HomeMy WebLinkAbout20050119Application Part III.pdfEXHIBIT J
September 2004 Analysis
Application of A vista Corporation
Case No. AVU-O5-
September 2004 Analysis
. I
Exhibit J
Page 1 of 10
50
0
/0
o
f
C
o
y
o
t
e
S
p
r
i
n
g
s
2
(
C
C
C
T
a
n
d
D
u
c
t
B
u
r
n
e
r
)
-
An
n
u
a
l
V
a
l
u
e
l
e
s
s
Ec
o
n
o
m
i
c
A
n
a
l
y
s
i
s
D
e
t
a
i
l
0
p
e
r
c
e
n
t
0
p
e
r
c
e
n
t
As
s
u
mp
t
i
o
n
s
In
s
u
r
a
n
c
e
C
o
s
t
Ga
s
T
r
a
n
s
p
o
r
t
Ge
n
e
r
a
l
I
n
f
l
a
t
i
o
n
Op
t
i
o
n
V
a
l
u
e
19
9
.
97
2
0
0
4
$
0
0
0
8
00
2
0
0
4
$
I
d
t
W
d
a
y
pe
r
c
e
n
t
00
0
2
0
0
4
$
0
0
0
8
No
m
i
n
a
l
D
i
s
c
o
u
n
t
Re
a
l
D
i
s
c
o
u
n
t
22
pe
r
c
e
n
t
50
p
e
r
c
e
n
t
,
In
s
t
a
l
l
e
d
C
o
s
t
In
s
t
a
l
l
e
d
C
o
s
t
Pr
o
j
e
c
t
C
a
p
a
c
i
t
y
He
a
l
R
a
l
e
Ga
s
U
s
a
g
e
R
a
l
e
66
;
65
7
2
0
0
4
$
O
O
O
s
46
9
2
0
0
4
$
/
k
W
14
2
.
26
34
1
B
t
u
l
k
W
h
25
.
1
O
O
O
s
d
t
W
d
a
y
Fi
x
e
d
C
h
a
r
g
e
Fi
x
e
d
O
&
M
Es
c
a
l
a
t
i
o
n
R
a
t
e
s
Fix
e
d
O
&
M
Tr
a
n
s
p
o
r
t
a
t
i
o
n
0
2
0
0
4
$
p
e
r
kW
-
m
o
75
2
0
0
4
$
p
e
r
kW
-
m
o
Fi
x
e
d
C
o
s
t
s
--
Ca
p
i
t
a
l
R
e
c
o
v
e
r
y
a
n
d
M
i
s
c
e
l
l
a
n
e
o
u
s
Op
e
r
a
t
i
o
n
s
&
M
a
i
n
t
e
n
a
n
c
e
To
t
a
l
F
i
x
e
d
Op
e
r
a
t
i
n
g
Op
t
i
o
n
'
Ne
t
To
t
a
l
P
r
o
j
e
c
t
Ye
a
r
En
e
r
Q
v
Pr
o
j
e
c
t
F
i
x
e
d
C
h
r
Q
.
To
t
a
l
C
o
s
t
s
Fi
x
e
d
Gt
r
a
n
s
Pr
T
a
x
In
s
u
r
.
To
t
a
l
C
o
s
t
s
Co
s
t
s
Ma
r
c
i
n
Va
l
u
e
Pr
o
j
e
c
t
B
e
n
e
f
i
t
To
t
a
l
V
a
r
i
a
b
l
e
C
o
s
t
s
Co
s
t
s
(G
W
h
)
($
0
0
0
s
)
($
0
0
0
5
)
($
0
0
0
s
)
($
l
M
W
h
)
($
0
0
0
5
)
($
0
0
0
5
)
($
0
0
0
s
)
($
0
0
0
5
)
($
0
0
0
s
)
($
l
M
W
h
)
($
0
0
0
5
)
($
0
0
0
s
)
($
0
0
0
s
)
($
0
0
0
s
)
($
l
M
W
h
)
($
0
0
0
5
)
($
l
M
W
h
)
($
0
0
0
s
)
($
l
M
W
h
)
4
2
0
0
8
7
1
5
,
4
1
1
44
7
0
1
1
,
44
7
1
6
.
0
3
36
2
81
4
2
2
5
' 4
,
40
2
6
.
2
1
5
84
9
3
99
4
2
25
1
(
9
60
4
)
(1
3
.
4
)
2
8
,
15
2
3
9
.
4
4
4
00
1
6
1
.
6
2
0
1
0
7
9
2
,
9
1
0
,
71
4
0
1
0
,
71
4
1
3
.
5
3
56
7
"
75
2
23
9
4
55
8
5
.
,
1
5
,
27
2
14
,
4
0
7
2
38
8
1
,
52
3
1
.
9
2
8
12
2
3
5
.
5
4
3
,
39
4
5
4
.
8
2
0
1
2
7
7
7
.
8
1
0
,
01
6
0
1
0
01
6
1
2
.
9
,
78
4
68
9
25
3
4
72
7
6
.
1
1
4
74
3
1
6
63
2
2
,
53
4
4,
4
2
3
5
.
,
2
7
75
2
3
5
.
7
4
2
,
49
4
5
4
,
10
2
0
1
4
7
2
7
.
1
9
31
6
0
9
,
31
6
1
2
,
8
4
01
5
62
7
26
9
4
91
0
6
.
8
1
4
22
6
1
6
33
0
2
68
8
4
79
2
6
.
6
2
6
78
3
-
3
6
.
8
4
1
,
00
9
56
.
4
12
2
0
1
6
7
4
9
.
6
8
81
0
0
8
81
0
1
1
.
8
4
,
25
9
56
4
28
5
5
,
10
8
6
.
8
1
3
,
91
9
1
6
,
96
0
2
85
2
5
,
89
3
7
.
9
2
9
84
2
3
9
.
8
4
3
,
76
1
58
.
4
'
2
0
1
8
"
"
74
6
.
'"
"
8;
2
0
4
'
..
,
'
.
.
"
"
'
0"
"
"
'
8;
2
0
4
"
"
"
1
'
1
.
0
"
"
"
"
51
'
9"
"
""
"
0"
"
50
1
'
,
-
,
,
"
30
2
"
.
.
.
5
,
2"
.
.
.
.
.
,
"
1"
"
"
"
1'3
,
52
7
'
'
f
i
,
13
"
"
"
'
02
5
"
"
"
7;
1
11
'
"
-
"
..
9
.
5
'
,
'
30
,
78
4
.
..
.
"
'
4f
'
2"
"
"
"
"
M;
3
1
f
"
"
"
59
'
:;
;
'
;i
:
:
i
!
r
t
:
~
!
i
~
=
r
jJ
w
,
~:
:
i
C
C
E
:
C
:
~
w!
:
E
:~
C
!
:
!
C
C
~:
t
~
18
2
0
2
2
7
5
9
.
9
7
11
9
0
7
,
11
9
9
.
4
5
,
08
6
37
6
34
0
5
,
80
2
7
.
'
1
2
92
1
1
8
54
8
3,
4
0
5
9
,
03
2
1
1
.
9
3
5
26
3
4
6
.
4
4
8
18
4
6
3
.
20
2
0
2
4
7
7
2
.
6
6
,
56
2
0
6
,
56
2
8
.
5
5
39
6
31
3
36
1
6
,
07
0
7
.
9
1
2
,
63
2
2
1
68
6
3
61
2
1
2
66
6
16
.
4
3
7
,
18
2
4
8
.
..
4
9
,
81
4
6
4
.
Ne
l
P
r
e
s
e
n
l
V
a
l
u
e
9
8
46
9
No
m
i
n
a
l
L
e
v
e
l
i
z
e
d
C
o
s
t
(
$
I
M
W
h
)
Re
a
l
L
e
v
e
l
i
z
e
d
C
o
s
t
(
$
/
M
W
h
)
46
9
37
,
01
7
66
4
47
8
46
,
15
9
14
4
,
62
8
11
9
,
84
7
78
1
28
6
84
7
43
1
47
5
13
;
5
10
.
39
.
31
.
59
.
4
48
.
tr
j
~
~
IJ
C
I
:
:
r
..
.
...
.
.
.
S,
~
9/
2
1
/
2
0
0
4
A
u
r
o
r
a
R
e
s
u
l
t
s
fw
d
t
h
r
u
O
B
10
0
c
a
p
I
R
P
a
n
e
c
c
k
,
xl
s
c
g
k
50
0
/0
o
f
C
o
y
o
t
e
S
p
r
i
n
g
s
2
(
C
C
C
T
a
n
d
D
u
c
t
B
u
r
n
e
r
)
-
An
n
u
a
l
V
a
l
u
e
l
e
s
s
0
2
Ec
o
n
o
m
i
c
A
n
a
l
y
s
i
s
D
e
t
a
i
l
pe
r
c
e
n
t
0
p
e
r
c
e
n
t
As
s
u
m
p
t
i
o
n
s
In
s
u
r
a
n
c
e
C
o
s
t
Ga
s
T
r
a
n
s
p
o
r
t
Ge
n
e
r
a
l
I
n
f
l
a
t
i
o
n
Op
t
i
o
n
V
a
l
u
e
22
0
,
67
2
0
0
4
$
o
o
o
s
00
2
0
0
4
$I
d
t
h
l
d
a
y
0
p
e
r
c
e
n
t
00
0
2
0
0
4
$
o
o
o
s
No
m
i
n
a
l
D
i
s
c
o
u
n
t
Re
a
l
D
i
s
c
o
u
n
t
22
p
e
r
c
e
n
t
50
p
e
r
c
e
n
t
In
s
t
a
l
l
e
d
C
o
s
t
In
s
t
a
l
l
e
d
C
o
s
t
Pr
o
j
e
c
t
C
a
p
a
c
i
t
y
He
a
t
R
a
t
e
Ga
s
U
s
a
g
e
R
a
t
e
55
7
2
0
0
4
$
o
o
o
s
51
7
2
0
0
4
$
/
k
W
14
2
,
26
34
1
B
t
u
l
k
W
h
25
.
1
O
O
O
s
d
l
h
l
d
a
y
Fix
e
d
C
h
a
r
g
e
Ax
e
d
O
&
M
Es
c
a
l
a
t
i
o
n
R
a
t
e
s
Fix
e
d
O
&
M
Tr
a
n
s
p
o
r
t
a
t
i
o
n
0
2
0
0
4
$
p
e
r
kW
-
m
o
75
2
0
0
4
$
p
e
r
kW
-
m
o
Fi
x
e
d
C
o
s
t
s
it
a
l
R
e
c
o
v
e
an
d
M
i
s
c
e
l
l
a
n
e
o
u
s
er
a
t
i
o
n
s
&
M
a
i
n
t
e
n
a
n
c
e
To
t
a
l
A
x
e
d
Op
e
r
a
t
i
n
g
Op
t
i
o
n
Ne
t
To
t
a
l
P
r
o
j
e
c
t
En
e
r
Q
Y
Pr
o
j
e
c
t
Ax
e
d
C
h
To
t
a
l
C
o
s
t
s
Fi
x
e
d
Gt
r
a
n
s
Pr
T
a
x
In
s
u
r
.
To
t
a
l
C
o
s
t
s
Co
s
t
s
Ma
r
Q
l
n
Va
l
u
e
Pr
o
ec
t
B
e
n
e
f
i
To
t
a
l
V
a
ia
b
l
e
os
t
s
Co
s
t
s
(G
W
h
)
($
0
0
0
s
)
($
0
0
0
s
)
($
0
0
0
s
)
(
W
W
h
)
($
0
0
0
s
)
($
0
0
0
s
)
($
0
0
0
s
)
($
O
O
O
s
)
,
.
($
0
0
0
s
)
(
W
W
h
)
($
0
0
0
s
)
($
0
0
0
s
)
($
0
0
0
5
)
($
0
0
0
s
)
(
W
W
h
)
($
0
0
0
s
)
($
l
M
W
h
)
($
0
0
0
s
)
($
l
M
W
h
)
2
2
0
0
6
7
4
9
.
8
1
3
17
1
0
1
3
17
1
1
7
.
6
3
,
16
9
96
8
2
3
4
' 4
,
37
1
5
.
8
1
7
,
54
2
6
13
3
2
12
2
(
9
28
7
)
(1
2
.
4
)
'
2
4
38
2
3
2
.
5
4
1
92
4
5
5
.
4
2
0
0
8
7
8
1
.
9
1
2
40
9
0
1
2
40
9
1
5
.
9
3
,
36
2
0
89
9
'
24
8
4
51
0
5
.
8
1
6
91
9
9
,
58
1
2
25
1
(
5
,
08
7
)
(
6
.
5)
2
6
75
8
3
4
.
2
4
3
,
67
7
5
5
.
6
2
0
1
0
.
.
79
2
.
9
'
1(
6
.
66
0
1
1
66
6
1
4
.
7
3
,
56
7
83
0
26
3
4
66
0
.
1
6
,
32
6
1
4
,
40
7
2
38
8
46
9
0
.
6
2
8
,
12
2
3
5
.
5
4
4
i
44
8
,
5
6
.
B
2
0
1
2
'
77
7
.
8
'
89
6
,
'
.
0
1
0
,
89
6
1
4
.
0
3
78
4
76
1
28
0
4
82
4
6
.
2
1
5
,
72
1
1
6
,
63
2
2
53
4
3
44
5
4
.
4
2
7
75
2
3
5
.
7
4
3
,
47
2
.
5
5
.
10
2
0
1
4
7
2
7
.
1
1
0
12
7
0
1
0
12
7
1
3
.
'
4
01
5
69
1
29
7
5
,
00
3
6
.
9
1
5
,
13
0
1
6
,
33
0
2
68
8
3
88
8
5
,
3
2
6
78
3
,
36
.
8
4
1
91
3
5
7
.
12
2
0
1
6
.
7
4
9
.
6
9
,
55
3
0
9
55
3
'
1
2
.
7
4
25
9
0
62
2
31
5
5
,
19
6
,
6
.
9
1
4
74
9
.
1
6
96
0
2
,
85
2
5
06
2
6
.
8
2
9
84
2
3
9
.
8
4
4
59
1
5
9
.
14
2
0
1
8
74
6
.
4
8
87
8
0
8
87
8
1
1
.
