Curtain Refrigeration 4% 2% 5% 56% $0.02 8 0.18 Retrocommissioning ‐ Comprehensive Cooling 12% 0% 40% 90% $0.25 4 1.21 Retrocommissioning ‐ Comprehensive Space Heating 12% 9% 40% 90% $0.25 4 1.21 Retrocommissioning ‐ Comprehensive Interior Lighting 12% 9% 40% 90% $0.25 4 1.21 Office Equipment ‐ Energy Star Power Supply Office Equipment 1% 1% 10% 95% $0.00 7 39.11 Vending Machine ‐ Controller Refrigeration 15% 11% 2% 10% $0.27 10 1.12 LED Exit Lighting Interior Lighting 2% 2% 9% 86% $0.00 10 18.34 Retrocommissioning ‐ Lighting Interior Lighting 9% 6% 5% 90% $0.05 5 2.54 Retrocommissioning ‐ Lighting Exterior Lighting 9% 6% 5% 90% $0.05 5 2.54 Refrigeration ‐ High Efficiency Case Lighting Refrigeration 4% 2% 5% 75% $0.20 8 0.04 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 1.61 Exterior Lighting ‐ Induction Lamps Exterior Lighting 3% 3% 5% 56% $0.00 5 6.95 Laundry ‐ High Efficiency Clothes Washer Miscellaneous 0% 0% 5% 10% $0.00 10 20.31 Interior Lighting ‐ Hotel Guestroom Controls Interior Lighting 10% 5% 0% 0% $0.14 8 0.47 Miscellaneous ‐ Energy Star Water Cooler Miscellaneous 0% 0% 5% 95% $0.00 8 1.07 Industrial Process Improvements Miscellaneous 10% 8% 0% 0% $0.52 10 1.11 Custom Measures Cooling 10% 0% 10% 45% $0.67 15 1.09 Custom Measures Space Heating 10% 8% 10% 45% $0.67 15 1.09 Custom Measures Interior Lighting 10% 8% 10% 45% $0.67 15 1.09 Custom Measures Food Preparation 10% 8% 10% 45% $0.67 15 1.09 Custom Measures Refrigeration 10% 8% 10% 45% $0.67 15 1.09 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 41% $0.80 15 1.28 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 0% $4.00 15 1.00 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 0% $4.00 15 1.66 Avista 2011 Electric Integrated Resource Plan 826 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-35 An EnerNOC Company Table D-13 Energy Efficiency Measure Data — Extra Large Industrial, Existing Vintage   Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Refrigeration ‐ System Controls Process 11% 8% 5% 34% $0.40 10 18.09 Refrigeration ‐ System Maintenance Process 3% 2% 5% 34% $0.00 10 2,067.93 Refrigeration ‐ System Optimization Process 15% 11% 5% 34% $0.80 10 12.92 Motors ‐ Variable Frequency Drive Machine Drive 13% 9% 25% 38% $0.10 10 3.38 Motors ‐ Magnetic Adjustable Speed Drives Machine Drive 13% 9% 25% 38% $0.10 10 3.38 Compressed Air ‐ System Controls Machine Drive 9% 7% 5% 34% $0.40 10 0.59 Compressed Air ‐ System Optimization and Improvements Machine Drive 13% 9% 5% 34% $0.80 10 0.42 Compressed Air ‐ System Maintenance Machine Drive 3% 2% 5% 34% $0.20 10 0.34 Compressed Air ‐ Compressor Replacement Machine Drive 5% 4% 5% 34% $0.20 10 0.68 Fan System ‐ Controls Machine Drive 4% 3% 10% 38% $0.35 10 0.11 Fan System ‐ Controls Machine Drive 4% 3% 10% 38% $0.35 10 0.11 Fan System ‐ Optimization Machine Drive 6% 5% 10% 38% $0.70 10 0.08 Fan System ‐ Optimization Machine Drive 6% 5% 10% 38% $0.70 10 0.08 Fan System ‐ Maintenance Machine Drive 1% 1% 10% 38% $0.15 10 0.07 Fan System ‐ Maintenance Machine Drive 1% 1% 10% 38% $0.15 10 0.07 Pumping System ‐ Controls Machine Drive 5% 4% 5% 34% $0.38 12 0.43 Pumping System ‐ Optimization Machine Drive 13% 9% 5% 34% $0.75 12 0.54 Pumping System ‐ Maintenance Machine Drive 2% 1% 5% 34% $0.19 10 0.27 RTU ‐ Maintenance Cooling 14% 0% 22% 90% $0.06 4 3.18 Chiller ‐ Chilled Water Reset Cooling 14% 0% 30% 75% $0.09 4 2.69 Chiller ‐ Chilled Water Variable‐Flow System Cooling 5% 0% 30% 34% $0.20 10 1.05 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 67% $0.90 20 2.48 Chiller ‐ VSD Cooling 26% 0% 15% 67% $1.17 20 1.68 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 25% 50% $0.04 10 0.03 Chiller ‐ Condenser Water Temprature Reset Cooling 10% 0% 0% 75% $0.20 14 2.72 Cooling ‐ Economizer Installation Cooling 6% 0% 29% 34% $0.15 15 2.02 Heat Pump ‐ Maintenance Combined Heating/Cooling 7% 7% 2% 95% $0.03 4 8.67 Insulation ‐ Ducting Space Heating 6% 6% 12% 50% $0.41 20 1.01 Insulation ‐ Ducting Cooling 3% 0% 12% 50% $0.41 20 1.01 Repair and Sealing ‐ Ducting Cooling 2% 0% 5% 25% $0.38 15 0.63 Repair and Sealing ‐ Ducting Space Heating 2% 1% 5% 25% $0.38 15 0.63 Energy Management System Cooling 6% 0% 11% 90% $0.35 14 1.09 Energy Management System Space Heating 5% 3% 11% 90% $0.35 14 1.09 Energy Management System Interior Lighting 2% 1% 11% 90% $0.35 14 1.09 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 2% 90% $0.14 10 2.94 Fans ‐ Variable Speed Control Ventilation 15% 5% 3% 90% $0.20 10 5.29 Retrocommissioning ‐ HVAC Cooling 12% 0% 1% 70% $0.25 4 1.54 Retrocommissioning ‐ HVAC Space Heating 12% 9% 1% 70% $0.25 4 1.54 Retrocommissioning ‐ HVAC Ventilation 9% 6% 1% 70% $0.25 4 1.54 Pumps ‐ Variable Speed Control Machine Drive 5% 4% 0% 34% $0.44 10 0.31 Thermostat ‐ Clock/Programmable Cooling 5% 0% 59% 70% $0.13 11 2.11 Thermostat ‐ Clock/Programmable Space Heating 5% 1% 59% 70% $0.13 11 2.11 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 84% 90% $0.65 8 0.17 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 2% 27% $0.08 8 0.46 Interior Fluorescent ‐ Delamp and Install Reflectors Interior Lighting 20% 10% 17% 38% $0.50 11 0.31 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 38% $0.20 11 1.95 LED Exit Lighting Interior Lighting 2% 2% 9% 86% $0.00 10 4.00 Retrocommissioning ‐ Lighting Interior Lighting 9% 6% 9% 70% $0.05 5 1.44 Retrocommissioning ‐ Lighting Exterior Lighting 9% 6% 9% 70% $0.05 5 1.44 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 15% 45% $0.20 8 0.55 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.07 Interior Screw‐in ‐ Task Lighting Interior Lighting 7% 4% 10% 75% $0.24 5 0.03 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 2% 56% $0.20 8 0.27 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 0.46 Custom Measures Cooling 10% 0% 10% 45% $1.60 15 1.63 Custom Measures Space Heating 10% 8% 10% 45% $1.60 15 1.63 Custom Measures Interior Lighting 10% 8% 10% 45% $1.60 15 1.63 Custom Measures Machine Drive 10% 8% 10% 45% $1.60 15 1.63 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 0% $4.00 15 2.67 Avista 2011 Electric Integrated Resource Plan 827 Commercial Energy Efficiency Equipment and Measure Data D-36 www.gepllc.com Table D-14 Energy Efficiency Measure Data — Small/Medium Comm., New Vintage     Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio RTU ‐ Maintenance Cooling 14% 0% 14% 90% $0.08 4 0.82 RTU ‐ Evaporative Precooler Cooling 10% 0% 0% 0% $0.88 15 0.18 Chiller ‐ Chilled Water Reset Cooling 11% 0% 0% 0% $0.86 4 0.06 Chiller ‐ Chilled Water Variable‐Flow System Cooling 4% 0% 0% 0% $0.86 10 0.05 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 0% $0.90 20 0.63 Chiller ‐ VSD Cooling 26% 0% 0% 0% $1.17 20 0.42 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 0% 0% $0.04 10 0.01 Chiller ‐ Condenser Water Temprature Reset Cooling 8% 0% 0% 0% $0.87 14 0.13 Cooling ‐ Economizer Installation Cooling 6% 0% 45% 49% $0.15 15 0.65 Heat Pump ‐ Maintenance Combined Heating/Cooling 7% 7% 10% 95% $0.03 4 4.32 Insulation ‐ Ducting Cooling 5% 0% 9% 50% $0.41 20 0.64 Insulation ‐ Ducting Space Heating 3% 1% 9% 50% $0.41 20 0.64 Energy Management System Cooling 5% 0% 24% 75% $0.35 14 0.55 Energy Management System Space Heating 2% 1% 24% 75% $0.35 14 0.55 Energy Management System Interior Lighting 2% 1% 24% 75% $0.35 14 0.55 Cooking ‐ Exhaust Hoods with Sensor Control Ventilation 25% 13% 1% 15% $0.04 10 7.04 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 11% 90% $0.05 10 1.32 Fans ‐ Variable Speed Control Ventilation 15% 5% 8% 90% $0.20 10 0.85 Commissioning ‐ HVAC Cooling 5% 0% 40% 75% $0.90 25 0.33 Commissioning ‐ HVAC Space Heating 5% 4% 40% 75% $0.90 25 0.33 Commissioning ‐ HVAC Ventilation 5% 4% 40% 75% $0.90 25 0.33 Pumps ‐ Variable Speed Control Miscellaneous 1% 0% 5% 34% $0.44 10 1.01 Thermostat ‐ Clock/Programmable Cooling 5% 0% 34% 50% $0.13 11 1.06 Thermostat ‐ Clock/Programmable Space Heating 5% 1% 34% 50% $0.13 11 1.06 Insulation ‐ Ceiling Cooling 1% 0% 10% 81% $0.16 20 1.60 Insulation ‐ Ceiling Space Heating 15% 4% 10% 81% $0.16 20 1.60 Insulation ‐ Radiant Barrier Cooling 2% 0% 7% 13% $0.26 20 0.76 Insulation ‐ Radiant Barrier Space Heating 6% 2% 7% 13% $0.26 20 0.76 Roofs ‐ High Reflectivity Cooling 7% 0% 5% 95% $0.09 15 1.25 Windows ‐ High Efficiency Cooling 5% 0% 61% 75% $0.35 20 0.69 Windows ‐ High Efficiency Space Heating 3% 2% 61% 75% $0.35 20 0.69 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 81% 90% $0.65 8 0.31 Interior Lighting ‐ Photocell Controlled T8 Dimming Ballasts Interior Lighting 25% 13% 1% 45% $0.38 8 1.07 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 10% 75% $0.09 8 1.50 Interior Fluorescent ‐ Bi‐Level Fixture w/Occupancy Sensor Interior Lighting 10% 5% 10% 23% $0.50 8 0.32 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 23% $0.70 11 1.56 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 7% 45% $0.20 8 1.00 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.24 Interior Screw‐in ‐ Task Lighting Interior Lighting 7% 4% 25% 75% $0.24 5 0.08 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 9% 56% $0.20 8 0.50 Water Heater ‐ Faucet Aerators/Low Flow Nozzles Water Heating 4% 1% 8% 90% $0.01 9 4.22 Water Heater ‐ Pipe Insulation Water Heating 4% 2% 46% 50% $0.28 15 0.24 Water Heater ‐ High Efficiency Circulation Pump Water Heating 5% 4% 0% 0% $0.11 10 0.63 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 40% 50% $0.02 10 5.80 Water Heater ‐ Thermostat Setback Water Heating 4% 0% 10% 75% $0.11 10 0.38 Water Heater ‐ Hot Water Saver Water Heating 5% 1% 0% 0% $0.02 5 1.53 Refrigeration ‐ Anti‐Sweat Heater/Auto Door Closer Refrigeration 5% 3% 0% 75% $0.20 16 1.09 Refrigeration ‐ Floating Head Pressure Refrigeration 7% 4% 18% 38% $0.35 16 1.24 Refrigeration ‐ Door Gasket Replacement Refrigeration 4% 2% 5% 75% $0.10 8 0.09 Insulation ‐ Bare Suction Lines Refrigeration 3% 2% 5% 75% $0.10 8 0.20 Refrigeration ‐ Night Covers Refrigeration 6% 3% 5% 75% $0.05 8 1.02 Refrigeration ‐ Strip Curtain Refrigeration 4% 2% 5% 56% $0.02 8 0.00 Commissioning ‐ Comprehensive Cooling 10% 0% 40% 75% $1.25 25 0.83 Commissioning ‐ Comprehensive Space Heating 10% 7% 40% 75% $1.25 25 0.83 Commissioning ‐ Comprehensive Interior Lighting 10% 7% 40% 75% $1.25 25 0.83 Office Equipment ‐ Energy Star Power Supply Office Equipment 1% 1% 10% 95% $0.00 7 61.07 Vending Machine ‐ Controller Refrigeration 15% 11% 2% 10% $0.27 10 1.08 LED Exit Lighting Interior Lighting 2% 2% 85% 86% $0.00 10 11.83 Commissioning ‐ Lighting Interior Lighting 5% 4% 30% 75% $0.20 25 1.54 Commissioning ‐ Lighting Exterior Lighting 5% 4% 30% 75% $0.20 25 1.54 Refrigeration ‐ High Efficiency Case Lighting Refrigeration 4% 2% 5% 75% $0.20 8 0.00 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 1.23 Exterior Lighting ‐ Induction Lamps Exterior Lighting 3% 3% 5% 56% $0.00 5 7.30 Laundry ‐ High Efficiency Clothes Washer Miscellaneous 0% 0% 5% 10% $0.00 10 36.95 Interior Lighting ‐ Hotel Guestroom Controls Interior Lighting 10% 5% 0% 0% $0.14 8 0.30 Miscellaneous ‐ Energy Star Water Cooler Miscellaneous 0% 0% 5% 95% $0.00 8 1.95 Advanced New Construction Designs Cooling 40% 0% 5% 75% $2.00 35 2.01 Advanced New Construction Designs Space Heating 40% 30% 5% 75% $2.00 35 2.01 Advanced New Construction Designs Interior Lighting 25% 19% 5% 75% $2.00 35 2.01 Insulation ‐ Wall Cavity Cooling 1% 0% 10% 68% $0.34 20 0.72 Insulation ‐ Wall Cavity Space Heating 10% 2% 10% 68% $0.34 20 0.72 Roofs ‐ Green Cooling 7% 0% 2% 11% $1.00 30 0.26 Roofs ‐ Green Space Heating 4% 3% 2% 11% $1.00 30 0.26 Industrial Process Improvements Miscellaneous 10% 8% 0% 23% $0.52 10 1.16 Custom Measures Cooling 8% 0% 10% 45% $1.50 15 0.45 Custom Measures Space Heating 8% 6% 10% 45% $1.50 15 0.45 Custom Measures Interior Lighting 8% 6% 10% 45% $1.50 15 0.45 Custom Measures Food Preparation 8% 6% 10% 45% $1.50 15 0.45 Custom Measures Refrigeration 8% 6% 10% 45% $1.50 15 0.45 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 19% $0.80 15 0.68 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 50% $4.00 15 0.53 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 47% $8.04 15 1.01 Avista 2011 Electric Integrated Resource Plan 828 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-37 An EnerNOC Company Table D-15 Energy Efficiency Measure Data — Large Commercial, New Vintage     Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio RTU ‐ Maintenance Cooling 14% 0% 27% 90% $0.06 4 1.13 RTU ‐ Evaporative Precooler Cooling 10% 0% 0% 0% $0.88 15 0.19 Chiller ‐ Chilled Water Reset Cooling 18% 0% 30% 75% $0.18 4 0.42 Chiller ‐ Chilled Water Variable‐Flow System Cooling 5% 0% 30% 34% $0.18 10 0.28 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 66% $0.90 20 0.61 Chiller ‐ VSD Cooling 32% 0% 15% 66% $1.17 20 0.50 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 15% 41% $0.04 10 0.01 Chiller ‐ Condenser Water Temprature Reset Cooling 8% 0% 25% 75% $0.18 14 0.63 Cooling ‐ Economizer Installation Cooling 11% 0% 44% 49% $0.15 15 1.19 Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 10% 95% $0.06 4 2.72 Insulation ‐ Ducting Cooling 4% 0% 8% 50% $0.41 20 0.56 Insulation ‐ Ducting Space Heating 3% 1% 8% 50% $0.41 20 0.56 Energy Management System Cooling 21% 0% 48% 90% $0.35 14 2.10 Energy Management System Space Heating 8% 5% 48% 90% $0.35 14 2.10 Energy Management System Interior Lighting 9% 6% 48% 90% $0.35 14 2.10 Cooking ‐ Exhaust Hoods with Sensor Control Ventilation 13% 7% 1% 11% $0.04 10 2.84 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 11% 90% $0.05 10 1.07 Fans ‐ Variable Speed Control Ventilation 15% 5% 2% 90% $0.20 10 0.68 Commissioning ‐ HVAC Cooling 5% 0% 50% 75% $0.85 25 0.30 Commissioning ‐ HVAC Space Heating 5% 4% 50% 75% $0.85 25 0.30 Commissioning ‐ HVAC Ventilation 5% 4% 50% 75% $0.85 25 0.30 Pumps ‐ Variable Speed Control Miscellaneous 1% 0% 5% 34% $0.13 10 1.05 Thermostat ‐ Clock/Programmable Cooling 5% 0% 33% 50% $0.13 