9
4
51
9
55
3
33
4
5
,
40
6
7
.
2
,
28
4
1
7
,
61
3
3
02
5
6
35
4
8
.
5
3
0
78
4
4
1
.
2
4
5
06
8
60
.
4
16
2
0
2
0
"
i6
8
.
i"
"
'
.
B;
2
6
5
.
"
"
'
.
..
"
O.
.
"
26
5
'
.
"
10
~
8
.
.
'
.
"
'
4;
7
9
4
"
'
.
.
"."
0"
'
48
4
.
"
"
.
.
35
.
:3
'
2
'
,
i3
13
;
B
9
7
"
'
.
"
"
'
2(
i
;
.
16
!
f
'
.
"
"
3~
2
o
9
.
.
.
"
.
9;
4
8
1
'
.
.
,.
"
12
.
3"
.
"
.
"
3"
2
;
9
9
2
"
"
.
"
'
"'.
"
"
46
;
8
8
9
.
"
.
.
.
"
61
.
'
0
.
18
2
0
2
2
7
5
9
.
9
7
65
5
0
7
,
65
5
1
0
.
1
5
,
08
6
0
,
41
5
37
6
5
87
6
7
.
7
1
3
,
53
2
1
8
,
54
8
3,
4
0
5
8
,
4
2
1
11
.
1
3
5
,
26
3
4
6
.
4
4
8
79
5
6
4
.
20
2
0
2
4
7
7
2
.
6
7
03
0
0
7
03
0
9
.
1
5
39
6
34
6
39
9
6
,
14
0
7
.
9
1
3
,
17
0
2
1
68
6
3
61
2
1
2
12
8
1
5
.
7
3
7
,
18
2
4
8
.
1
,
35
2
6
5
,
Ye
a
r
Ne
t
P
r
e
s
e
n
t
V
a
l
u
e
1
0
6
,
29
1
No
m
i
n
a
l
l
e
v
e
l
i
z
e
d
C
o
s
t
($
/
M
W
h
)
Re
a
l
L
e
v
e
l
i
z
e
d
C
o
s
t
(
$
/
M
W
h
)
0
1
0
6
29
1
37
,
01
7
35
4
73
4
10
5
15
3
,
39
6
12
8
,
61
5
24
,
78
1
27
0
,
85
9
42
4
25
5
14
.
11
.
6.4
36
.
29
.
57
.
46
.
tr
1
=
~
(J
C
I
=
-
..
.
.
go
:
..
.
.
..
.
.
,
'
-
'
9/
2
1
/
2
0
0
4
A
u
r
o
r
a
R
e
s
u
l
t
s
10
0
c
a
p
I
R
P
0
5
-
ck
,
xl
s
c
g
k
--
-
.
50
0
/0
o
f
C
o
y
o
t
e
S
p
r
i
n
g
s
2
(
C
C
C
T
a
n
d
D
u
c
t
B
u
r
n
e
r
)
-
An
n
u
a
l
V
a
l
u
e
l
e
s
s
Q
2
Ec
o
n
o
m
i
c
A
n
a
l
y
s
i
s
D
e
t
a
i
l
As
s
u
m
p
U
o
n
s
In
s
t
a
l
l
e
d
C
o
s
t
41
3
20
0
4
$
0
0
0
5
Fi
x
e
d
C
h
a
r
g
e
0
2
0
0
4
$
p
e
r
kW
-
m
o
In
s
u
r
a
n
c
e
C
o
s
t
In
s
t
a
l
l
e
d
C
o
s
t
31
2
20
0
4
$
/
k
W
Ax
e
d
O
&
M
75
2
0
0
4
$
p
e
r
kW
-
m
o
.
G
a
s
T
r
a
n
s
p
o
r
t
Pr
o
j
e
c
t
C
a
p
a
c
i
t
y
14
2
.
Es
c
a
l
a
t
i
o
n
R
a
t
e
s
Ge
n
e
r
a
l
I
n
f
l
a
t
i
o
n
He
a
t
R
a
t
e
34
1
Bt
u
l
k
W
h
Fi
x
e
d
O
&
M
pe
r
c
e
'
:
1
t
Op
t
i
o
n
V
a
l
u
e
Ga
s
U
s
a
g
e
R
a
t
e
25
.
00
0
5
d
t
h
l
d
a
y
Tr
a
n
s
p
o
r
t
a
t
i
o
n
0
p
e
r
c
e
n
t
13
3
.
24
2
0
0
4
$
O
o
o
s
00
2
0
0
4
$/
d
t
h
l
d
a
y
0
p
e
r
c
e
n
t
00
0
2
0
0
4
$
O
o
o
s
No
m
i
n
a
l
D
i
s
c
o
u
n
t
Re
a
l
D
i
s
c
o
u
n
t
22
p
e
r
c
e
n
t
'
50
p
e
r
c
e
n
t
Fi
x
e
d
C
o
s
t
s
it
a
l
R
e
c
o
v
e
an
d
M
i
s
c
e
l
l
a
n
e
o
u
s
er
a
t
i
o
n
s
&
M
a
i
n
t
e
n
a
n
c
e
To
t
a
l
A
x
e
d
Op
e
r
a
t
i
n
g
Op
t
i
o
n
Ne
t
To
t
a
l
P
r
o
j
e
c
t
En
e
r
Q
V
Pr
o
j
e
c
t
Fix
e
d
C
h
To
t
a
l
C
o
s
t
s
Fi
x
e
d
Gt
r
a
n
s
Pr
T
a
x
In
s
u
r
.
To
t
a
1
C
o
s
t
s
Co
s
t
s
Ma
r
Q
i
n
Va
l
u
e
Pr
o
ec
t
B
ne
f
i
t
ot
a
l
V
a
r
i
a
b
l
e
C
o
s
t
Co
s
t
s
(G
W
h
)
($
0
0
0
s
)
,
($
0
0
0
5
)
($
0
0
0
5
)
($
l
M
W
h
)
($
0
0
0
5
)
($
0
0
Q
s
)
($
0
0
0
5
)
($
0
0
0
s
)
($
0
0
0
5
)
($
l
M
W
h
)
($
0
0
0
5
)
($
0
0
0
5
)
($
0
0
0
s
)
($
0
0
0
5
)
($
l
M
W
h
)
($
0
0
0
5
)
($
l
M
W
h
)
($
0
0
0
s
)
($
l
M
W
h
)
2
2
0
0
6
7
0
7
.
5
8
77
8
0
8
,
77
8
1
2
.
4
3
,
16
9
0
5
8
4
14
1
3
,
89
5
,
5
.
,
1
2
67
4
3
86
5
2
,
12
2
(
6
6B
7
)
(
9
.
71
3
4
3
.
4
4
3
,
38
7
6
1
.
4
2
0
0
B
7
2
7
.
3
8
15
8
0
8
,
15
8
11
.
2
3
36
2
'
54
3
15
0
4
05
5
5
.
6
1
2
,
21
3
3
91
0
,
2
,
25
1
(
6
,
05
2
)
(
8
.
3)
2
8
72
4
3
9
.
5
4
0
93
B
5
6
.
8
2
0
1
2
.'
.
'
46
B
~
B
.
.
.
.
'
.
'"
,
.
.
.
.
.
.
.
,
0
..
.
6~
B
B
8
"
"
1
4
.
7'
3
,
78
4
45
9
16
9
4
,
41
2
9
.
4
1
1
,
30
1
1
0
59
2
2
53
4
1
82
4
3
,
9
2
1
71
9
4
6
,
3
3
3
,
01
9
70
.
4
10
2
0
1
4
3
9
5
.
,
6
,
28
9
0
6
28
9
1
5
.
9
4
01
5
41
7
,
17
9
4
61
1
1
1
.
7
1
0
,
90
0
1
1
81
0
2
6B
8
3
.
59
7
9
.
1
1
8
21
5
,
4
6
.
1
2
9
,
11
5
7
3
.
12
2
0
1
6
4
3
0
.
3
5
,
98
6
0
5
,
98
6
1
3
.
9
4
25
9
0
3
7
6
19
0
4
82
5
1
1
.
2
1
0
,
81
1
1
2
55
3
2
85
2
4
59
3
1
0
.
7
2
0
88
8
4
8
.
,
3
1
69
9
7
3
.
14
2
0
1
8
44
8
.
2
5
.
61
7
0
5
,
61
7
1
2
.
5
4
51
9
0
33
4
20
2
5
05
4
1
1
.
3
1
0
67
1
1
3
37
6
3
,
02
5
.
73
0
1
2
.
8
2
2
15
1
49
.
4
3
2
,
82
2
'
7
3
.
,
1
6
20
2
0
.
.
.
.
45
8
.
1'
'
"
.
5;
2
7
3
.
.
.
.
,
.
"
.
.
'
.
27
3
'"
1
1
.
5
4
79
4
29
2
21
4
5
,
30
0
1
1
.
6
1
0
.
57
3
1
5
,
07
3
3
20
9
7
71
0
1
6
.
8
2
3
92
9
5
2
.
2
"
3
4
50
3
7
5
.
18
2
0
2
2
4
9
0
.
4
4
94
8
0
4
,
94
8
1
0
.
1
5
,
08
6
25
0
22
7
5
,
56
3
1
1
.
3
1
0
,
51
2
1
4
88
1
3
,
40
5
7
77
4
.
1
5
.
9
2
6
08
5
5
3
.
2
3
6
59
7
7
4
.
20
2
0
2
4
5
0
6
,
'
4
;
6
2
9
0
4
62
9
'
1
5
,
39
6
20
9
24
1
5
84
5
1
1
.
10
,
4
7
4
1
7
19
1
3
,
61
2
1
0
,
32
9
2
0
,
4
2
8
,
33
9
5
6
.
0
"
81
3
7
6
.
Ye
a
r
Ne
t
P
r
e
s
e
n
t
V
a
l
u
e
6
8
58
3
No
m
i
n
a
l
l
e
v
e
l
i
z
e
d
C
o
s
t
($
/
M
W
h
)
Re
a
l
l
e
v
e
l
i
z
e
d
C
o
s
t
($
/
M
W
h
)
58
3
01
7
44
0
65
1
43
,
10
8
11
1
,
69
1
86
,
91
0
24
,
78
1
24
0
85
3
35
2
54
4
13
.
11
.
48
.
39
.
71
.
57
.
4
t.
'
!
j
=
~
(J
C
I
=
-
.,
.
-a
'
,1
:
:
1
.
.,
.
0
~
..
.
.
,
)0
0
0
8
9/
2
1
/
2
0
0
4
A
u
r
o
r
a
R
e
s
u
l
t
s
In
c
r
e
a
s
i
n
g
s
p
a
r
k
ck
,
xl
s
c
g
k
50
0
/
0
o
f
Co
y
o
t
e
S
p
r
i
n
g
s
2
(
C
C
C
T
a
n
d
D
u
c
t
Bu
r
n
e
r
)
-
-
'
:
"
A
n
n
u
a
l
V
a
l
u
e
Ec
o
n
o
m
i
c
A
n
a
l
y
s
i
s
D
e
t
a
i
l
0
p
e
r
c
e
n
t
0
p
e
r
c
e
n
t
As
s
u
m
p
t
i
o
n
s
In
s
u
r
a
n
c
e
C
o
s
t
Ga
s
T
r
a
n
s
p
o
r
t
Ge
n
e
r
a
l
I
n
f
l
a
t
i
o
n
Op
t
i
o
n
V
a
l
u
e
20
9
.
96
2
0
0
4
$
o
o
o
s
00
2
0
0
4
$/
d
t
h
l
d
a
y
0
p
e
r
c
e
n
t
00
0
2
0
0
4
$
o
o
o
s
No
m
i
n
a
l
D
i
s
c
o
u
n
t
Re
a
l
D
i
s
c
o
u
n
t
22
pe
r
c
e
n
t
50
p
e
r
c
e
n
t
In
s
t
a
l
l
e
d
C
o
s
t
In
s
t
a
l
l
e
d
C
o
s
t
Pr
o
j
e
c
t
C
a
p
a
c
i
t
y
He
a
t
R
a
t
e
Ga
s
U
s
a
g
e
R
a
t
e
98
6
2
0
0
4
$
o
o
O
s
49
2
2
0
0
4
$
/
k
W
14
2
,
26
M
W
34
1
Bt
u
/
k
W
I
:
1
25
.
1
o
o
o
s
d
t
h
l
d
a
y
Fix
e
d
C
h
a
r
g
e
Fix
e
d
O
&
M
Es
c
a
l
a
t
i
o
n
R
a
t
e
s
Fix
e
d
O
&
M
Tr
a
n
s
p
o
r
t
a
t
i
o
n
0
2
0
0
4
$
p
e
r
kW
-
m
o
75
2
0
0
4
$
p
e
r
kW
-
m
o
Fi
x
e
d
C
o
s
t
s
ita
l
R
e
c
o
v
e
an
d
M
i
s
c
e
l
l
a
n
e
o
u
s
er
a
t
i
o
n
s
&
M
a
i
n
t
e
n
a
n
c
e
To
t
a
l
F
i
x
e
d
Op
e
r
a
t
i
n
g
Op
t
i
o
n
Ne
t
To
t
a
l
P
r
o
j
e
c
t
En
e
r
c
y
Pr
o
i
e
c
t
Fi
x
e
d
C
h
r
'T
o
t
a
l
C
o
s
t
s
Fi
x
e
d
Gt
r
a
n
s
Pr
T
a
x
In
s
u
r
.
To
t
a
l
C
o
s
t
s
Co
s
t
s
Ma
r
c
i
n
Va
l
u
e
Pr
o
ec
t
B
e
n
e
f
i
t
To
t
a
l
V
a
r
i
a
b
l
e
C
o
s
t
s
Co
s
t
s
(G
W
h
)
($
0
0
0
s
)
($
0
0
0
s
)
($
0
0
0
s
)
($
I
M
W
h
)
($
O
O
O
s
)
($
0
0
0
5
)
($
0
0
0
5
)
($
0
0
0
s
)
($
0
0
0
s
)
($
I
M
W
h
)
($
O
O
O
s
)
($
0
0
0
s
)
($
0
0
0
s
)
($
0
0
0
s
)
($
I
M
W
h
)
($
0
0
0
s
)
($
I
M
W
h
)
,
,
(
$
0
0
0
s
)
($
I
M
W
h
)
2
2
0
0
6
7
7
6
.