11 0.97 Thermostat ‐ Clock/Programmable Space Heating 5% 1% 33% 50% $0.13 11 0.97 Insulation ‐ Ceiling Cooling 1% 0% 75% 81% $0.35 20 0.60 Insulation ‐ Ceiling Space Heating 10% 3% 75% 81% $0.35 20 0.60 Insulation ‐ Radiant Barrier Cooling 1% 0% 7% 13% $0.26 20 0.56 Insulation ‐ Radiant Barrier Space Heating 5% 2% 7% 13% $0.26 20 0.56 Roofs ‐ High Reflectivity Cooling 4% 0% 5% 95% $0.05 15 1.28 Windows ‐ High Efficiency Cooling 12% 0% 72% 75% $0.88 20 0.72 Windows ‐ High Efficiency Space Heating 11% 8% 72% 75% $0.88 20 0.72 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 86% 90% $0.65 8 0.30 Interior Lighting ‐ Photocell Controlled T8 Dimming Ballasts Interior Lighting 25% 13% 1% 45% $0.34 8 1.14 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 10% 19% $0.19 8 0.57 Interior Fluorescent ‐ Bi‐Level Fixture w/Occupancy Sensor Interior Lighting 10% 5% 10% 23% $0.40 8 0.39 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 23% $0.63 11 1.66 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 13% 45% $0.20 8 0.99 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.19 Interior Screw‐in ‐ Task Lighting Interior Lighting 10% 5% 10% 75% $0.24 5 0.11 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 9% 56% $0.20 8 0.49 Water Heater ‐ Faucet Aerators/Low Flow Nozzles Water Heating 4% 1% 3% 90% $0.03 9 1.60 Water Heater ‐ Pipe Insulation Water Heating 4% 2% 0% 0% $0.28 15 0.27 Water Heater ‐ High Efficiency Circulation Pump Water Heating 5% 4% 0% 23% $0.11 10 0.69 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $0.04 10 3.23 Water Heater ‐ Thermostat Setback Water Heating 4% 0% 0% 0% $0.11 10 0.44 Water Heater ‐ Hot Water Saver Water Heating 5% 1% 0% 3% $0.04 5 0.87 Refrigeration ‐ Anti‐Sweat Heater/Auto Door Closer Refrigeration 5% 3% 0% 75% $0.20 16 0.58 Refrigeration ‐ Floating Head Pressure Refrigeration 7% 4% 38% 45% $0.35 16 0.94 Refrigeration ‐ Door Gasket Replacement Refrigeration 4% 2% 5% 75% $0.10 8 0.63 Insulation ‐ Bare Suction Lines Refrigeration 3% 2% 5% 75% $0.10 8 0.35 Refrigeration ‐ Night Covers Refrigeration 6% 3% 5% 75% $0.05 8 0.65 Refrigeration ‐ Strip Curtain Refrigeration 4% 2% 5% 56% $0.02 8 0.94 Commissioning ‐ Comprehensive Cooling 10% 0% 40% 75% $1.00 25 0.96 Commissioning ‐ Comprehensive Space Heating 10% 7% 40% 75% $1.00 25 0.96 Commissioning ‐ Comprehensive Interior Lighting 10% 7% 40% 75% $1.00 25 0.96 Office Equipment ‐ Energy Star Power Supply Office Equipment 1% 1% 10% 95% $0.00 7 67.83 Vending Machine ‐ Controller Refrigeration 15% 11% 2% 10% $0.27 10 1.09 LED Exit Lighting Interior Lighting 2% 2% 85% 86% $0.00 10 11.13 Commissioning ‐ Lighting Interior Lighting 5% 4% 60% 75% $0.15 25 1.99 Commissioning ‐ Lighting Exterior Lighting 5% 4% 60% 75% $0.15 25 1.99 Refrigeration ‐ High Efficiency Case Lighting Refrigeration 4% 2% 5% 75% $0.20 8 0.52 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 1.03 Exterior Lighting ‐ Induction Lamps Exterior Lighting 3% 3% 5% 56% $0.00 5 5.86 Laundry ‐ High Efficiency Clothes Washer Miscellaneous 0% 0% 5% 10% $0.00 10 33.94 Interior Lighting ‐ Hotel Guestroom Controls Interior Lighting 10% 5% 1% 2% $0.14 8 0.29 Miscellaneous ‐ Energy Star Water Cooler Miscellaneous 0% 0% 5% 95% $0.00 8 1.78 Advanced New Construction Designs Cooling 40% 0% 5% 75% $2.00 35 1.84 Advanced New Construction Designs Space Heating 40% 30% 5% 75% $2.00 35 1.84 Advanced New Construction Designs Interior Lighting 25% 19% 5% 75% $2.00 35 1.84 Insulation ‐ Wall Cavity Cooling 1% 0% 9% 68% $0.78 20 0.43 Insulation ‐ Wall Cavity Space Heating 10% 2% 9% 68% $0.78 20 0.43 Roofs ‐ Green Cooling 4% 0% 2% 13% $1.00 15 0.08 Roofs ‐ Green Space Heating 2% 2% 2% 13% $1.00 15 0.08 Industrial Process Improvements Miscellaneous 10% 8% 0% 5% $0.52 10 1.18 Custom Measures Cooling 8% 0% 10% 45% $0.90 15 0.73 Custom Measures Space Heating 8% 6% 10% 45% $0.90 15 0.73 Custom Measures Interior Lighting 8% 6% 10% 45% $0.90 15 0.73 Custom Measures Food Preparation 8% 6% 10% 45% $0.90 15 0.73 Custom Measures Refrigeration 8% 6% 10% 45% $0.90 15 0.73 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 28% $0.80 15 0.76 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 0% $4.00 15 0.58 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 0% $6.00 15 0.98 Avista 2011 Electric Integrated Resource Plan 829 Commercial Energy Efficiency Equipment and Measure Data D-38 www.gepllc.com Table D-16 Energy Efficiency Measure Data — Extra Large Commercial, New Vintage     Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio RTU ‐ Maintenance Cooling 14% 0% 47% 90% $0.06 4 1.02 RTU ‐ Evaporative Precooler Cooling 10% 0% 0% 0% $0.88 15 0.17 Chiller ‐ Chilled Water Reset Cooling 12% 0% 60% 75% $0.09 4 0.61 Chiller ‐ Chilled Water Variable‐Flow System Cooling 8% 0% 30% 34% $0.09 10 0.95 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 75% $0.90 20 0.64 Chiller ‐ VSD Cooling 28% 0% 3% 75% $1.17 20 0.45 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 25% 37% $0.04 10 0.01 Chiller ‐ Condenser Water Temprature Reset Cooling 8% 0% 25% 75% $0.09 14 1.28 Cooling ‐ Economizer Installation Cooling 11% 0% 73% 81% $0.15 15 1.14 Heat Pump ‐ Maintenance Combined Heating/Cooling 10% 10% 5% 95% $0.06 4 2.61 Insulation ‐ Ducting Cooling 7% 0% 2% 50% $0.41 20 0.71 Insulation ‐ Ducting Space Heating 3% 1% 2% 50% $0.41 20 0.71 Energy Management System Cooling 11% 0% 80% 90% $0.35 14 0.94 Energy Management System Space Heating 4% 2% 80% 90% $0.35 14 0.94 Energy Management System Interior Lighting 5% 3% 80% 90% $0.35 14 0.94 Cooking ‐ Exhaust Hoods with Sensor Control Ventilation 13% 7% 1% 8% $0.04 10 3.31 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 11% 90% $0.05 10 1.24 Fans ‐ Variable Speed Control Ventilation 15% 5% 2% 90% $0.20 10 0.80 Commissioning ‐ HVAC Cooling 5% 0% 50% 75% $0.70 25 0.42 Commissioning ‐ HVAC Space Heating 5% 4% 50% 75% $0.70 25 0.42 Commissioning ‐ HVAC Ventilation 5% 4% 50% 75% $0.70 25 0.42 Pumps ‐ Variable Speed Control Miscellaneous 1% 0% 1% 34% $0.44 10 1.01 Thermostat ‐ Clock/Programmable Cooling 3% 0% 25% 50% $0.13 11 0.67 Thermostat ‐ Clock/Programmable Space Heating 3% 1% 25% 50% $0.13 11 0.67 Insulation ‐ Ceiling Cooling 1% 0% 2% 81% $0.35 20 0.68 Insulation ‐ Ceiling Space Heating 10% 3% 2% 81% $0.35 20 0.68 Insulation ‐ Radiant Barrier Cooling 1% 0% 2% 13% $0.26 20 0.47 Insulation ‐ Radiant Barrier Space Heating 2% 1% 2% 13% $0.26 20 0.47 Roofs ‐ High Reflectivity Cooling 10% 0% 5% 95% $0.18 15 0.85 Windows ‐ High Efficiency Cooling 6% 0% 95% 100% $1.69 20 0.38 Windows ‐ High Efficiency Space Heating 2% 2% 95% 100% $1.69 20 0.38 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 78% 90% $0.65 8 0.23 Interior Lighting ‐ Photocell Controlled T8 Dimming Ballasts Interior Lighting 25% 13% 3% 45% $0.30 8 0.86 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 10% 15% $0.19 8 0.61 Interior Fluorescent ‐ Bi‐Level Fixture w/Occupancy Sensor Interior Lighting 10% 5% 10% 23% $0.20 8 0.52 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 23% $0.56 11 1.24 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 42% 45% $0.20 8 0.76 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.20 Interior Screw‐in ‐ Task Lighting Interior Lighting 10% 5% 25% 75% $0.24 5 0.16 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 12% 56% $0.20 8 0.38 Water Heater ‐ Faucet Aerators/Low Flow Nozzles Water Heating 4% 1% 2% 90% $0.03 9 2.63 Water Heater ‐ Pipe Insulation Water Heating 6% 3% 0% 0% $0.28 15 0.69 Water Heater ‐ High Efficiency Circulation Pump Water Heating 5% 4% 0% 23% $0.11 10 1.18 Water Heater ‐ Tank Blanket/Insulation Water Heating 9% 5% 0% 0% $0.04 10 5.43 Water Heater ‐ Thermostat Setback Water Heating 4% 0% 0% 0% $0.11 10 0.71 Water Heater ‐ Hot Water Saver Water Heating 5% 1% 0% 0% $0.04 5 1.43 Refrigeration ‐ Anti‐Sweat Heater/Auto Door Closer Refrigeration 5% 3% 10% 75% $0.20 16 0.02 Refrigeration ‐ Floating Head Pressure Refrigeration 7% 4% 10% 38% $0.35 16 0.32 Refrigeration ‐ Door Gasket Replacement Refrigeration 4% 2% 5% 75% $0.10 8 0.12 Insulation ‐ Bare Suction Lines Refrigeration 3% 2% 5% 75% $0.10 8 0.26 Refrigeration ‐ Night Covers Refrigeration 6% 3% 5% 75% $0.05 8 0.27 Refrigeration ‐ Strip Curtain Refrigeration 4% 2% 5% 56% $0.02 8 0.17 Commissioning ‐ Comprehensive Cooling 10% 0% 40% 75% $0.80 25 1.05 Commissioning ‐ Comprehensive Space Heating 10% 7% 40% 75% $0.80 25 1.05 Commissioning ‐ Comprehensive Interior Lighting 10% 7% 40% 75% $0.80 25 1.05 Office Equipment ‐ Energy Star Power Supply Office Equipment 1% 1% 10% 95% $0.00 7 38.86 Vending Machine ‐ Controller Refrigeration 15% 11% 2% 10% $0.27 10 1.10 LED Exit Lighting Interior Lighting 2% 2% 85% 86% $0.00 10 16.52 Commissioning ‐ Lighting Interior Lighting 5% 4% 60% 75% $0.10 25 2.47 Commissioning ‐ Lighting Exterior Lighting 5% 4% 60% 75% $0.10 25 2.47 Refrigeration ‐ High Efficiency Case Lighting Refrigeration 4% 2% 5% 75% $0.20 8 0.04 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 1.45 Exterior Lighting ‐ Induction Lamps Exterior Lighting 3% 3% 5% 56% $0.00 5 6.26 Laundry ‐ High Efficiency Clothes Washer Miscellaneous 0% 0% 5% 10% $0.00 10 20.31 Interior Lighting ‐ Hotel Guestroom Controls Interior Lighting 10% 5% 0% 0% $0.14 8 0.42 Miscellaneous ‐ Energy Star Water Cooler Miscellaneous 0% 0% 5% 95% $0.00 8 1.07 Advanced New Construction Designs Cooling 40% 0% 5% 75% $2.00 35 1.67 Advanced New Construction Designs Space Heating 40% 30% 5% 75% $2.00 35 1.67 Advanced New Construction Designs Interior Lighting 25% 19% 5% 75% $2.00 35 1.67 Insulation ‐ Wall Cavity Cooling 1% 0% 2% 68% $0.09 20 1.73 Insulation ‐ Wall Cavity Space Heating 10% 2% 2% 68% $0.09 20 1.73 Roofs ‐ Green Cooling 10% 0% 2% 13% $1.00 15 0.20 Roofs ‐ Green Space Heating 5% 3% 2% 13% $1.00 15 0.20 Industrial Process Improvements Miscellaneous 10% 8% 0% 0% $0.52 10 1.11 Custom Measures Cooling 8% 0% 10% 45% $0.67 15 0.81 Custom Measures Space Heating 8% 6% 10% 45% $0.67 15 0.81 Custom Measures Interior Lighting 8% 6% 10% 45% $0.67 15 0.81 Custom Measures Food Preparation 8% 6% 10% 45% $0.67 15 0.81 Custom Measures Refrigeration 8% 6% 10% 45% $0.67 15 0.81 Water Heater ‐ Heat Pump Water Heating 30% 15% 0% 41% $0.80 15 1.27 Water Heater ‐ Convert to Gas Water Heating 100% 100% 0% 0% $4.00 15 1.00 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 0% $4.00 15 1.57 Avista 2011 Electric Integrated Resource Plan 830 Commercial Energy Efficiency Equipment and Measure Data Global Energy Partners D-39 An EnerNOC Company Table D-17 Energy Efficiency Measure Data — Extra Large Industrial, New Vintage   Note: Costs are per sq. ft. Measure Enduse Energy  Savings Demand  Savings Base  Saturation Appl./ Feas. Cost Lifetime BC Ratio Refrigeration ‐ System Controls Process 11% 8% 5% 34% $0.40 10 18.09 Refrigeration ‐ System Maintenance Process 3% 2% 5% 34% $0.00 10 2,067.93 Refrigeration ‐ System Optimization Process 15% 11% 5% 34% $0.80 10 12.92 Motors ‐ Variable Frequency Drive Machine Drive 13% 9% 25% 38% $0.10 10 3.38 Motors ‐ Magnetic Adjustable Speed Drives Machine Drive 13% 9% 25% 38% $0.10 10 3.38 Compressed Air ‐ System Controls Machine Drive 9% 7% 5% 34% $0.40 10 0.59 Compressed Air ‐ System Optimization and Improvements Machine Drive 13% 9% 5% 34% $0.80 10 0.42 Compressed Air ‐ System Maintenance Machine Drive 3% 2% 5% 34% $0.20 10 0.34 Compressed Air ‐ Compressor Replacement Machine Drive 5% 4% 5% 34% $0.20 10 0.68 Fan System ‐ Controls Machine Drive 4% 3% 10% 38% $0.35 10 0.11 Fan System ‐ Controls Machine Drive 4% 3% 10% 38% $0.35 10 0.11 Fan System ‐ Optimization Machine Drive 6% 5% 10% 38% $0.70 10 0.08 Fan System ‐ Optimization Machine Drive 6% 5% 10% 38% $0.70 10 0.08 Fan System ‐ Maintenance Machine Drive 1% 1% 10% 38% $0.15 10 0.07 Fan System ‐ Maintenance Machine Drive 1% 1% 10% 38% $0.15 10 0.07 Pumping System ‐ Controls Machine Drive 5% 4% 5% 34% $0.38 12 0.42 Pumping System ‐ Optimization Machine Drive 13% 9% 5% 34% $0.75 12 0.54 Pumping System ‐ Maintenance Machine Drive 2% 1% 5% 34% $0.19 10 0.27 RTU ‐ Maintenance Cooling 14% 0% 22% 90% $0.06 4 2.82 Chiller ‐ Chilled Water Reset Cooling 14% 0% 60% 75% $0.09 4 2.53 Chiller ‐ Chilled Water Variable‐Flow System Cooling 4% 0% 30% 34% $0.20 10 0.80 Chiller ‐ Turbocor Compressor Cooling 30% 0% 0% 67% $0.90 20 2.40 Chiller ‐ VSD Cooling 27% 0% 25% 67% $1.17 20 1.63 Chiller ‐ High Efficiency Cooling Tower Fans Cooling 0% 0% 25% 50% $0.04 10 0.04 Chiller ‐ Condenser Water Temprature Reset Cooling 10% 0% 5% 75% $0.20 14 2.60 Cooling ‐ Economizer Installation Cooling 6% 0% 29% 34% $0.15 15 1.92 Heat Pump ‐ Maintenance Combined Heating/Cooling 7% 7% 2% 95% $0.03 4 7.76 Insulation ‐ Ducting Space Heating 5% 5% 12% 50% $0.41 20 0.95 Insulation ‐ Ducting Cooling 3% 0% 12% 50% $0.41 20 0.95 Energy Management System Cooling 5% 0% 11% 90% $0.35 14 0.88 Energy Management System Space Heating 2% 1% 11% 90% $0.35 14 0.88 Energy Management System Interior Lighting 2% 1% 11% 90% $0.35 14 0.88 Fans ‐ Energy Efficient Motors Ventilation 5% 5% 2% 90% $0.14 10 2.81 Fans ‐ Variable Speed Control Ventilation 15% 5% 3% 90% $0.34 10 2.97 Commissioning ‐ HVAC Cooling 5% 0% 60% 75% $0.70 25 0.92 Commissioning ‐ HVAC Space Heating 5% 4% 60% 75% $0.70 25 0.92 Commissioning ‐ HVAC Ventilation 5% 4% 60% 75% $0.70 25 0.92 Pumps ‐ Variable Speed Control Machine Drive 5% 4% 0% 34% $0.44 10 0.31 Thermostat ‐ Clock/Programmable Cooling 5% 0% 59% 70% $0.13 11 2.02 Thermostat ‐ Clock/Programmable Space Heating 5% 1% 59% 70% $0.13 11 2.02 Interior Lighting ‐ Central Lighting Controls Interior Lighting 10% 5% 84% 90% $0.65 8 0.15 Exterior Lighting ‐ Daylighting Controls Exterior Lighting 30% 0% 10% 40% $0.08 8 0.42 Interior Fluorescent ‐ High Bay Fixtures Interior Lighting 50% 25% 10% 38% $0.20 11 1.76 LED Exit Lighting Interior Lighting 2% 2% 85% 86% $0.00 10 3.72 Commissioning ‐ Lighting Interior Lighting 5% 4% 60% 75% $0.10 25 1.41 Commissioning ‐ Lighting Exterior Lighting 5% 4% 60% 75% $0.10 