2
1
2
99
8
0
1
2
99
8
1
6
.
7
3
,
16
9
92
1
2
2
3
,
4
31
3
,
5
.
6
1
7
,
31
1
4
,
62
9
12
2
(
1
0
,
56
1
)
(
1
3
.
6)
3
2
78
5
4
2
,
2
5
0
09
6
6
4
,
4
2
0
0
8
7
4
9
.
4
1
2
00
5
0
1
2
00
5
1
6
.
0
3
,
36
2
85
5
23
6
4
45
4
5
.
16
,
4
5
9
4
03
6
2
25
1
(
1
0
,
17
2
)
(
1
3
.
6)
29
,
4
3
2
3
9
.
3
4
5
,
89
1
6
1
.
6
2
0
1
0
9
4
3
.
1
1
1
40
1
0
1
1
40
1
1
2
.
1
3
,
56
7
78
9
25
1
4
60
7
'
4
.
9
1
6
,
00
9
1
5
,
25
3
2
38
8
1
63
2
1
.
7
3
2
88
8
3
4
.
9
4
8
,
89
6
5
1
.
8
2
0
1
2
9
3
2
,
4
1
0
68
0
0
1
0
68
0
1
1
.
5
3
,
78
4
72
4
2
6
6
, 4
77
4
5
.
15
,
4
5
4
17
,
4
7
5
2
,
53
4
4
55
5
4
.
9
3
2
74
4
3
5
.
1
4
8
,
19
7
5
1
.
12
2
0
1
6
9
0
7
.
9
9
44
0
0
9
44
0
1
0
,
,
4
25
9
59
2
2
9
9
'
5
15
1
5
.
7
1
4
59
0
1
8
09
5
2
85
2
6
35
6
7
.
0
3
5
,
50
1
3
9
.
1
5
0
09
1
'
5
5
.
16
2
0
2
0
9
2
7
.
8
8
,
24
6
0
8
,
24
6
,
9
4
79
4
46
0
33
7
5
.
59
1
6
.
,
1
3
83
7
2
1
27
8
3
20
9
1
0
65
1
1
1
.
5
3
9
,
13
6
4
2
.
,
5
2
97
3
5
7
.
18
2
0
2
2
9
3
4
.
9
7
73
2
0
73
2
8
.
3
5
;
08
6
0
39
5
35
7
5
83
8
6
.
'
1
3
,
57
0
1
9
,
66
6
'
40
5
'
9
5(
)
1
,
1
0
.
2
4
2
65
7
4
5
.
6
'
,
5
6
;
2
2
7
'
6
0
.
20
2
0
2
4
9
5
1
.
8
7
16
0
0
7
,
16
0
7
.
5
5
39
6
32
9
37
9
,
10
4
'
6
.
4
1
3
,
26
4
2
2
.
87
8
3
,
61
2
1
3
,
22
6
1
3
.
9
4
4
95
5
4
7
.
'
5
8
,
21
9
6
1
.
Ye
a
r
Ne
t
P
r
e
s
e
n
t
V
a
l
u
e
1
0
4
44
2
No
m
i
n
a
l
L
e
v
e
l
i
z
e
d
C
o
s
t
(
$
/
M
W
h
)
Re
a
l
L
e
v
e
l
i
z
e
d
C
o
s
t
(
$
/
M
W
h
)
0
1
0
4
44
2
01
7
99
7
60
2
,
4
6
61
5
15
1
05
8
12
6
27
6
78
1
32
5
,
05
8
47
6
11
5
12
.
38
.
30
.
55
.
45
.
t.!
j
~
~
fJ
Q
=
-
rD
.
.
.
.
UI
~
f"
'
I
'
-
..
.
.
.
9/
2
1
/
2
0
0
4
A
u
r
o
r
a
R
e
s
u
l
t
s
fw
d
t
h
r
u
O
B
10
0
c
a
p
I
R
P
a
f
t
e
r
ck
.
xl
s
c
g
k
..
.
.
.
.
50
0
/
0
o
f
Co
y
o
t
e
S
p
r
i
n
g
s
2
(
C
C
C
T
a
n
d
D
u
c
t
B
u
r
n
e
r
)
-
An
n
u
a
l
V
a
l
u
e
Ec
o
n
o
m
i
c
A
n
a
l
y
s
i
s
D
e
t
a
i
l
0
p
e
r
c
e
n
t
0
p
e
r
c
e
n
t
As
s
u
m
p
t
i
o
n
s
In
s
u
r
a
n
c
e
C
o
s
t
Ga
s
T
r
a
n
s
p
o
r
t
Ge
n
e
r
a
l
I
n
f
l
a
t
i
o
n
Op
t
i
o
n
V
a
l
u
e
23
2
,
73
2
0
0
4
$
o
o
o
s
00
2
0
0
4
$/
d
t
h
l
d
a
y
0
p
e
r
c
e
n
t
00
0
2
0
0
4
$
O
O
O
s
No
m
i
n
a
l
D
i
s
c
o
u
n
t
Re
a
l
D
i
s
c
o
u
n
t
22
p
e
r
c
e
n
t
50
pe
r
c
e
n
t
In
s
t
a
l
l
e
d
C
o
s
t
In
s
t
a
l
l
e
d
C
o
s
t
Pr
o
j
e
c
t
C
a
p
a
c
i
t
y
He
a
t
R
a
t
e
Ga
s
U
s
a
g
e
R
a
t
e
57
6
54
5
14
2
.
34
1
25
.
20
0
4
$
o
o
o
s
20
0
4
$
/
k
W
Bt
u
/
k
W
h
OO
O
s
d
t
h
l
d
a
y
Fix
e
d
C
h
a
r
g
e
Fix
e
d
O
&
M
Es
c
a
l
a
t
i
o
n
R
a
t
e
s
Fi
x
e
d
O
&
M
Tr
a
n
s
p
o
r
t
a
t
i
o
n
0
2
0
0
4
$
p
e
r
kW
-
m
o
75
2
0
0
4
$
p
e
r
kW
-
m
o
Ax
e
d
C
o
s
t
s
it
a
l
R
e
c
o
v
e
an
d
M
i
s
c
e
l
l
a
n
e
o
u
s
er
a
t
i
o
n
s
&
M
a
i
n
t
e
n
a
n
c
e
To
t
a
l
F
i
x
e
d
Op
e
r
a
t
i
n
g
'
Op
t
i
o
n
Ne
t
To
t
a
l
P
r
o
j
e
c
t
En
e
r
o
v
Pr
o
i
e
c
t
Ax
e
d
C
h
r
To
t
a
l
C
o
s
t
s
Fi
x
e
d
Gt
r
a
n
s
Pr
T
a
x
In
s
u
r
.
To
t
a
l
C
o
s
t
s
Co
s
t
s
Ma
r
o
i
n
Va
l
u
e
Pr
o
ec
t
B
e
n
e
f
i
t
To
t
a
l
V
a
r
i
bl
e
C
o
s
t
s
Co
s
t
s
(G
W
h
)
($
0
0
0
5
)
($
0
0
0
5
)
($
0
0
0
5
)
($
/
M
W
h
)
($
0
0
0
5
)
($
0
0
0
5
)
($
0
0
0
5
)
($
0
0
0
s
)
($
0
0
0
5
)
($
l
M
W
h
)
($
0
0
0
5
)
(
$
0
0
0
5
)
,
(
$
0
0
0
5
)
($
0
0
0
5
)
($
/
M
W
h
)
($
0
0
0
5
)
($
l
M
W
h
)
($
0
0
0
5
)
($
l
M
W
h
)
2
2
0
0
6
8
7
2
.
8
1
3
98
7
0
1
3
,
98
7
1
6
.
0
3
16
9
0
1
02
1
24
7
4
43
7
5
.
1
1
8
42
4
6
52
5
2
12
2
(
9
,
77
8
)
(1
1
.
2
)
27
:
9
0
7
3
2
.
0
4
6
33
1
53
.
1
6
2
0
1
0
9
4
3
.
1
1
2
44
9
'
0
1
2
44
9
1
3
.
2
3
,
56
7
87
5
27
8
4
72
0
5
.
0
1
7
16
9
1
5
,
25
3
2
,
38
8
47
2
0
.
5
3
2
88
8
3
4
.
50
;
0
5
6
5
3
.
10
2
0
1
4
8
6
2
.
5
1
0
81
7
0
1
0
81
7
1
2
.
5
4
01
5
72
9
31
3
5
05
7
5
.
9
1
5
,
87
4
1
7
38
3
2
,
68
8
4
19
7
4
.
9
3
1
31
0
3
6
.
3
4
7
,
18
4
5
4
.
12
2
0
1
6
9
0
7
,
9
1
0
25
7
0
1
0
25
7
1
1
.
3
4
25
9
65
6
33
2
5
24
7
,
8
1
5
50
4
1
8
09
5
'
2
85
2
5
,
44
2
6
.
0
3
5
50
1
3
9
.
1
5
1
00
5
5
6
.
..
:
~
.
.S
!
i
~
~
~
;
1
g
~
1
:
t
m
=
~
:
t
:
:
i
~
m
:
I
C
t
U
=
:c
:
I
C
I
i
:
f
~
Ct
C
l
!
:
C
~
~
J
:
.
:;
C
C
I
:
l
~
16
2
0
2
0
9
2
7
.
8
8
,
91
2
,
0
8
,
91
2
9
.
6
4
79
4
51
0
37
3
5
67
8
6
.
1
1
4
,
59
0
2
1
27
8
3
,
20
9
9
89
8
1
0
.
7
3
9
13
6
4
2
.
2
5
3
72
6
5
7
.
18
2
0
2
2
9
3
4
.
9
8
32
2
0
8
32
2
0.
9
5
,
08
6
0
4
3
7
39
6
5
92
0
6
.
3
1
4
24
2
1
9
66
6
3
40
5
8
82
9
9
.
4
4
2
65
7
4
5
.
6
5
6
,
89
9
6
0
.
20
2
0
2
4
9
5
1
.
8
7
67
5
0
7
67
5
8
.
1
5
,
39
6
36
5
42
0
6
18
1
6
.
5
1
3
85
6
2
2
,
87
8
3
,
61
2
1
2
,
63
5
1
3
.
3
4
4
,
95
5
4
7
.
2
'
81
1
6
1
.
Ye
a
r
Ne
t
P
r
e
s
e
n
t
V
a
l
u
e
1
1
3
,
49
1
No
m
i
n
a
l
l
e
v
e
l
i
z
e
d
C
o
s
t
(
$
/
M
W
h
)
Re
a
l
l
e
v
e
l
i
z
e
d
C
o
s
t
($
/
M
W
h
)
11
3
,
4
9
1
37
,
01
7
()
'
75
6
88
4
65
6
16
1
14
8
13
~
36
6
78
1
31
6
75
0
47
7
89
8
12
,
10
.
..
.
36
.
29
.
54
.
4
44
,
0'1
..
.
,
I0
-
I
o
tr
j
C'"
..
.
.
.
9/
2
1
/
2
0
0
4
A
u
r
o
r
a
R
e
s
u
l
t
s
10
0
c
a
p
I
R
P
O
5
-
ck
,
xl
s
c
g
k
,,"
,
50
0
/0
of
C
o
y
o
t
e
S
p
r
i
n
g
s
2
(
C
C
C
T
a
n
d
D
u
c
t
B
u
r
n
e
r
)
-
An
n
u
a
l
V
a
l
u
e
Ec
o
n
o
m
i
c
A
n
a
l
y
s
i
s
D
e
t
a
i
l
0
p
e
r
c
e
n
t
0
p
e
r
c
e
n
t
As
s
u
m
p
t
i
o
n
s
In
s
u
r
a
n
c
e
C
o
s
t
Ga
s
T
r
a
n
s
p
o
r
t
Ge
n
e
r
a
l
I
n
f
l
a
t
i
o
n
Op
t
i
o
n
V
a
l
u
e
13
6
.
99
2
0
0
4
$
o
o
o
s
00
2
0
0
4
$
/
d
t
W
d
a
y
0
p
e
r
c
e
n
t
00
0
2
0
0
4
$
o
o
o
s
No
m
i
n
a
l
D
i
s
c
o
u
n
t
Re
a
l
D
i
s
c
o
u
n
t
22
p
e
r
c
e
n
t
50
pe
r
c
e
n
t
In
s
t
a
l
l
e
d
C
o
s
t
In
s
t
a
l
l
e
d
C
o
s
t
Pr
o
j
e
c
t
C
a
p
a
c
i
t
y
He
a
t
R
a
t
e
Ga
s
U
s
a
g
e
R
a
t
e
66
5
2
0
0
4
$
o
o
O
s
32
1
2
0
0
4
$
/
k
W
14
2
,
26
M
W
34
1
B
t
u
l
k
W
h
25
.
1
o
o
o
s
d
t
W
d
a
y
Fi
x
e
d
C
h
a
r
g
e
Fi
x
e
d
O
&
M
Es
c
a
l
a
t
i
o
n
R
a
t
e
s
Ax
e
d
O
&
M
Tr
a
n
s
p
o
r
t
a
t
i
o
n
0
2
0
0
4
$
p
e
r
kW
-
m
o
75
2
0
0
4
$
p
e
r
kW
-
m
o
Ax
e
d
C
o
s
t
s
it
a
l
R
e
c
o
v
e
an
d
M
i
s
c
e
l
l
a
n
e
o
u
s
er
a
t
i
o
n
s
&
M
a
i
n
t
e
n
a
n
c
e
To
t
a
l
F
i
x
e
d
Op
e
r
a
t
i
n
g
Op
t
i
o
n
Ne
t
To
t
a
l
P
r
o
j
e
c
t
En
e
m
y
Pr
o
i
e
c
t
Fix
e
d
C
h
r
To
t
a
l
C
o
s
t
s
Ax
e
d
Gt
r
a
n
s
Pr
T
a
x
In
s
u
r
.