25 1.41 Interior Lighting ‐ Occupancy Sensors Interior Lighting 10% 5% 15% 45% $0.20 8 0.50 Exterior Lighting ‐ Photovoltaic Installation Exterior Lighting 75% 75% 5% 13% $0.92 5 0.06 Interior Screw‐in ‐ Task Lighting Interior Lighting 7% 4% 10% 75% $0.24 5 0.03 Interior Lighting ‐ Time Clocks and Timers Interior Lighting 5% 3% 2% 56% $0.20 8 0.25 Exterior Lighting ‐ Cold Cathode Lighting Exterior Lighting 1% 1% 5% 25% $0.00 5 0.41 Advanced New Construction Designs Cooling 40% 0% 5% 75% $2.00 35 2.67 Advanced New Construction Designs Space Heating 40% 30% 5% 75% $2.00 35 2.67 Advanced New Construction Designs Interior Lighting 25% 19% 5% 75% $2.00 35 2.67 Custom Measures Cooling 8% 0% 10% 45% $1.60 15 1.28 Custom Measures Space Heating 8% 6% 10% 45% $1.60 15 1.28 Custom Measures Interior Lighting 8% 6% 10% 45% $1.60 15 1.28 Custom Measures Machine Drive 8% 6% 10% 45% $1.60 15 1.28 Furnace ‐ Convert to Gas Space Heating 100% 100% 0% 0% $4.00 15 2.51 Avista 2011 Electric Integrated Resource Plan 831 Avista 2011 Electric Integrated Resource Plan 832 Global Energy Partners E-1 An EnerNOC Company APPENDIX E REFERENCES American Home Appliance Manufacturers, “Today’s Energy Standards for Refrigerators Reflect Consensus by Advocates, Industry to Increase Appliance Efficiency,” September 27, 2010 press release, http://www.aham.org/ht/a/GetDocumentAction/i/50432. Appliance Standards Awareness Project; http://www.standardsasap.org. Avista Corporation, 2009 Electric Integrated Resource Plan, August 31, 2009. Avista Corporation, System Load Research Project report, March 2010, prepared by KEMA. California Public Utilities Commission, Database for Energy Efficient Resources (DEER), 2009, http://www.deeresources.com. Dun and Bradstreet Data, ZapData, http://www.dnb.com and http://www.zapdata.com. California Energy Commission, Residential Appliance Saturation Survey (RASS), 2010, http://www.energy.ca.gov/appliances/rass/. California Energy Commission, Commercial End-Use Survey (CEUS), 2006, http://www.energy.ca.gov/ceus/. Electric Power Research Institute, Assessment of Achievable Potential from Energy Efficiency and Demand Response Programs in the U.S. EPRI National Potential Study, 2009. ELEEK Lamping Guide; http://www.eleekinc.com. Energy Information Administration, Annual Energy Outlook 2011-ER, December 2010, http://www.eia.doe.gov/forecasts/aeo/early_introduction.cfm#key. Energy Information Administration, EIA Technology Forecast Updates – Residential and Commercial Building Technologies – Reference Case, Second Edition (Revised), Navigant Consulting, September 2007. Energy Information Administration, EIA Technology Forecast Updates – Residential and Commercial Building Technologies – Reference Case, Navigant Consulting, September 2008. Energy Information Administration, Annual Electric Power Industry Report, EIA Form 861. Energy Independence and Security Act of 2007. Pub. L. 110-140. 19 December 2007. Stat. 121.1492. Environmental Protection Agency and U.S. Department of Energy, ENERGY STAR Program, http://www.energystar.gov. Federal Energy Regulatory Commission, A National Assessment of Demand Response Potential, June 2009, http://www.ferc.gov/industries/electric/indus-act/demand-response/dr-potential.asp. Forsyth, G., et al., Assessing Heating Assistance Programs in Spokane County, January 2010. Forsyth, G., Estimation and Analysis of At-risk Households (presentation), Eastern Washington University, undated. Global Energy Partners, Building Energy Simulation Tool (BEST). Avista 2011 Electric Integrated Resource Plan 833 References E-2 www.gepllc.com Global Energy Partners, Energy Market Profiles Database. Global Energy Partners, Database of Energy Efficiency Measures (DEEM). Global Energy Partners, EnergyShapeTM Database. Grainger Catalog Volume 398, 2007–2008. Inland Power & Light Customer Energy Efficiency Study Executive Summary Report, Robinson Research, January 2009. Mills, E., Building Commissioning, A Golden Opportunity for Reducing Energy Costs and Greenhouse Gas Emissions, Lawrence Berkeley National Laboratory, July 21, 2009, http://cx.lbl.gov/documents/2009-assessment/LBNL-Cx-Cost-Benefit.pdf. National Action Plan for Energy Efficiency, National Action Plan for Energy Efficiency Vision for 2025: Developing a Framework for Change, 2007, www.epa.gov/eeactionplan. Northwest Energy Efficiency Alliance, 2009 Northwest Commercial Building Stock Assessment (10-211), http://neea.org/research/reportdetail.aspx?ID=546. Northwest Energy Efficiency Alliance, Single-Family Residential Existing Construction Stock Assessment, Market Research Report, E07-179 (10/2007), http://neea.org/research/reportdetail.aspx?ID=194. Northwest Power and Conservation Council, Sixth Power Plan Conservation Supply Curve Workbooks, 2010, http://www.nwcouncil.org/energy/powerplan/6/supplycurves/default.htm. Robinson Research, Inland Power & Light Customer Energy Efficiency Study Executive Summary Report, January 2009. RS Means, Building Construction Cost Data, 2011. RS Means, Facilities Maintenance and Repair Cost Data, 2011. RS Means, Green Buildings Project Planning & Cost Estimating Third Edition, 2011. RS Means, Mechanical Construction Costs, 2011. Spokane County, https://edis.commerce.state.nc.us/docs/countyProfile/WA/53063.pdf U. S. Census Bureau, American Community Survey, http://www.census.gov/acs/www/. U. S. Census Bureau, 2007 Economic Census, http://www.census.gov/econ/census07/. U. S. Census Bureau, Population Estimates, http://www.census.gov/popest/cities/SUB-EST2009- 4.htm. U. S. Census Bureau, Quick Facts, http://quickfacts.census.gov/qfd/download_data.html U. S. Census Bureau, http://www.census.gov/eos/www/naics/. U.S. Department of Energy’s Appliances and Commercial Equipment Standards Program: http://www1.eere.energy.gov/buildings/appliance_standards/index.html. U.S. Department of Energy Building Technologies Program, Multi Year Program Plan – Building Regulatory Programs - Energy Efficiency and Renewable Energy, October 2010. U.S Department of Health and Human Services, LIHEAP Clearinghouse, http://liheap.ncat.org/profiles/povertytables/FY2010/popstate.htm. Avista 2011 Electric Integrated Resource Plan 834 References Global Energy Partners E-3 An EnerNOC Company U.S. Green Building Council, LEED New Construction & Major Renovation, 2008. Washington Office of Financial Management, Long-term Forecast of Washington Personal Income, http://www.ofm.wa.gov/economy/longterm/2009/lt09ch4.pdf and http://www.ofm.wa.gov/economy/hhinc/. Avista 2011 Electric Integrated Resource Plan 835 Avista 2011 Electric Integrated Resource Plan 836 Global Energy Partners E-1 An EnerNOC Company Avista 2011 Electric Integrated Resource Plan 837 Avista 2011 Electric Integrated Resource Plan 838 Avista 2011 Electric Integrated Resource Plan 839 Global Energy Partners An EnerNOC Company 500 Ygnacio Valley Road, Suite 450 Walnut Creek, CA 94596 P: 925.482.2000 F: 925.284.3147 E: gephq@gepllc.com ABOUT GLOBAL