To
t
a
l
C
o
s
t
s
Co
s
t
s
Ma
r
c
i
l
n
Va
l
u
e
Pr
o
ec
t
B
e
n
e
f
i
t
ot
a
l
V
a
r
i
a
b
l
e
C
o
s
t
s
Co
s
t
s
(G
W
h
)
($
0
0
0
s
)
($
0
0
0
s
)
($
0
0
0
s
)
($
/
M
W
h
)
($
0
0
0
s
)
($
0
0
0
s
)
($
0
0
0
s
)
($
0
0
0
s
)
($
0
0
0
5
)
($
i
M
W
h
)
($
0
0
0
s
)
($
0
0
0
s
)
($
0
0
0
s
)
($
0
0
0
s
)
($
l
M
W
h
)
($
0
0
0
5
)
($
l
M
W
h
)
($
O
O
O
s
)
($
l
M
W
h
)
2
2
0
0
6
.
7
2
9
,
5
9
02
4
0
9
02
4
1
2
.
4
3
,
16
9
0
6
0
1
14
5
3
91
6
5.
4
1
2
,
94
0
3
,
90
3
,
2
12
2
.
(
6
,
91
5
)
(
9
.
5)
3
1
63
2
4
3
.
4
4
4
57
1
6
1
.
4
2
0
0
8
7
5
4
.
8
8
39
5
0
8
39
5
1
1
.
1
3
,
36
2
55
8
15
4
4
07
5
5
.
4
1
2
47
0
3
,
94
9
2
25
1
(
6
,
27
0
)
(
8
,
3)
2
9
,
76
9
3
9
.
4
4
2
23
8
5
6
.
6
2
0
1
0
"
'
54
2
:
5
64
0
"
'
"
"
.
"
'
if
,
.
.
'
64
0
"
"
"
'
""
"
56
7
'
,
,
.
.
,
"
0'
'
.
.
"
51
5
"
'
.
-
"
"
64
"
"
(2
4
(
1
"
"
'
"
"
ii
f
'
'
"
"
"
f1
~
8
B
i
f
'
"
"
'
8;
5
3
2
"
"
'
2;
3
8
8
"
"
"
(9
6
6
)
'
,
.
,
"
"
((
8
)
"
"
24
~
4
0
7
'
"
,
.
"
45
:
0
"
'
"
..
"
3
~
,
29
3
.
"
"
"
'
-
66
:
9
10
2
0
1
4
"
43
9
.
2"
"
6:
5
3
0
.
""
"
"
O"
"
'
53
0
"
"
"
'
o
14
~
9
"
-
"
'
'
15
'
,
"
"
"
0"
"
42
9
"
"
'-
'
1'
8
4
-
'
4
;
6
2
8
"
'
.
1"
0
:
5
'
"
"
15
9
"
"
1"
2
29
7
"
"
-
2
:
6
8
8
"
""
'
82
6
"
'
"
8~
i
-
20
.
1
'
8
5
'
,"
'
4
i
i
o
"
"
"
'
"
3
1
34
4
"
""
"
71
"
:
4
: 1
1
:
:2
0
1
5
:-
:
:
?
~:
/
:
:
:
4
6
Ej'
;
4
r:
:
;(
:
!
(
~
:
:
:
:
r
;
'
:3
a
g
:
:
!
;
;
;
1
8
:
:
:
:
W
i
:
:
P
.
~
~
i
:
~
~
:
:
(j
:
i
~
~
:
~!
6
:
:
M~
f
!
?
~
Y
~
:
~f
:
~
:~
~
~
:
~
~
~
~i4
:
:1
3
t~
t
'
.
:
?
:
i
~
~
~
:
:
:
'
H;
~
t
~
(
~
~
~
'
:
4
ir
:
!
0
~
~
'
J
~
~
n
j
b
:1
1
~
.
.
l!
!
i
'
4
:
7
3
3:
~
~
1
-
.
q
.
~
~
:
5:
f
1
1
!
~
J
i
~
*
;
;
'
~
1
1
:
:
j
:
~
2
:
~
~
?
i
' '
M9
;
r
.
:
t
~
'1
;
f
(
~;
'
76
a
f
r
t~
f
8
~
~
:
;
:~
f
:
4
5
(
f
W
~
J
;
f
r
i
~
1
(
g
?
j
f
i~
f
B
(
2
f
a
61
-
~
4
6
'
:9
.
i8
~
$
.
.
W
:
3
~
:
S
a~
0
:
"
;lf
~
0
3
v
.
(
F
"
"
:"
'
':
'
:
"
'
,
"
""
"
."
'
,
:
,
"
:
1
.
"
,
;
"
" '
"=
-
"
"
:
'
1"
"
,
:
"
"
"
"
;
"
"
"
",:
"
,
:
,
:
"
.
;,
:
"
,
.
:
.
;
.
~
,
,;,
:
;
1
:
"
""
;
'
;
"
';"
'
;
"
"
'
..,
'
';'
;
'
:
'
;
~
;
'
:
'
M
'
;
'
"
"
"
'
,:,
;
"
'
;
'
:
f
.
"
:
'
,..
c':
"
'
:
;
:
.
+Y
,
"
"
,
."
"
"
.
"
"
"
,
,
,
,
.
.
.
d
'
";,
"
"
,..".
.
.
,
.
X
i
~
.
i
.
,
rih
"
"
""
"
,
""
,
,
,
,
"
,
"
'
N
'
-
;
"
':
"
"
;
"
;
"
"
'
;:'
'
+
H
"
;
"
:"
,
""
'
rY
.
o
i
X
~
"
"
"
"
,,,
,,,
:
':
"
:':
'
":
"
,
,
';
'
:
'
;
"
.
;
"
"';
'
",'
,
,
,:
:,"
"
"
"
i
'
".i
'
'~
"
"
"
"
"
-
"
"
"
"
,:"
""
"
"
"
'
-
"
'
"
"
'
!
'
1
!
'
"
.
.
,
,,
J"
"
"
,
"
~
"
"
"
,:,
:,:
,
12
2
0
1
6
4
8
2
,
6
6
,
23
9
0
6
,
23
9
1
2
.
9
4
25
9
38
6
19
5
4
84
1
1
0
.
0
1
1
08
0
1
3
04
4
2
85
2
4
81
6
1
0
.
0
2
;
3
,
34
8
4
8
.
34
,
4
2
8
7
1
.
14
'
20
1
8
'
'
49
8
"
0
'
"
"
5;
8
5
3
.
.
.
.
.
,
,
'
.
.
.
.
'
0
"
"
5;
8
5
3
.
.
"
"
1'
f
.
e
'
"
"
"
!W
f
'
.
.
.
.
.
"
'
0"
"
"
'
34
3
"
"
,
20
i
'
"
..
5
06
9
"
-
"
1i
)
:
2
,
.
.
,
-,
"
0;
9
2
3
'-
"
13
,
77
0
"
"
'
3i
i
2
S
"
"
"
'
5;
8
7
3
"
"
"
"
"
'
fi
e
'
'
"
24
;
5
3
0
'
..
'
4if
'
3'
'.
"
'
35
;
4
5
2
"
"
'
.
'
'
7'
1
'
.
2
16
2
0
2
0
5
0
4
.
5,
4
9
6
5,
4
9
6
1
0
.
9
4
,
79
4
30
0
22
0
5
,
31
4
1
0
.
5
1
0
81
0
1
5
,
53
9
3
20
9
7
,
93
9
1
5
.
7
2
6
27
9
5
2
.
1
3
7
08
9
7
3
.
18
2
0
2
2
5
5
9
.
0
5
,
21
4
0
5
21
4
9
.
3
5
,
08
6
25
8
23
3
5
,
57
7
1
0
.
0
1
0
79
1
1
5
43
5
3
40
5
8
05
0
1
4
.
4
2
9
59
8
5
3
.
0
4
0
,
38
8
7
2
.
20
2
0
2
4
5
6
6
.
2
4
86
9
0
4
86
9
8
.
6
5
,
39
6
21
5
24
7
5
,
85
8
1
0
.
3
1
0
72
7
1
7
,
71
0
3
61
2
1
0
59
5
1
8
.
7
3
1
58
2
5
5
.
8
4
2
30
9
7
4
.
Ye
a
r
Ne
t
P
r
e
s
e
n
t
V
a
l
u
e
7
0
89
5
No
m
i
n
a
l
L
e
v
e
l
i
z
e
d
C
o
s
t
(
$
I
M
W
h
)
Re
a
l
L
e
v
e
l
i
z
e
d
C
o
s
t
(
$
/
M
W
h
)
70
,
89
5
01
7
()
'
56
5
69
7
43
,
28
0
11
4
1'7
4
89
,
39
3
78
1
25
6
,
60
2
37
0
,
77
6
13
.
10
.
47
.
38
.
69
.
55
.
(J
C
I
...
.
.
.
,
J
1-
-
&
f"
+Co
.
.
4
9/
2
1
/
2
0
0
4
A
u
r
o
r
a
R
e
s
u
l
t
s
in
c
r
e
a
s
i
n
g
s
p
a
r
I
L
c
k
.
xl
s
c
g
k
Coyote Springs 2 - 2nd Half Acquisition
Option Value Back-Cast Analysis
In addition to the basic value of the one-half portion of Coyote Springs 2 (CS2) combined
cycle combustion turbine project captured in the Aurora hourly dispatch model, the
Company also estimated the value that results from trading in and out of the fueled state
for the CS2 project. When a natural gas plant is fueled, based on economics, it may later
be un-fueled (electricity purchased and natural gas sold) when the relative market implied
heat rate economics change. Subsequently, if the relative electric and natural gas prices
again change, the plant may be fueled again. These "heat rate swaps" are driven by the
changing relative forward price economics of the plant. These option value swap
transactions add to the overall plant economics.
The Company developed a back-cast model to estimate some potential values for
different historic data periods. The model output is an estimate of potential option values
for half of the CS2 plant using different sets of historic data. The model used historical
daily forward electric and natural gas price curves from the Company s power transaction
records system (Nucleus). Mid-Columbia prices were used for electric power. Since the
Company has tracked daily forward Rathdrum prices, and because those prices are close'
to natural gas prices at Stanfield, those prices were used for forward natural gas prices.
Three different periods were modeled including a 37-month, a 25-month, and a 13-month
period. Monthly flat forward electric and natural gas prices for each of the twelve
forward months were captured for each trading day (typically five days per week) of the
period being modeled. The plant s coITesponding cost to generate was calculated using
forward natural gas prices, estimated O&M costs and the plant s net heat rate The cost
to generate ($/MWh) is calculated as follows:
(Net heat rate/lOOO) x (natural gas price/Dth) (O&M cost/MWh)
For each trading day, a "generate vs. buy" comparison was made for each forward month
between the cost to generate and market price of power. For any given forward month,
the initial status of the plant is assumed to be off-line, or "unfueled~" Therefore, the fITst
decision that the model had to make is when to purchase fuel and sell electric energy, or
fuel" the plant. When the initial decision was made to fuel the plant for a forward
month, the total margin value ($/MWh) was then calculated based on the following
formula:
(Electric market price/MWh cost to generate/MWh) x plant availability x hours in the
month
As the model moved through the trading days, if the plant became uneconomic for a
forward month for which was previously fueled, the model would unfuel the plant (sell
natural gas and purchase electric power) and calculate the margin ($/MWh) based on the
following formula:
(Cost to generate/MWh electric market price/MWh) x plant capability x hours in the
month
1 Net hear rate includes the BPA transmission losses of 1.9% to deliver CS2 power to Avista s system or
the Mid-Columbia,
Page 9- 24-
Exhibit J
Page 8 of 10
I ., .
Coyote Springs 2 - 2nd Half Acquisition
Option Value Back-Cast Analysis
As the model moved through the trading days, the state of the plant (fueled or unfueled)
was tracked for each forward month. As opportunities arose, the plant was either
unfueled or fueled based on the changing forward prices for the 12-month forward
period. The model was limited to the extent it could only fuel or unfuel the plant when
the value of the deal was greater than or equal to $l/MWh threshold.
Also, in order to avoid capturing value that was already accounted for in the Aurora
hourly dispatch analysis, the status of the plant must always have been in an unfueled
state before the forward month became the cutTent month in order to avoid double
counting. To ensure this, the model checked to see if the plant was in an unfueled state.
If the plant was in a fueled state, then the value of the last fueling transaction was
removed, including the value it created, in order to return the plant to the unfueled state.
Results for the three periods modeled for the second half of CS2 w re as follows:
I 7-01 thru 7-31-04 I 7-02 thru 7-31-04 I 7-03 thru 7-31-04
Total Value! $781,422
. $
12,955,663 .
. $
665 707
Average alue/mont 913,011 51 ,
~.!.
435,824
1 O,9s~~~~7 ~ $218 718 229,884Ay~~ra9.~-Val~~!yea
The Company chose to use $2 million per year as conservative value that would escalate
with inflation over the period of the economic analysis.
Page 2 24-
Exhibit J
Page 9 of 10
CSII Acquisition Rate Impact Analysis
September 21,2004 Update
Revenue Rate Rate
Year Reament Impact Impact
($0005)($000)(percent)
2005 450,000 10,499
2006 468,000 188
2007 486,7~0 179 90/0
2008 506,189 920 1 .
2009 526,436 401 1 %
2010 547,494 159)40/0
2011 569,394 (3,983)70/0
2012 592,169 (5,012)
, 2013 615,856 (4,493)70/0
2014 640,490 . (5-,337)
2015 666,110 (6,278)90/0
2016 692,754 (6,394)
2017 720,464 (7;877)
2018 749,283 . (7.567)00/0
2019 779,254 (8,965)1 .
, 2020 810,425 ' (10,577)1 .
2021 842.842 (9,855)20/0
2022 876 555 (9,400)1 %
2023 911 617 (12 093)30/0
2024 948,082 (12,990)1 .
Net Present Values
20 Years 850 503 (5,744)1 %
Years 923,151 31,563
NOTES:
1) Excludes potential 02 revenues through 2008
2) Assumes $450MM base revenue requirement
escalating (?b 40/0 per year.
, ,
9/22/2004 Aurora Results fwdthruOB OOcaplRPafter _ck.xls cgk
Exhibit J
Page 10 of 10
EXHIBIT K
avigant Consulting Analysis and Valuation
Application of A vista Corporation
Case No. A VU-O5-
NAVIGANTCONSUlT'lNC
N avigant Consulting Inc.
Review of A vista Valuation and Methodology
and
Independent Analysis and Valuation
of the
Coyote Springs II Facility
September 24, 2004
, -, ,
September 24, 2004
N avigant Consulting Inc.Confidential
NAVIGANT
' ON S U L T I /II C
Table of Contents
Introduction
............ ............... ...... ............ ....... ............ ..... ..... ........ ...
Executive Summary...
........ ...... ,. ...... ......~..... ......... ....... .... .....,.. .... .......
Review of A vista's Methodology and Analysis. .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . ..
N avigant Consulting IDC. Assessment of A vista's Methodology and Results. . ... . ... 8
N avigant Consulting .Inc. Independent Analysis and Valuation. .
. . . . . . . . .. ... . . . . . ....
Comparable Market Transactions. .
. . . . . . . . . . . . . . . . . ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
onclusions ......................"""..."................................."....."............... 15
Appendices. .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ . . . . . . . . . . . . . . . . . . . . . . .
.. 16
September 24, 2004
N avigant Consulting Inc,Confidential
N/\VIGANT
CONSUL"ING
Introduction
Scope of Engagement - Coyote Springs II Asset Valuation
Review of A vista Methodology and Analysis
Navigant Consulting Inc. (NCI) was engaged to provide a review and assessment of
A vista Corporation s internal valuation of the Coyote Springs II (CSII) combined cycle
facility located in Mon-ow County, Oregon. Avista is cun-ently in negotiations with
Mirant to purchase Mirant's 50% interest in the facility, which Avista currently co-owns
with Mirant.
NCI Independent Analysis and Valuation
In addition to providing an assessment of Avista s valuation methodology, Avista
requested that NCI perfonn an independent valuation of the facility, including a base case
valuation and a high and low scenario to the base case results. NCI's valuation results
reflect the combined revenue components associated with intrinsic, or plant dispatch
value
, .
and extrinsic, or option value.
Comparable Market Asset Transactions
A vista has also requested that NCI provide applicable, public infonnation pertaining to
recent power plant transactions occurring in the Pacific Northwest aI)d Western regIon.
September 24, 2004
N avigant Consulting Inc,Confidential
N/\V.GANT
CONSULTING
Executive Summary
NCI perfonned a review of Avista s valuation analyses and methodology, a review of
recent generation transactions in the market, and performed an independent valuation of
50% of the Coyote Springs IT facility.
Avista's base case results reflect a valuation of$66.7 million ($468/kW) for 50% of the
CSIT facility. NCI finds Avista s base case .valuation reflects a reasonable valuation
approach, methodology, and result.
Our review of recent generation transactions consummated in the Western US region
reflects an average price of$569/kW for twenty-one transactions. NCI's independent
analyses and valuation reflect a base case valuation of $67.2 million ($472/kW) for 50%
of the CSII facility.
Based upon our review of the A vista analyses, our own independent analyses, and
comparable generation transactions consummated in the market, NCI believes that
Avista s negotiated purchase price of$62.5 million for 50% of the Coyote Springs
facility is reasonable and compares favorably to other transactions consummated in the
regional market. The negotiated purchase price is below the A vista and NCI base case
valuation results of $66.7 million and $67.2 million respectively, and below the average
generation transaction price of $ 569/kW for the Western US region.
. ,, :)
September 24 2004
N avigant Consulting mc,Confidential
NAvl GANT
CONSULTING
Review of A vista s Methodology and Analysis
A vista Fundamental Price Forecasting Process
As part of the overall scope to assess Avista s internal valuation process, NCI performed
. a review and assessment of the methodology that A vista employed to develop the
fundamental valuation criteria and the results to ensure the approach was reasonable, and
reviewed their financial models to determine the accuracy of their calculations, This
process included discussions with A vista modeling personnel and subsequent evaluations
to confirm that the described methodology was applied in the valuation process, NCI
reviewed A vista's working spreadsheet models and discounted cash flow ,models to
assess the reasonableness of Avista's overall valuation methodology and the accuracy of
their modeling efforts, NCI did not perform an audit or confirmation of modeling
algorithms, financial, or other assumptions as part of this assessment.
The key elements ofNCI's assessment and review included (a) a comprehensive review
of the fundamental pricing methodology used to determine intrinsic, or dispatch value, of
the CSII facility; (b) an assessment of the methodology employed to determine extrinsic
value; and ( c) a review of the financial model that incorporated both the intrinsic and
extrinsic valuations to determine an overall net present value based upon a twenty year
study period.
Fundamental Power Pricing Methodology Overview
As the basis for the fundamental analysis performed for the CSII valuation, A vista
utilized the production cost modeling results from their 2003 IRP process. Forthis
process, A vista simulated the entire Western Electricity Coordi~ating Council (WECC)
utilizing AURORA, an hourly chronological dispatch model that incorporates plant
operating and cost characteristics and regional load profiles to simulate the operation of
the electric system and derive a forecast of market clearing prices for each derIDed load
. region, To incOIporate the effects of market uncertainty in the simulation process, Avista
generated 200 sets of unique inputs to model 200 simulation iterations in AURORA, thus
providing a comprehensive spectrum of potential outcomes given specific sensitivity
assumptions, The average of these 200 simulations became the basis for the valuation
that supported the valuation of the Coyote Springs facility.
After using AURORA to generate power prices on an hourly basis, Avista utilized
AURORA as a dispatch model, using the generated power prices as fixed inputs and
dispatching the CSII facility against these hourly prices, given plant fuel and other
operational costs. The results from this process reflect the revenue, dispatch cost, and
volumetric inputs into A vista' s ~SI! fmancial spreadsheet model as one of five
sensitivities performed in evaluating the CSII facility.
Post simulation analyses of the AURORA forecasted power-pricing results provided the
framework for an additional analytical approach directed at evaluating the impacts of a
September 24, 2004
N avigant Consulting Inc.Confidential
NAvl CANT
CONSULTING
range of potential outcomes on the CSII financial valuation. A vista analyzed the hourly
pricing results from the AURORA model simulations to determine the implied market
spark-spreads for each hour over a twenty-year period, reflecting the seasonal profiles
and characteristics inherent to the simulation process. This analysis of the fundamental
AURORA simulations was then incorporated into a process that developed a range of
potential market spark-spreads under different scenarios and, from this process, modeled
multiple sensitivities to determine the fmancial impacts on CSII through changing market
implied heat rates, or spark-spreads, over time.
The process involved holding the power prices from the IRP simulation fixed through the
study period, and effectively changing the market spark-spread profile (relative to the
IRP results) by adjusting natural gas prices to reflect the characteristics of several
potential market spark-spread trends. Key sensitivities included developing a flat and
expanding market spark-spread profile, relative to the simulated results, and dispatching
the CSII facility against each of these spark-spread scenarios within the AURORA model
to determine the hourly dispatch volumes and overall revenue impacts for the csn
facility.
A range of potential market spark-spread profiles was developed using this process
incorporating the initial shape implicit in the IRP simulations as the framework for
developing each scenario. Scenarios included spark-spread profiles reflecting market-
based, discoverable prices that escalate with inflation; a flat spark-spread profile through
the study period, and an expanding spark-spread profile over the study period.
The CSII base case scenario reflected a blended spark-spread profile, incorporating
market-based spark-spreads as observed through the discoverable traded markets for
power and gas through 2008, and incorporated the prospective spark-spread profile
derived from the 2003 AURORA IRP simulation results from 2009 through the
remainder of the fundamental valuation period.
Extrinsic Valuation Development Overview
A vista also included an extrinsic component to the revenue side of the csn valuation
reflecting the additional value associated with optimizing the facility and associated
commodity positions during the twenty-year time horizon.
A vista applied an empirical approach to reflect the potential value captured through
arbitraging forward natural gas and power positions over time, reflecting the potential
optimization associated with reversing fixed forward positions to capture differentials
between forward and spot prices. This approach was developed through analyzing
differences between forward and daily settlement prices for Mid C power and Rathdrum
natural gas pricing (which tracks .closely to Stanfield). Upon locking a forward power
and gas position, the analysis sought to optimize these fixed commodity positions
(forward power sales and natural gas purchases) relative to the resulting daily settlement
prices, As the daily settlement data reflected an opportunity to reverse forward positions
(power or gas) at a profit, the transaction was reversed and the potential profit calculated
September 24, 2004
N avigant Consulting Inc.Confidential
NAYI CANT
CONSULTING
for that day, The annual sum of these potential monthly transactions became the basis for
Avista s option or swap value for 2005 and this amount was carned forward and
escalated at the assumed rate of inflation for the duration of the evaluation period.
Discounted Cash Flow Analysis Overview
A vista incorporated the intrinsic revenue results of AURORA modeling, spark-spread
sensitivities, for both forward and fundamental pricing, as well as estimated extrinsic
revenue into a 20 year discounted cash flow model to calculate the net present value
associated with 50% of the CSII facility to derive a total base case valuation of $66.
million.
September 24, 2004
Navigant Consulting Inc,Confidential
NAvl CANT
CONSlJlTING
, .
Navigant Consulting Inc. Assessment of Avista s Methodology and Results
Intrinsic Valuation Methodology and Results
Avista s utilization of AURORA to develop a forecast of hourly fundamental power
prices, as well as utilizing AURORA as a dispatch model to evaluate the CSII plant
dispatch against various pricing scenarios, reflects a reasonable approach to developing a
range of potential market scenarios and stressing an intrinsic valuation using an industry
standard model. The model incorporates chronological economic dispatch logic with
regional load dynamics to dispatch system resources on an hourly basis, producing an
hourly marginal price to service load for each modeled region. The process that A vista
employed to simulate 200 discrete sensitivities in AURORA provided a comprehensive
range of possible outcomes that were averaged into a single hourly point estimate
effectively capturing a significant range of sensitivities that may impact, either positively
or negatively, regional power prices and the resultant CSII asset valuation.
Additionally, NCI has reviewed Avista s methodology for developing their spark-spread
profile analyses and finds the approach to be both reasonable and effective in capturing
the impacts of a range of potential market spark-spread scenarios. Approaching the CSII
valuation in light of stressing prospective plant dispatch against a range of potential
market spark-spreads (e.g. shaped, flat, and expanding profiles) affords the ability to
quickly assess potential structural changes in market implied heat rates that cQuld result
from multiple and/or compounding factors.
NCI finds that Avista s intrinsic valuation methodology and ,results reflect a reasonable
approach and outcome for a range of scenarios to base their valuation of the csn facility.
Extrinsic Valuation Methodology and Results
A vista included swap or arbitrage value in their valuation that reflects the potential value
that could have resulted from arbitraging the difference between entering into a fixed
forward position in both natural gas and power, as reflected in the forwards price, and
any subsequent daily opportunities to reverse these fixed positions at a profit, relative to
the actual settlement prices,
For their analysis, A vista utilized a back-casting methodology to estimate the potential
value arising from unwinding forward positions at a profit in the daily market. Their
model incorporated historical forward electric and natural gas prices and the
corresponding daily settlement prices over several pricing periods, For each trading day
after the forward position was fixed, a buy vs, generate analysis was made between the
cost to generate electricity. from the tSII facility. and the market price of power. lfthe
plant reflected an uneconomic operating profile, relative to daily power and gas
~ettlement prices, the model would reverse these forward positions (e.g. sell purchased
natural gas and purchase electric power from the market to fulfill the power sale
obligation) and calculate the resulting margin or net savings.
September 24, 2004
N avigant Consulting IDc,Confidential
NAvl GANT
CONSULTING
Three different pricing intervals were modeled including a 37-month, a 25-month, and a
, I3-month period, and the results for these three historical intervals for 50% of the CSll
facility ranged between $5 and $11 million annually. A vista included $2 million in
annual swap value that escalates with inflation over the study period in their valuation of
CSII.
NCI believes that historical observations are very valuable and provide a reasonable basis
for potential near-tenD profit-maximizing opportunities, However, to forecast extrinsic
value beyond the near-term horizon, and to maintain continuity between intri'nsic and
extrinsic valuation methodologies, NCI recommends a fundamental approach to extrinsic
valuation as the prefen-ed framework for forecasting value over the study period.
Arbitrage reflects a risk-neutral transaction environment in which the underlying premise
assumes forward positions for power and natural gas that are hedged for the duration of
the valuation period. Reversing these fixed positions to capture profit above the original
transaction value, through'a series of risk-neutral transactions when feasible, reflects an
underlying assumption that the plant is hedged, either bilaterally or in the forward
market, through the study period. If an arbitrage methodology is employed to determine
extrinsic value, then the intrinsic valuation should also reflect a forward hedged position.
Applying a merchant or spot market approach to the intrinsic valuation methodology
requires similar treatment to derive an extrinsic valuation; the methodologies for intrinsic
and extrinsic valuation should reflect a consistent view of the underlying position
assumed, either hedged or open. Additionally, assessing the potential for prospective
arbitrage value based solely upon historical data, and the opportunities reflected in that
data, are reasonable for the near-tenn but do not provide a fundamental framework for
estimating value for the outer years of the study period.
While such historical observations are very valuable and reflect a reasonable basis for
potential near-tenD profit-maximizing opportunities, NCI recommends a fundamental
analysis approach incorporating both historical and prospective data to provide a more
robust framework to forecast extrinsic value for periods extending beyond the near-tenn.
NCI performed a fundamental extrinsic analysis as part of its valuation of CSll, and a
complete discussion of this methodology is provided later in this report.
Discounted Cash Flow Valuation Assessment
NCI reviewed Avista s discounted cash flow analysis to determine that (a) the results
from the intrinsic and extrinsic valuations were included in the cash flow assumptions
(b) to assess the reasonableness and accuracy of the cash flow model, and (c) to review
the inclusion of other cost components in the valuation.
In addition to the revenue assumptions derived from intrinsic and extrinsic sources, the
~ash. flow model included assumptions relating to fixed operating and A&G costs
depreciation, interest expense, income tax, property taxes, miscellaneous revenue and
expense items, revenue requirements, and applicable escalation and discount rates. NCI
r-.
September 24 2004
Navigant Consulting Inc,Confidential
N/\VI GANT
CON5UL"ING
did not audit or confmn these assumptions and does not present an opinion as to the
accuracy or reasonableness of these assumptions; they reflect iIiformation provided by
A vista s corporate and regulatory functional groups.