Global Energy Partners is a premier provider of energy and environmental engineering and technical services to utilities, energy companies, research organizations, government/regulatory agencies and private industry. Global’s offerings range from strategic planning to turn-key program design and implementation and technology applications. Global is a wholly-owned subsidiary of EnerNOC, Inc committed to helping its clients achieve strategic business objectives with a staff of world-class experts, state of the art tools, and proven methodologies. Avista 2011 Electric Integrated Resource Plan 840 2011 Electric Integrated Resource Plan Appendix E – North Idaho Transmission Study Avista 2011 Electric Integrated Resource Plan 841 500 MW of New Generation in the Rathdrum Area Page 1 Interoffice Memorandum System Planning MEMO: SP-2011-08 Rev A DATE: August 11, 2011 TO: James Gall, IRP Group FROM: Reuben Arts SUBJECT: 500 MW of New Generation in the Rathdrum Area Introduction Based on initial 2011 IRP analysis 200 MW of new capacity is required in 2019-2020 and an additional 300 MW of capacity in the 2022-2024 time period. North Idaho is one of several potential locations this capacity could be added, but requires further detail to understand its potential. Problem Statement The IRP group is specifically interested in the cost for both the point of integration (POI) station and associated system upgrades, to integrate the new generation with the following options: 1. Cabinet-Rathdrum 230 kV transmission line (assume 5 miles from Rathdrum) 2. Rathdrum-Boulder 230 kV transmission line (assume Lancaster looped in, and assume the generation is half way between Lancaster and Rathdrum) 3. Rathdrum-Beacon 230 kV transmission line (assume 1-2 miles from Rathdrum) 4. Double Tap, Rathdrum-Boulder and Rathdrum-Beacon 230 kV transmission lines (again assume Lancaster is looped in and that the new generation will tap between Lancaster and Rathdrum) 5. Mixed location. 300 MW at the least cost option (between 1 and 4) and an additional 200 MW on the Cabinet-Rathdrum 230 kV transmission line. 6. Other Transmission Alternatives Power Flow Analysis The case that was used to highlight the impacts of an additional 500 MW in the Rathdrum area was the WECC approved and Avista modified light summer high flow case (AVA-11ls1ae-12BA1251-WOH4277). The West of Hatwai path typically experiences high flows during light Avista load hours. High West of Hatwai flows tend to coincide with high Western Montana Hydro generation, high Boundary generation, high flows on Montana to Northwest, and light loads in Eastern Washington, North Idaho, and Montana. Existing Clark Fork RAS is in place, and assumed armed, since the Western Montana Hydro (WMH) complex is greater than 1450 MW. Since the New Project would require significant Avista system transmission changes, and RAS changes, the results are listed as though RAS were not armed. This does affect the results of some contingencies, but ultimately does not change the conclusions of this memo. Option 1 Perhaps one of the worst performing arrangements is option 1.This option immediately requires another line, or a line reconductor, from the 500 MW project back to Rathdrum. In order to stay within N-0 thermal limits the project can only be 175 MW without any system upgrades. In a high flow, N-0 scenario, the line segment from the project back to Rathdrum loads to around 163%, which is roughly 272 MW overloaded. There are a handful of N-1 and N-2 contingencies that cause significant thermal violations, the worst N-1 being the loss of the 230 kV transmission line from the new project to Rathdrum. See Figure 1 Avista 2011 Electric Integrated Resource Plan 842 500 MW of New Generation in the Rathdrum Area Page 2 Figure 1 – N-1 Contingency In addition to this worst case outage there are two N-2 scenarios that cause fairly significant problems as well. The Beacon-Rathdrum and Boulder-Lancaster-Rathdrum 230 kV transmission lines share a common structure for the majority of the line lengths. Losing both lines to the west of Lancaster causes the Bell S3- Lancaster 230 kV transmission line to overload. Losing both lines to the east of Lancaster, causes nearly the same scenario as shown in Figure 1. To alleviate these overloads three new 230 kV transmission lines, would need to be built. First the Rathdrum-New Project 230 kV transmission line must be reconductored at a cost of roughly $2.25M. Second, A 230 kV transmission line, with new right-of-way, must be built from the New Project to Lancaster. The estimated distance for this line is roughly 5 miles. The estimated loaded cost for this line, including a new line position at Lancaster and at the New Project, is roughly $9M. Finally, another 230 kV transmission line, again with new right-of-way, is required from Lancaster to Boulder. This line length is estimate at roughly 15 miles. The estimated loaded cost of the new line, including new line positions, is roughly $17M. New right-of-way in this area will be difficult to obtain, which would have the potential of more than doubling costs. RAS may be a viable solution. If at all possible RAS should be a last resort. Unlike improving our transmission system, RAS does not provide operational flexibility and in some cases can compound the impacts of future generation needs. However, it does represent the cheapest solution and is therefore listed as solution 1. Avista 2011 Electric Integrated Resource Plan 843 500 MW of New Generation in the Rathdrum Area Page 3 Option 1 N-0 Max. Output Facility Requirement1 Total2 ($000) Solution 1 500 MW Reconductor 230 kV transmission line from new station to Rathdrum, New 230 kV DB-DB Station and RAS3 13,250 Solution 2 500 MW Reconductor from Rathdrum-New Project. New line from Lancaster to New Project. New line from Lancaster to Boulder, New 230 kV DB-DB Station 36,250 Option 2 This option would tap the Rathdrum-Boulder, or what soon will be the Rathdrum-Lancaster-Boulder, 230 kV transmission line. This options has no N-0 issues at the full requested 500 MW. There are a handful of N-1 and N-2 contingencies that cause significant thermal violations, the worst being the loss of the Lancaster-Boulder & Rathdrum-Beacon 230 kV transmission lines. These lines share a common structure and therefore represent a credible N-2 scenario. This outage causes the Lancaster-Bell S3 230 kV transmission line to load to 189%, or roughly 450 MW above its thermal limit. See Figure 2. Figure 2 - N-2 Contingency To alleviate these overloads two new 230 kV transmission lines, would need to be built. A 230 kV transmission line, with new right-of-way, must be built from the New Project to Lancaster. The estimated distance for this line is roughly 3 miles. The estimated loaded cost for this line, including a new line position at Lancaster and at the New Project, is roughly $8M. Another 230 kV transmission line, again with new right-of-way, is required from Lancaster to Boulder. This line length is estimate at roughly 15 miles. The estimated loaded cost of the new line, including new line positions, is roughly $17M. New right-of-way in this area will be difficult to obtain, which would have the potential of more than doubling costs. 