In reviewing the discounted cash flow analysis, A vista s valuation includes fixed O&M
on an annual basis that reflects, in part, a long-term service agreement with the OEM.
A vista s valuation does not reflect any other capital improvements to the facility during
, the study period, and does not include any terminal or residual value associated with the
CSII asset at the end of the study period.
Regarding residual or terminal value, even though scheduled and major maintenance
intervals are covered through a service agreement, typically these agreements are
structured to maintain the normal operation of the plant through the duration of the
agreement, and do not reflect a final maintenance interval that essentially leaves the plant
owner with a newly overhauled facility at the end of the term. In the absence of analysis
to determine the potential condition of the facility at the end of the study period in light
of the terms of the service agreement, NCI agrees with Avista's approach to assign no
terminal or residual value to the facility.
NCI finds Avista's approach and results to discounting cash flows over the study period
to be reasonable and reflects the net present value of discounting all revenue and cost
cash flow components at the assumed discount rate through the study period.
. ,
Septem~er 24, 2004
N avigant Consulting Inc,Confidential
NAvl GANT
CON5ULrlNC
. .,. ,
Navigant Consulting Inc. Independent Analysis and Valuation
NCI intrinsic valuation methodology overview
Developing energy price forecasts through modeling the dispatch ,and operation of
generating assets requires a'sophisticated and detailed market simulation tool. For this
simulation process, NCI utilizes PROSYM for preparing its forecast of energy clearing
prices and individual plant valuation assessments. PROSYM is a detailed chronological
production-cost model designed to simulate plant bidding behavior and calcu1ate
resulting energy clearing prices. PROSYM integrates generation and transmission
analyses, and has been designed for use in wholesale market price forecasting, unit
profitability assessment, transmission congestion management, and system cost control
studies. PROSYM offers detailed unit generation and revenue forecasts, unit bidding
strategy development, regional and bus level location market 'price forecasts, transmission
congestion and expansion studies, FTR bidding and valuation, emission allowance
utilization and price impacts, maintenance planning and optimization, reliability
assessment, and market price volatility assessment.
The Intrinsic Valuation Discussion, located in the appendices, provides a comprehensive
overview ofNCI's intrinsic valuation methodology and assumptions.
NCI extrinsic (option) valuation methodology overview
In addition to developing fundamental energy price forecasts through modeling security-
constrained economic dispatch and operation of generating assets utilizing PROSYM
NCI has developed a sophisticated approach to modeling the prospective spread option
value of a power plant utilizing a monte carlo simulation process that incorporates
prospective pricing developed in the intrinsic valuation process as an input to evaluate the
overall time value of the open, underlying commodity positions through the study period.
Since the majority of option value is limited to peak operational hours, NCI's option
value methodology reflects the 5 day, 16 hour interval of a typical week production cycle
as reflected from the PROSYM pricing results.
Key inputs into NCI's option valuation model include:
Daily power prices - hourly results from PROSYM simulation model are used as
the basis for daily peak prices.
Monthly natural gas prices - inputs utilized in the PROSYM model are reflected
in the option valuation model.
Correlation between power and natural gas prices - Correlations were calculated
between Mid C and Stanfield daily settlements from August 2001 through July
2004 (the non-crisis period) and represent the going forward correlation
assumption for the study period.
Standard deviation of power and natural gas prices - For the CSII valuation, NCI
utilized a relative standard deviation methodology to develop prospective
September 24 2004
N avigant Consulting mc,Confidential
NAvl GANT
CONSULTING
volatility (as measured by standard deviation). This methodology provides a
reasonable framework to develop prospective standard deviations for daily
power and natural gas prices as reflected by the historical standard deviation of
Mid C and Stanfield daily settlements from August 2001 through JJ1ly 2004 (the
non-crisis period),
Mean reversion assumption - Daily power and natural gas prices within each
month are correlated to reflect mean reversion of prospective daily prices within
the simulation process.
Lognormal distribution of prices - NCI assumes a lognormal distribution of
underlying prices for power and natural gas.
Plant operating characteristics - Plant operational parameters, including
capacity, heat rates, and variab~e O&M (including applicable escalation).
These key input assumptions are correlated and simulated in a daily Monte Carlo model
for each year of the study period. The plant is stmck, on a 16-hour basis, against the
stochastic pricing results (power and natural gas) occurring from random draws of daily
power and natural gas prices. When the plant is essentially in-the-money, relative to the
stochastically generated power and natural gas prices, the option is struck and the daily
results are tabulated, The model derIDes extrinsic value as the positive difference
between the daily static intrinsic results and the stochastic modeling results occurring
through 000 simulated iterations.
The result is a mean estimation of annual option value that essentially reflects a forward
start theory that avoids the compounding effects of escalating volatility resulting over
time. Additionally, the methodology remains consistent with the intrinsic valuation
approach that reflects an unhedged, merchant valuation through the study period.
NCI Independent Valuation Results
The following chart depicts NCI's independent valuation results for 50% of the Coyote
Springs II facility, reflecting intrinsic and extrinsic value, discounted consistent with
Avista's net present value methodology and applicable fmancial assumptions:
Base Case $67 187
High Scenario $111 053
Low Scenario $34 161
$472
$781
$240
September 24, 2004
Navigant Consulting Inc,Confidential
. N/\VIGANT
CONSULTING
. .
Comparable Market Transaction Data
Backgraund
Appraximately 68 separate generatian asset transactians have taken place since January
2003. While many afthese transactians have invalved multiple facilities, the majarity af
the deals have been for single facility lacatians, Of these deals, twenty-ane have
accun-ed in the western partian af the U,S, Almast half af thase transactians invalved
facilities lacated in California. The majarity af generatian asset transactians have
accurred in the sauthern regian af the U.S with the central states having experienced the
fewest number af plants changing hands (See Figure A), Amang the facilities that have
been saId aver the last twenty manths, farty-three af the sixty-eight transactians that have
taken place invalved a gas-fired facility (63%). The remaining 37% cansisted af a mix af
caal (15%), nuclear (7%), wind (6%), geathennal (6%), and hydra (3%) resaurces.
Figure A: Gas Transaction Valuations by Region 2003-2004 YTD
Milf.
601
170
231
, : ' '
$LkIf
:. ''" '. ' .,
Avg,
::::
i::j':;;'J6t/
'Y
:gb~:,
:~j~:::::::
D:'D
# of Transactions in. the Region
The value af gas asset transactians cantinues to. vary widely depending an a number af
factars including the physical plant lacatian and the presence and duratian af aff-take
agreements. Gas asset transactians that include lang-tenD purchase cantracts have been
gaing at nearly twice the price af pure merchant assets. The natianal average far gas
asset transactians has been $520/kW an a nominal basis during this peri ad. In the
western half af the U., the average value af these transactians has been $569/kW.
Regianal differences in the value af individual gas plants are directly can-elated with the
farecasted trajectary af electricity market prices, In the largely coal dominated regians of
the Midwest and Sauth, there are fewer perceived apportunities to. dispatch gas-fired
facilities due to. the reduced number of hours that gas is expected to be on the margin.
September 24, 2004
N avigant Consulting Inc.Confidential
NAVIGANT
CONSUl1'SNG
This is in contrast to the Pacific Northwest where the volatility of hydro availability has
continued to provide opportunities for the dispatch of gas-fired facilities. The higher
valuations in the $500 to $6001kW range for gas assets in this region suggest this is the
market's perception of where prices are expected to move in the future.
Specific deals in the Pacific Northwest have been limited relative to other parts of the
country. Since early 2003 , there were only four separate asset transactions that occurred
(See Table 1). Three out of the four involved the transfer of gas assets between the
respective buyer and seller. The two gas transactions where the terms of the deal were
disclosed indicated an average valuation of about $560IkW.
Table 1: List of Recent Pacific Northwest Generation Asset Transactions
, ,;::\.
Date
., . "
J:'nnounce:;';:-. Total Deaf
PPA ' ment Value M:;
Klondike Wind 1/30/2003 16.
Tenaska Frontier WA,
Femdale, Ulch, Cagen Pakistan Gas 132 nla Dyne T enaska 7/1/2003 disclosed
Puget Sound
Frederickson Gas 125 $ 608 EPCOR Energy 10/22/2003
. ,
, NY, FL (Denali Power
, OR, Wind Gas LLC) Caithness, '
12 plants Coal 082 $ 515 NEGT ArcUght 8/212004 557
Average $ 608
September 24, 2004
Navigant Consulting Inc,Confidential
N/\VI CANT
CONSULTING
Conclusion
Avista's base case valuation of $66.7 million ($468/kW) for the remaining 50% of
Coyote Springs II, reflects a reasonable valuation for this facility and compares favorably
to the other transactions consummated in the Pacific Northwest, which have averaged
$561/kW. However, the number of comparable transactions in the Pacific Northwest is
severely limited and there are not enough deals in this specific market to develop a
sufficient data set. Therefore, it is more appropriate to compare this purchase price to the
broader western region, in which twenty-one comparable transactions have taken place
during this period. That comparison suggests that A vista s valuation of Coyote Springs II
is reasonable when compared to this broader market, in which transactions have averaged
approximately $569/kW.
NCI's independent analyses and base case valuation results reflect a value of $67.
. million ($472/kW) for 50% of the Coyote Springs II facility, and suggests that this
reflects a reasonable outcome based upon (a) the assumptions underlying NCI's security-
constrained economic dispatch of the WECC electrical system to determine the intrinsic
value associated with operating the CSII facility within this market, and (b) the results of
combining the forecasted results from the security-constrained economic dispatch with
historical data from the region to forecast the potential extrinsic value that may be
realized in this market given these underlying assumptions and methods.
Therefore, based upon our review of the A vista analyses, our own independent analyses
and comparable generation transactions consummated in the market, NCI believes that
Avista s negotiated purchase price of$62.5 million for 50% of the Coyote Springs II
facility is reasonable. The negotiated purchase price is below the A vista and NCI base
case valuation results of $66.7 million and $67.2 million respectively.
September 24, 2004
N avigant Consulting Inc.Confidential
NAVIGANT
CON S U" L tiN G
September 24 2004
N avigant Consulting mc,
Appendices
. ,
Confidential
NAvl GANT
CONSULTING
NCI Fundamental Simulation Scenario-Assumptions
Scenario 1 - Bearish power prices and generation investment conditions
Economy and Electricity Demand - low growth
Under this scenario, NCI assumed slow economic growth during the initial three years of
the study period. Electricity demand growth will also be stagnant reflecting expected
correlation with a slow economy. For this scenario, we assumed zero growth in electricity
demand for the fIrst study year, one-half of the base case growth rate for the second study
year, with resumption of the base case growth rate in the third and subsequent study
period years.
Power Supply
In the interest of conservatism, despite reduced electricity demand, this scenario will
assume the same power supply base as that used in the base case.
Fuel Prices
To reflect bearish power price conditions, fuel prices (natural gas and oil) are lower under
this sc~nario than that seen in the base case (mixed impact on generator profitability, but
generally negative for combined-cycle units in the WECC). Natural gas prices are 20%
lower than the base case assumptions across all months/years, which reflects
approximately one standard deviation based on historical natural gas price performance.
Scenario 2 - Bullish power prices and generation investment conditions
Economy and Electricity Demand '- high growth
Under this scenario, NCI assumed more rapid economic growth during the initial three
years of the stUdy period, Electricity demand growth is also higher, reflecting expected
correlation with an expanding economy. For this scenario, we assumed higher growth in
regions where prospective population growth is expected to be strongest (Southwest
CA). A two percent higher electricity demand growth rate was assumed in this scenario
than in the base case for the fIrst study year, 1.5 percent higher in the second study year
and 1 percent higher in the third study year. In regions with stronger population growth
we assumed an additional 0.5% to the growth demand growth rates for the fITst five years
of the study. In subsequent years, electricity demands grow at the base case growth rates
for the relevant years.
The .market is allowed to benefit from power prices that are higher than required to attract
p.ew entry for a period of four years between 2010 and 2014, and reverts toward the
nominal cost of new entrant economics beyond this over-recovery period, This
September 24, 2004
N avigant Consulting Inc,Confidential
NAVIGANT
CONS.ULTING
assumption reflects the potential reluctance of participants to make capital investments
until market prices remain above the investment threshold for an extended period.
Power Supply
In this scenario, NCI mothballs/retires generating units (other than peaking units required
to maintain system integrity/reserve margins) that do not earn adequate profits in the first
5 study years. Adequate profits were measured as an operating loss less than $lO/kW
year, In this scenario, we also implemented a delayed entry response, such that new
entry would not occur until two years after power prices have been high enough to
sustain investment profitability for new projects.
Fuel Prices
To reflect bullish power price conditions, fuel prices (natural gas and oil) are higher
under this scenario than in the base case (mixed impact on generator profitability, but
generally increased profits for combined-cycle units operating in the WECC). Natural
gas prices under this scenario are 20% higher than in the base case, which reflects
approximately one standard deviation based on historical price performance.
September 24, 2004
N avigant Consulting Inc,Confidential
NAvl GANT
CONSULTING
NCI Intrinsic Valu~tion Discussion
Using PROSYM, an hourly simulation is perfonned with sufficient detail related to the
subject market area and neighboring areas to ensure that bilateral transactions and
economic energy purchases are captured in the marginal clearing price calculation. The
diagram below and subsequent discussion provides an overview of the energy simulation
process. '
Overview of Primary Inputs and Simulation Outputs
~:;,
~:':cc;,",:,;:,:,;,:,;::",;,:,:';':';':'::;;;::':'::i
September 24, 2004
N avigant Consulting Inc,Confidential
NAVIGANT
CONSULnNG
Translating the energy-clearing price calculation method described above into
fundamental economic theory, the energy-clearing price calculated for any given hour
reflects the price at the intersection of the supply and demand curves for energy in that
hour, as illustrated below. The marginal energy-clearing price is calculated for each
separate power market and constrained transmis~ion area, as dictated by the prevailing
transmission constraints for that hour.