1 Cost estimates do not include costs of the radial line to the POI, the generator or generator station if applicable. 2 Total is for network and direct assigned costs, are in 2011 dollars, and is +/- 50%. 3 The RAS portion is a worst case scenario where another fiber loop is required. $3M allocated for RAS. Avista 2011 Electric Integrated Resource Plan 844 500 MW of New Generation in the Rathdrum Area Page 4 RAS may be a viable solution. If at all possible RAS should be a last resort. Unlike improving our transmission system, RAS does not provide operational flexibility and in some cases can compound the impacts of future generation needs. However, it does represent the cheapest solution and is therefore listed as solution 1. Option 2 N-0 Max. Output Facility Requirement4 Total5 ($000) Solution 1 500 MW New 230 kV DB-DB Station and RAS6 11,000 Solution 2 500 MW New line from Lancaster to New Project. New line from Lancaster to Boulder, New 230 kV DB-DB Station 33,000 Option 3 This option taps the Rathdrum-Beacon 230 kV transmission line. Again, this options has no N-0 issues at the full requested 500 MW. There are a handful of N-1 and N-2 contingencies that cause significant thermal violations, the worst being the loss of the Beacon-New Project & Rathdrum-Lancaster 230 kV transmission lines. These lines share a common structure and therefore represent a credible N-2 scenario. This outage forces the entire proposed 500 MW toward Cabinet and Noxon. This causes overloads on the Cabinet-Noxon and Pine Creek-Benewah 230 kV transmission lines. See Figure 3. Figure 3 - N-2 Contingency 4 Cost estimates do not include costs of the radial line to the POI, the generator or generator station if applicable. 5 Total is for network and direct assigned costs, are in 2011 dollars, and is +/- 50%. 6 The RAS portion is a worst case scenario where another fiber loop is required. $3M allocated for RAS. Avista 2011 Electric Integrated Resource Plan 845 500 MW of New Generation in the Rathdrum Area Page 5 To alleviate these overloads two new 230 kV transmission lines, would need to be built. A 230 kV transmission line, with new right-of-way, must be built from the New Project to Lancaster. The estimated distance for this line is roughly 3 miles. The estimated loaded cost for this line, including a new line position at Lancaster and at the New Project, is roughly $8M. Another 230 kV transmission line, again with new right-of-way, is required from Lancaster to Boulder. This line length is estimate at roughly 15 miles. The estimated loaded cost of the new line, including new line positions, is roughly $17M. New right-of-way in this area will be difficult to obtain, which would have the potential of more than doubling costs. RAS may be a viable solution. If at all possible RAS should be a last resort. Unlike improving our transmission system, RAS does not provide operational flexibility and in some cases can compound the impacts of future generation needs. However, it does represent the cheapest solution and is therefore listed as solution 1. Option 3 N-0 Max. Output Facility Requirement7 Total8 ($000) Solution 1 500 MW New 230 kV DB-DB Station and RAS9 11,000 Solution 2 500 MW New line from Lancaster to New Project. New line from Lancaster to Boulder, New 230 kV DB-DB Station 33,000 Option 4 This option taps the Rathdrum-Beacon & Rathdrum-Lancaster 230 kV transmission lines. This options has no N-0 issues at the full requested 500 MW. There are a handful of N-1 and N-2 contingencies that cause significant thermal violations, the worst being the loss of the Beacon-New Project & Lancaster-New Project 230 kV transmission lines. These lines share a common structure and therefore represent a credible N-2 scenario. This outage forces the entire proposed 500 MW toward Cabinet and Noxon. This causes overloads on the Cabinet-Noxon and Pine Creek-Benewah 230 kV transmission lines. (Very similar to Figure 3 on the previous page). To alleviate these overloads two new 230 kV transmission lines, would need to be built. A 230 kV transmission line, with new right-of-way, must be built from the New Project to Lancaster. The estimated distance for this line is roughly 3 miles. The estimated loaded cost for this line, including a new line position at Lancaster and at the New Project, is roughly $8M. Another 230 kV transmission line, again with new right-of-way, is required from Lancaster to Boulder. This line length is estimate at roughly 15 miles. The estimated loaded cost of the new line, including new line positions, is roughly $17M. New right-of-way in this area will be difficult to obtain, which would have the potential of more than doubling costs. RAS may be a viable solution. If at all possible RAS should be a last resort. Unlike improving our transmission system, RAS does not provide operational flexibility and in some cases can compound the impacts of future generation needs. However, it does represent the cheapest solution and is therefore listed as solution 1. Option 4 N-0 Max. Output Facility Requirement Total ($000) Solution 1 500 MW New 230 kV DB-DB Station and RAS 15,000 Solution 2 500 MW New line from Lancaster to New Project. New line from Lancaster to Boulder, New 230 kV DB-DB Station 37,000 7 Cost estimates do not include costs of the radial line to the POI, the generator or generator station if applicable. 8 Total is for network and direct assigned costs, are in 2011 dollars, and is +/- 50%. 9 The RAS portion is a worst case scenario where another fiber loop is required. $3M allocated for RAS. Avista 2011 Electric Integrated Resource Plan 846 500 MW of New Generation in the Rathdrum Area Page 6 Option 5 This option taps the Rathdrum-Beacon & Rathdrum-Cabinet 230 kV transmission lines. A new switching station is required for each tap. A 300 MW generating station would be on the Beacon-Rathdrum 230 kV transmission line and 200 MW would be on the Rathdrum-Cabinet 230 kV transmission line. This option has no N-0 issues at the full requested 500 MW. There are a handful of N-1 and N-2 contingencies that cause significant thermal violations, the worst being the loss of the Beacon-New Project & Lancaster- Rathdrum 230 kV transmission lines. These lines share a common structure and therefore represent a credible N-2 scenario. This outage forces the entire proposed 500 MW toward Cabinet and Noxon. This causes overloads on the Cabinet-Noxon and Pine Creek-Benewah 230 kV transmission lines. (Very similar to what was shown in Figure 3). To alleviate these overloads three new 230 kV transmission lines, would need to be built. A 230 kV transmission line, with new right-of-way, must be built from the New Project (300MW piece) to Lancaster. The