Illustration of Hourly Energy-clearing Price Process
Demand Curve
Price ($/MWh)
Quantity (MWh/h)
In the above figure, the hourly clearing price P*, represents the bid price of the unit of
supply needed to meet the last increment of the total system demand of Q*. In effect, the
PROSYM model prepares energy market supply and demand curves similar to those
illustrated above for each of the 8 760 hours for each year of analysis, in each case
calculates the clearing price at the intersection of the supply and demand curves. Thus
the algorithm used by the PROSYM model is consistent with the fundamental economic
theory of supply and demand equilibrium that underlies the anticipated market behavior
, in the bid-based energy market in various restructured markets.
e following provides an overview of the modeling assumptions used by NCI in
developing the fundamental pricing used in the Coyote Springs II asset valuation. For
each of these assumptions, NCI relies on the most recent, reliable, and objectiveinformation in preparing this assessment.
1. DemandlEnergy Forecasts
NCI relies upon a number of sources for its peak demand and energy forecasts.
regions where ISO-prepared demand forecasts are unavailable, we generally rely upon
the demand forecasts submitted to the regional reliability councils as part of the OE-411
filings. In that case, the control area operators within each respective region prepare the
underlying demand forecasts. In limited cases, NCI obtains demand forecasts directly
from load-serving entities operating in a given region, or prepares a load forecast
independently, The demand forecasts underlying the projections are weather-normalized
so that extreme events are not reflected. The.forecasts generally assume constant load
September 24, 2004
N avigant Consulting Inc.Confidential
NAvl CANT
CONSULTING
factors unless a given load-serving entity has projected significant changes in its
customer s consumption profiles.
2. Hourly Load Profiles
The PROSYM model requires hourly load information for each of the various regional
control areas included in the subject analysis. NCI relies on the most recent data
information available for hourly load representation, and is derived from the respective
FERC Form No. 714 filings for many of the U.S. power systems, and other regulatory
filings for the Canadian utility systems. Where data is not readily available, oNCI relies
on information contained in the PROSYM database, scaled appropriately to reflect
demand and energy growth. PROSYM derives hourly load profiles by averaging five
years of actual hourly loads for each utility taking into account weekdays, weekends, and
holidays. For example, a peak on a Monday won t be averaged with a Sunday load but
will be representational of that typical Monday.
3. Existing Resource Capabilities
NCI relies on most recent ISO and NERC studies as the primary source for all generating
unit capacity ratings. PROSYM was populated with both the summer and winter
generating plant capability ratings derIDed in these reports. Additionally, any known
changes to the future ratings of the existing plants are also incorporated in the unit
database.
4. Hydroelectric and Pumped Storage Resources
Hydroelectric resources are modeled to produce median-year levels of energy production.
Monthly forecasts of median-year hydro energy generation are developed based on each
hydro resource s historical production levels. Run-of-river hydro energy production is
scheduled throughout the day. Pumped Storage hydro energy production is scheduled by
PROSYM during the highest demand periods of each month to capture the highest value
for the system.
5. Existing Generating Unit Outage Parameters
In most cases, generator maintenance and forced outage parameters are the average of
1992 to 1996 NERC GADS data, weighted for plant size, plant type, and fuel type, The
maintenance schedules for U.S. nuclear units are based on the actual schedule reported by
the Nuclear Regulatory Commission. Maintenance parameters include,both the frequency
and duration of maintenance outages (mean time between maintenance periods, and mean
time to repair). PROSYM optimizes maintenance outages to eliminate unlikely outage
combinations over periods of weeks, months or years depending on specification, Thus
if a generator has a maintenance rate of 5% and the model is set to converge maintenance
schedules on a monthly basis, it will be out 5% of the hours in each month of the
simulation resulting in 12 starts per year. If however, the model is specified to converge
maintenance on a yearly basis, that generator will be out on maintenance 5% of the hours
9f the year, and the number of starts and duration of each outage will depend on the
specification of the minimum, maximum, and mean time to repair. PROSYM also allows
fixed maintenance schedules to be input over periods of one to several years, However
September 24, 2004
Navigant Consulting Inc.Confidential
N/\VIGANT
CONSULTING
for most studies, the convergent maintenance method is prefelTed as it allows more
accurate comparisons across scenarios.
6. Existing Unit Heat Rates
For existing plant heat rates, NCI relies on a number of sources of information, including
heat rate information included in the PROSYM database, This information is primarily
based on the u.s. Environmental Protection Agency s CEMS data, as well as information
provided in various reports, FERC Form 1 filings, and internal analysis and judgment.
PROSYM dispatches generators on heat rate curves that reflect minimum, mid, and full-load heat rates.
7. Fixed and Variable O&M Costs
Fixed and variable O&M costs for generators are based on information contained in the
PROSYM database, and confirmed by NCI. This information is based on a variety of
sources including FERC Form 1 filings, internal engineering studies, and other sources.
8. New Entrant Timing/Amount Assumptions
A significant amount of merchant generation is being developed in several regions
throughout the US, and based on the CUlTent status of these proposed projects and NCI's
assessment of the likelihood of each being developed, a number of these projects are
included in the analysis, In general, NCI has assessed the permitting, financing, and
construction stages of eacJ1 project's development to form an opinion ofwbether the
project should be included in the analysis.
9. New Entrant Installed Cost and Operating Assumptions
Provided below is a summary of the new entry cost and operating assumptions. This cost
information is based on several sources, including a recent survey of merchant plant
project developers, industry publications, and internal engineering estimates. NCI's
philosophy on adding new entry in market simulations is to only add projects in locations
where either the total market revenues can support a new project, or where there is a
shortfall in capacity and either the required reserve margin will not be met or there is
insufficient capacity to meet regional load pockets, resulting,in energy not served.
NCI estimates the going forward average cost for turnkey plant installations are asfollows:
Combustion turbine installed cost of $400/ kW
Combined cycle facilities $600/ kW
NCI believes that most new capacity going forward will reflect lower-cost
technologies (installed and operational costs), and observe going forward new
entrant installed costs, and variable operational costs, to be consistent with
CUlTent FA and EA technologies and configurations.
September 24, 2004
Navigant Consulting Inc.Confidential
N!\VIGA
CONSULTING
1 O. Inflation Assumptions
NCI assumes an annual inflation rate of 2,5% for the D,S. This is consistent with sources
. that NCI has reviewed, including data reported by the Bureau of Economic Analysis, and
the Bureau of Labor Statistics, and the Congressional Budget Office Budget and
Economic Outlook: Fiscal Years 2002-2011, dated January 2001. In this report, the
Congressional Budget Office projects Consumer Price Index ("CPI") growth of 2.6% per
year. Inflation estimates are used to escalate the fixed and variable O&M expenses for
each generating unit, and therefore has an underlying influence on the inherent escalation
of forecasted wholesale power prices.
11. Unit Retirement Assumptions
There are economic retirements that are likely to occur over the next several years. These
retirements may be due to significant environmental compliance cost or plants that are
located within supply pockets and do not receive sufficient revenue to meet projected
revenue requirements. During the simulation process, NCI monitors each plant's revenue
to determine whether. it has meet or exceeded its cost requirements for the year, Plants
that experience a revenue shortfall in any two consecutive years (other than peaking
resources that are required to maintain system integrity/reserves) are candidates for
retirement. Barring any strategic, system reliability, or other reason for supporting the
plant on ongoing basis, the plant is removed from the simulation after two consecutive
years of significant revenue shortfall.
12. Nuclear Plant Assumptions
As a base case assumption, NCI assumes that all nuclear plants will remain in
commercial operation through their reported licensing term.
13. Transmission Topology Assumptions
NCI has specified transmission areas in the PROSYM model that provides valuable
information on the congestion costs associated with each of the transmission-constrained
regions. Transmission limitations between each of the congestion zones and market areas
are based on several recent studies as prepared by the various' ISO/IMOs, NERC, and
utilities within the control area. As a result of these studies and internal review, NCI has
segmented the WECC into transmission areas by NERC sub regions.
14. Emission Allowance Assumptions
Emission allowance costs are an important consideration in simulating plant operation
and preparing a price forecast. NCI closely monitors the trading activity ofD.S, S02 and
NOx allowances as part of this process. Based on recent trading information, and NCI's
own research on complacence and equipment costs, the following chart reflects NCI's
price forecast for these emission allowances in nominal dollars:
When simulating the variable co~t dispatch of generation units, NCI models NOx
emissions by assuming that all generators have initial allowance allocations at the rate
15 lbs per MMBtu, The incremental NOx emissions that are priced above the initial
allowances are then calculated as the maximum of a) the NOx rate - ,, or b) O. The
resultant incremental emissions allowances are priced at the assumed NOx allowance
September 24, 2004
Navigant Consulting Inc,Confidential
NAvl CANT
CONSULTING
price per ton. This approach provides a representation of the initial emissions allowances
that are allocated to each generator, but does not provide full recognition of unused
allowances that can either be transferred to other units within a company portfolio or
, traded in the secondary market.
15. Natural Gas Price Forecast Methodology
Using inputs and assumptions specific to NCI, a proprietary model) is used to estimate
natural gas prices at a number of market nodes and supply points across North America.
Among other items, the outputs of this model reflect the monthly, marginal, or market-
clearing, gas prices at each Dode. The differences between these gas prices are the
projected basis differentials at each point.
To conform the model output to current market conditions, NCI makes a number of
objective and subjective adjustments:
. First, a current foIWard NYMEX natural gas curve for the prospective 18 - 36 month
period is used representing the model output for Henry Hub, and merged into themodel output.
. Second, the model is sensitive to oil commodity price assumptions. To the extent
NCI views the natural gas price response to be excessive, year-to-year gas price
movements are tempered.
. Third, the model output is sensitive to significant changes in pipeline capacity. The
price impacts of capacity additions are often smoothed, reflecting NCI's view that
changes resulting in large market perturbations would likely be smoothed in reality.
Finally, the proportional changes in Henry Hub commodity prices are applied to the
individual pricing nodes to maintain the implicit volatility and prevent smoothing the
basis differentials. All price projections beyond 2020 are held constant in real terms.
1 This model is licensed and operated by Energy and Environmental Analysis, Inc,
September 24
, '
2004
N avigant Consulting Inc.Co nfidential
AV
I
S
T
A
U
T
I
'
,
, '
;
50
0
/
0
o
f
Co
y
o
t
e
S
p
r
i
n
g
s
2
(
C
C
C
T
a
n
d
D
u
c
t
Bu
r
n
e
r
)
Ec
o
n
o
m
i
c
A
n
a
l
y
s
i
s
D
e
t
a
i
l
IN
T
J
:
R
I
'R
A
F
T
In
s
t
a
l
l
e
d
C
o
s
t
In
s
t
a
l
l
e
d
C
o
s
t
Pr
o
j
e
c
t
C
a
p
a
c
i
t
y
He
a
t
R
a
t
e
Ga
s
U
s
a
g
e
R
a
t
e
67
,
18
7
47
2
14
2
.
44
4
25
.
4
20
0
4
$
O
O
O
s
20
0
4
$
/
k
W
Bt
u
/
k
W
h
OO
O
s
d
t
h
l
d
a
y
Fix
e
d
C
h
a
r
g
e
Fix
e
d
O
&
M
Es
c
a
l
a
t
i
o
n
R
a
t
e
s
Fi
x
e
d
O
&
M
Tr
a
n
s
p
o
r
t
a
t
i
o
n
0
2
0
0
4
$
p
e
r
kW
-
m
o
75
2
0
0
4
$
p
e
r
kW
-
m
o
As
s
u
m
pt
i
o
n
s
In
s
u
r
a
n
c
e
C
o
s
t
Ga
s
T
r
a
n
s
p
o
r
t
Ge
n
e
r
a
l
I
n
f
l
a
t
i
o
n
Op
t
i
o
n
V
a
l
u
e
20
1
.
56
2
0
0
4
$
O
O
O
s
00
2
0
0
4
$I
d
t
h
l
d
a
y
0
p
e
r
c
e
n
t
0
2
0
0
4
$
O
O
O
s
No
m
i
n
a
l
D
i
s
c
o
u
n
t
Re
a
l
D
i
s
c
o
u
n
t
22
pe
r
c
e
n
t
50
pe
r
c
e
n
t
Pr
e
-
t
a
x
O
p
t
i
o
n
v
a
l
u
e
N
P
V
Ye
a
r
:1
:
"
:
:2
0
0
5
;
20
0
6
'3
'
:
' '
2o
o
i
20
0
8
5
,
:
2
0
0
9
20
1
0
7:
,
20
1
'
1
"
20
1
2
20
f
3
:
"
10
20
1
4
'
'
2
0
1
5
:
12
20
1
6
13
,
::
2
0
1
7
:
14
20
1
8
:::
'
15
:
"
20
1
9
:
:
:
16
20
2
0
'
.
,
'
"
"
::
:
:
':
:
17
.
:
,
::
2
0
,
1:
,
:
:
18
20
2
2
:'
1
9
'
.
:
:
;
2
0
2
3
:
:
20
20
2
4
24
1
2
0
0
4
$
/
k
W
0
p
e
r
c
e
n
t
0
p
e
r
c
e
n
t
Fix
e
d
C
o
s
t
s
Ca
p
i
t
a
l
R
e
c
o
v
e
r
y
a
n
d
M
i
s
c
e
l
l
a
n
e
o
u
s
En
e
r
e
v
Pr
o
j
e
c
t
F
i
x
e
d
C
h
r
e
.
To
t
a
l
C
o
s
t
s
Fi
x
e
d
(G
W
h
)
($
O
O
O
S
)
($
0
0
0
5
)
($
O
O
O
S
)
($
I
M
W
h
)
($
O
O
O
S
)
..,
' ~
.
" '
'"
'
A
'
;:
:
,
:!
:
:
:
:
1
2
;
:
a
a
4
'
::
:
'
?::
:
~
:
j
i
:
n
i
;
;
:
:
;
:
:
9
:
:
:
:
~
:
:
f
:
J
~
;
$
9
4
'
~
W::
n
~
:
t
~
g
~
~
)
:
!
;
i
l
t
~
Y
:
:
:
~
;
~
7
~
:
12
,
39
9
0
1
2
,
39
9
2
0
.
0
3
,
17
0
~~
;
;
Ul
~
:
~
:
'
:;
:
:
~
g
.
~;
;
!
:
~
~
'
;:
;
~
:
!