estimated distance for this line is roughly 5 miles. The estimated loaded cost for this line, including a new line position at Lancaster and at the New Project, is roughly $9M. Another 230 kV transmission line, again with new right-of-way, is required from Lancaster to Boulder. This line length is estimate at roughly 15 miles. The estimated loaded cost of the new line, including new line positions, is roughly $17M. Finally, for the loss of the Rathdrum-New Project (200MW piece) 230 kV transmission line, causes the Cabinet- Noxon 230 kV transmission line to load to 117%. To alleviate this overload a new line, with new right-of- way must be built back to Rathdrum. The estimated loaded cost of this 5 mile line, along with associated line positions, is $9M. New right-of-way in this area will be difficult to obtain, which would have the potential of more than doubling costs. RAS may be a viable solution. If at all possible RAS should be a last resort. Unlike improving our transmission system, RAS does not provide operational flexibility and in some cases can compound the impacts of future generation needs. However, it does represent the cheapest solution and is therefore listed as solution 1. Option 5 N-0 Max. Output Facility Requirement10 Total11 ($000) Solution 1 500 MW Two New 230 kV DB-DB Stations and RAS12 22,000 Solution 2 500 MW Two New 230 kV DB-DB Stations, New line from Lancaster to New Project (300MW). New line from Lancaster to Boulder, New line from New Project (200MW) to Rathdrum 51,000 Option 6 – Other Transmission Alternatives In addition to the five options listed, there are a few more options that may seem to be intuitive interconnection points. These integration options are: a. Lancaster 230 kV (BPA) switching station b. Rathdrum 230/115/13.2 kV substation c. Cabinet-Rathdrum & Noxon-Lancaster 230 kV transmission lines d. Bell-Taft 500 kV transmission line Option 6a - Connecting to the Lancaster 230 kV switching station would save Avista the cost of a new switching station. It would also negate the need for a new transmission line, with associated right-of-way, from the new project to Lancaster. The estimated savings, adding the previously quoted loaded costs, less 10 Cost estimates do not include costs of the radial line to the POI, the generator or generator station if applicable. 11 Total is for network and direct assigned costs, are in 2011 dollars, and is +/- 50%. 12 The RAS portion is a worst case scenario where another fiber loop is required. $3M allocated for RAS. Avista 2011 Electric Integrated Resource Plan 847 500 MW of New Generation in the Rathdrum Area Page 7 the added cost of connecting to Lancaster, is $13M13. This does not take into account any fees associated with connecting to BPA. This option assumes there is room in the Lancaster substation to accept the new line position. If Lancaster substation cannot accommodate the new line position, the cost savings to interconnect at Lancaster may be negligible or non-existent. This option would still have all the contingency issues and associated upgrades similar to Option 2. Option 6b - Connecting to the Rathdrum substation saves the cost of building another switching station. All contingency results are nearly identical to connecting the project to option 2 or option 3. The estimated savings of this option is $4M14. This option assumes there is room in the Rathdrum substation to accept the new line position. If Rathdrum substation cannot accommodate the new line position, the cost savings to interconnect at Rathdrum may be negligible or non-existent. Option 6c – Tapping the Cabinet-Rathdrum & Noxon-Lancaster 230 kV transmission lines does improve the network performance, in comparison to tapping only the Cabinet-Rathdrum 230 kV transmission line. However, this option still requires all the same network upgrades that option 1 requires since it is still possible to have an N-2 situation where the generation of the New Project, Noxon and Cabinet is separated from the Coeur d’Alene/Spokane load. (See Figure 1). This option is listed for completeness. Option 6d - Connecting solely to the Bell-Taft 500 kV transmission line cannot be done without RAS and possibly some network upgrades on BPA’s system. In addition to the network upgrades that would likely be required on BPA’s system, Avista would also be financially liable to pay wheeling fees from the new project across BPA’s lines to Avista’s load. If the project is connected to both BPA’s Bell-Taft 500 kV transmission line and Avista’s Rathdrum area 230 kV system, effectively avoiding wheeling charges, both RAS and significant network upgrades will be required. Due to the cost of a new 500 kV substation, associated RAS and the potentially large cost of network upgrades on BPA’s 500 kV system, this option is not recommended. Conclusion Of the formally identified options, options 2 and 3 represent the least cost and best performing options. Of the other transmission alternatives, the Lancaster switching station, followed by the Rathdrum substation, interconnection options represent the least cost and best performing alternative options. The following favorable options are: Option 2: $11-33M (RAS only vs System Upgrades)15 Option 3: $11-33M (RAS only vs System Upgrades)15 Lancaster Alternative Option: $7-20M (RAS only vs System Upgrades) Rathdrum Alternative Option: $7-33M (RAS only vs System Upgrades) 13 Assumes a network upgrade solution would be pursued, instead of a RAS only solution. 14 This $4M savings would be for either a RAS only or a network upgrade solution. 15 If the new project is interconnected to the west of Lancaster, the Lancaster-New Project 230 kV transmission line is not needed. Hence the network upgrade cost would be reduced by $8M. Avista 2011 Electric Integrated Resource Plan 848 2011 Electric Integrated Resource Plan Appendix F – 2011 Electric IRP New Resource Table for Transmission Avista 2011 Electric Integrated Resource Plan 849 Resource POR Capacity Year Resource Location or Local Area POD Start Stop MW Total Noxon 4 (incremental)Noxon, MT Noxon, MT AVA System 4/1/2012 Indefinite 14.0 Wind Oaksdale, WA Thorton AVA System 8/1/2012 Indefinite 102.0 116.0 Lancaster CCCT Rathdrum, ID Bell/Westside AVA System 1/1/2013 10/31/2026 125.0 Lancaster CCCT Rathdrum, ID Mid-C AVA System 1/1/2013 10/31/2026 150.0 275.0 Coyote Springs 2 Boardman, OR Coyote Springs 2 AVA System 5/1/2018 Indefinite 16.0 16.0 SCCT TBD TBD AVA System 1/1/2019 Indefinite 86.3 86.3 Wind Reardan, WA Reardan AVA System 1/1/2020 Indefinite 60.0 60.0 Wind Reardan, WA Reardan AVA System 1/1/2021 Indefinite 60.0 SCCT TBD TBD AVA System 1/1/2021 Indefinite 86.3 146.3 CCCT TBD TBD AVA System 1/1/2024 Indefinite 280.8 280.8 CCCT TBD TBD AVA System 11/1/2026 Indefinite 280.8 280.8 SCCT TBD TBD AVA System 1/1/2030 Indefinite 47.8 47.8 Total 1309 1309 August 18, 2011 2011 Avista IRP New Resource Table For Transmission Avista 2011 Electric Integrated Resource Plan 850