:
:
'
:~
!
~
;
35
7
0
1
1
,
35
7
1
4
.
3
3
,
56
8
:::
:
:
1
b ;
1
1
3
1
:
1
:
'
:
:
:
:
::
:
;
:
,
:::
:
:
~
?
i
:
:
:
:
!
~
.
:
(
)
:
:
:
:
:
:
:
;
:
:
J
Q;
7
a
i
j
,
:
:
:
~
:
:
:
?
~
;
(
~
~
t
i
j
J
~
~
~
~
:
:
:
'
:
:
~
;
a
7
.
S
:
.
:
,
"
'
10
,
58
8
"
,.
"
"
,
.
0
'
10
~
5
8
B
'
1i
8
"
"
'
78
5
:::
,
::
:
1
O
;
~
(
)
i
:
:
:
:
'
;
:
i;\
:
:
t
:
:
:
:
/:
i
;
:
:
;
;
:
:
9
'
::
:
:
:
:
:
:
)
:
Q
;
~
p
'
g:
&
:
;
:
i
:)
~
;
:
~:
:
:
:
:
:
n
;
~
:
:
~
;
~
~
10
,
23
7
0
1
0
,
23
7
1
4
.
1
,
01
5
::
:
:
:
:m
:
:
:
:
9
.
;9
9
.
'
1
:
:
:
:
)
:
:
:
:
:
:
:
:
:
m: :m
;
::~
'
:;;
:::
9
,
?l
:
;
f
~
:
~
;
s~
)
:
.
:im
,
:
!
X
:
:
:
;
:
~~
:
~:;
:
:
:
:
i
:
i
:
;
\M
~
J
~
~
:
:
60
3
"
0
9
,
60
3
1
3
.
0
4
,
26
0
:;
!
:
~
;
:
:
~
:
:
~
g
:
~
;!
~
:
~
~
~
~
;
!
~
:
:
~
~
:
05
3
0
8
,
05
3
1
1
.
4
4
,
79
5
::
:
:
::t
:
:
t
t
;ia
r::
:
:
:
:
;
;
~
~::
;
:
~::
:
:
:
)
i
:
8
'
:Q
:
:
:
:
m
8
i
;
:
?
;
!
~
f%
m
b
:
m
J
l
~
q
m
:
;
~
~
:
:
m
A
~
~
~
~
r
46
9
7,
4
6
9
1
0
.
,
5
,
08
7
::
:
r::
;
:
1;
1f
l
:
;
:
j)
'
~
:
;:
,
H::
~
:
;::
:
~i
t
)
'
::
;
;
:
i
:
:
:~
;
'1
h
!
1
:
m
n
:
~
n
:
r
~
l
q
:
:
~
;
~
:
;
'
r~
~
:
~j
~~
r
88
6
0
6
,
88
6
1
0
.
0
5
,
39
6
Ne
t
P
r
e
s
e
n
t
V
a
l
u
e
1
0
2
,
16
3
No
m
i
n
a
l
L
e
v
e
l
i
z
e
d
C
o
s
t
(
$
I
M
W
h
)
Re
a
l
L
e
v
e
l
l
z
e
d
C
o
s
t
(
$
I
M
W
h
)
0
1
0
2
,
16
3
14
.
12
.
CS
I
I
P
r
o
s
y
m
-
Op
t
i
o
n
R
e
s
u
l
t
s
I
n
S
C
2
F
o
r
m
a
t
Se
p
t
1
4
B
a
s
e
C
a
s
e
.
xl
s
Op
e
r
a
t
i
o
n
s
&
M
a
i
n
t
e
n
a
n
c
e
To
t
a
l
F
i
x
e
d
'
O
p
e
r
a
t
i
n
g
Gt
r
a
n
s
Pr
T
a
x
In
s
u
r
.
To
t
a
l
C
o
s
t
s
Co
s
t
s
Ma
r
c
i
n
($
0
0
0
5
)
($
0
0
0
5
)
($
0
0
0
s
)
($
0
0
0
s
)
($
I
M
W
h
)
,
($
O
O
O
s
)
($
0
0
0
s
)
i
t
~
~
:
~
~
~i:
~~
:
f~
;
~
;
g
~
~
f
N
;
g
Q
~
:
~
~B
~
~
~
~
;:
g
g
j
:
:
~
l
)
j
C
~M
a
t
~
:
~
~
t
1
;
B
~
)
~
;
i; t ~
~
~
~ $
j
:
88
4
21
4
4
,
26
8
6
.
9
1
6
,
66
7
:: :):
:
'
i
i
:
~
::
;
-
~
$
3
:
:
m
~
:
1
i
l
i
n
'
~
2
9
:
:
i
(
~
~
n
~
(
~
~
:
~
:
:
:
m
f
l
~
l
~
;
i
f
f
i
l
~~
~
:
~
:
i
:
;
0
~
8
~
f
~
i
:
J
~i
n
~
:
:
:
82
1
22
7
4
,
41
1
6
.
8
1
5
,
95
3
:: :::
;
:
::
:
:
:
m
1
~
~
::
:
i
l
t
;
i
i
k
g
~
4
:
:
:
i
l
i
i
i
:
~
~
4
~
t
t
:
:~
~
!
i
0
i
:
:
e
~
~
?
:
:
:~
~
;
i
~
~
~
k
W
J
$
;
~
U
:
m
75
8
24
1
4
,
56
6
5
.
7
1
5
,
92
3
;:
:
:::
:
:
:
:
:
::
i
~
:
!
?
~
:
:
~t
m
l
~
m
:
,
~
4~
W
t
:
i
~
r
r
1
;
~
4
9
f
~
i
;
:
~
~
~
:
m
~
$
:
:
~
::
:
~
j
,
M
m
~
H
$
~
~~
:
:
~: ii:
~~
!
8
:
:
:
: ~
:
:
:
1
i
l
l
i m
i
l
l
:
:
~
~t:
:
~
I
j
m
;
;,;
~
:;
:
j
~
~:
tm
J
~
i
l
l
:
:
:
'
;;
~~
w
~1
~
m
~
:
:
&
i
:
;
:
;
p
~
$
I
63
2
'
27
1
4
,
91
8
6
.
8
1
5
,
15
5
~:
;
!
!
:
~
~
r
:
~
!
:
~
i
:
:
~
C
~
;
:
50
5
30
5
5
,
33
0
7
.
4
1
4
15
7
JA
~
)
l~
~
~
j
;
m
~ 1
:
~
,
B ~
11
*
:
~
~~
l
;
i
i
ili
1
j
j
~
1
(
!
~
Mi
1~
~
~
~
~
J
~
~
:
~
~?
:
44
2
32
3
5
,
56
0
7
.
9
1
3
,
61
3
ill
11
;
:
;i
~
,
~:
ig
~
m
m
~
~
;
:):
~
.
~~
:
~~
~
i
t
:
~
;
~
~
g
i
i
:
~
:
:m
~
1
~~
;
;m
K
~
i
~
~!
j
~
~~
'
37
9
34
3
5
,
80
9
8
.
3
1
3
,
27
8
~4
1
:
:
f
f
i
~
~
1
~
l
~
~
:
~
$
~
)
?
z
~
i
~
q
i
~
;
4
Q
:
m
~
0
~
~
~
i
m
~
~
~:~
f
~
r
2
h
~
~
l
~:
j
)
:
~
:
~.'
31
6
36
4
6
,
07
6
8
.
8
1
2
,
9~
2
37
,
02
2
11
4
04
6
77
%
34
,
35
4
23
%
71
7
49
7
46
,
23
7
14
8
,
40
0
5.
4
Ne
t
,
Pr
o
j
e
c
t
B
e
n
e
f
i
t
($
0
0
0
s
)
($
I
M
W
h
)
I::
' (
8
;
6
5
8
r
:
:
:
!
:
:
:
:
\
;
(1
~
~
~
)
'
:
(8
,
79
1
)
(
1
4
.
\:
,
(8
,
65
$
r
:
:
:
:
:
)
/
J
1
'
~~
i
j
)
I
,
77
9
)
(
1
2
.
.
'
(3
;
9
6
2
)
:
;
:
\
'
:
/
(
(
5
;
5
)
1
:
38
1
1
.
:;
:
:
:
'
.:
4
;
9
'
~2
\
(
?
:
/
H
~
;
~
:
I
:
22
2
4
.
~4
2
:
:
:
:
:
I
S
L
:
:
:
n
:
:
t
t
:
'
34
4
7
.
::
:
:
::A
,
~~
~
'
n::
~
:
:
:
:
:
m
:
:
:
:
r
6
:
'
5;
'
12
0
6
.
::
:
:
:
:
;
~;
4
~
2
:
:
!::
:
:
;
:
:
/
t
:
:
:
:
::1
;
5
:
:
82
2
8
.
'.
:
:;
:
y
:
,
2(
)
t
:
t
?
t
f
:
~
:
~
,
70
3
9
.
.
:
:
;
:
:
:
:
:
;
;
i
,
59
1
;
:
r
:
:
:
:
:
:
:
;
2
)
.
Q
A
I
:
40
7
'
12
.
"9
;
~
1
:
:
:
:
;
:;
:
k
n
:
n
~
;
,
:
10
,
12
3
1
4
.
To
t
a
l
P
r
o
j
e
c
t
ot
a
l
V
a
r
i
a
b
l
e
C
o
s
t
s
Co
s
t
s
($
0
0
0
s
)
($
I
M
W
h
)
($
0
0
0
s
)
($
I
M
W
h
)
::p
m
:
i
:
:~
$
~
~
:
;t
:
:
:
\
;
:
;
:
'
:)
f
$
;
'
1
a
~
:
:
:::
:
;
:
;
%:
'
i
~
:
~
:
.
48
.
0
4
6
,
36
6
7
4
.
;\&
:
:
;
:
4
J
:
5
:
:
:
:
;
:
;
:
:
:
:
:
:
:
:
;
:
:
:
'
42
;
6
7
t
:
:
.
:
:
t
/
;
6
6
:
44
.
1
4
4
42
9
6
8
.
'"
,
,
,
'
.
,
,
,
"
,
'
"
"
' ,
""
47
1
,,
"
,
.
.
77
5
: :
:
'
:
:"
'
"
.
"
, ,
:::
:
:
;
:
:;:
'
" ,
' "
,
" '
.'
'
:.:
.:
,
:
,
'
::(
:
:
:
:
:
:
:
:
:
4~
:
~
?
:
:
/(
(
$~
;
:
:
:
::
:
:
,
:
:
:
\
~~
:
~
'
49
.
9
5
3
,
60
6
6
9
,
:7
r
:
'
i
~
:
(
f
)
:
?
:
;:'
:
52
;
1?
2
::
:
:
.
::;
:
5',
61
.
5
5
9
,
87
8
8
2
,
/n
:
r
:
f
i
Z
)
~
'
::
:
:
:
:
:
:
:
\
:
'
:6
f
;
~
2
,
, :
:
))
)
2
J
61
.
3
5
9
,
91
4
8
1
.
/::
:
:
~
;
:
:
:
:
:
J
3
(
t
~
:
:
;
~
:
:;n
;
:
b
:
:
:
~8
~
'
~~
d
'
:':
;:'
:::
:
:
:
:
:
~
O
:
(
)
.
59
.
2
5
6
,
87
0
7
8
.
~;
:
:
~
!;
r
...
59
.
.
5
4
99
6
7
8
,
:::
~
:
:
:::
:
:
~
1
~
j)
:
r
?
;
)
:
:
:
'
:5
5
~
5
!
~
:
:::
::~
:
:::
/~
Q
J
i
62
.
5
5
6
,
16
7
8
1
.
(0
)
(0
,
10
.
49
8
,
60
6
50
.
41
.
72
.
58
.
4
10
1
4
1
2
0
0
4
JR
F
AV
I
S
T
A
U
T
"
,-
-
:
"
50
0
/
0
o
f
Co
y
o
t
e
S
p
r
i
n
g
s
2
(
C
C
C
T
a
n
d
D
u
c
t
Bu
r
n
e
r
)
Ec
o
n
o
m
i
c
A
n
a
l
y
s
i
s
D
e
t
a
i
l
IN
T
E
R
r
'R
A
F
T
In
s
t
a
l
l
e
d
C
o
s
t
In
s
t
a
l
l
e
d
C
o
s
t
Pr
o
j
e
c
t
C
a
p
a
c
i
t
y
He
a
t
R
a
t
e
Ga
s
U
s
a
g
e
R
a
t
e
16
1
24
0
14
2
.
44
4
25
.
4
20
0
4
$
0
0
0
5
20
0
4
$
/
k
W
Bt
u
l
k
W
h
OO
O
s
d
t
h
/
d
a
y
Fi
x
e
d
C
h
a
r
g
e
Fi
x
e
d
O
&
M
Es
c
a
l
a
t
i
o
n
R
a
t
e
s
Fix
e
d
O
&
M
Tr
a
n
s
p
o
r
t
a
t
i
o
n
0
2
0
0
4
$
p
e
r
kW
-
m
o
75
2
0
0
4
$
p
e
r
kW
-
m
o
As
s
u
m
D
t
i
o
n
s
In
s
u
r
a
n
c
e
C
o
s
t
Ga
s
T
r
a
n
s
p
o
r
t
Ge
n
e
r
a
l
I
n
f
l
a
t
i
o
n
Op
t
i
o
n
V
a
l
u
e
10
2
.
48
2
0
0
4
$
0
0
0
5
00
2
0
0
4
$I
d
t
h
/
d
a
y
pe
r
c
e
n
t
0
2
0
0
4
$
0
0
0
5
No
m
i
n
a
l
D
i
s
c
o
u
n
t
Re
a
l
D
i
s
c
o
u
n
t
22
pe
r
c
e
n
t
50
pe
r
c
e
n
t
Pr
e
-
t
a
x
O
p
t
i
o
n
v
a
l
u
e
N
P
V
Ye
a
r
:W
0
5
:
20
0
6
3
'
' 2
0
0
1
:
:
20
0
8
,
5
:
'
,
,
:
2
0
0
9
:
20
1
0
7'
,
20
1
1
20
1
2
20
1
3
:
:
10
20
1
4
'
:
:
:
20
1
5
:
"
,
12
20
1
6
,
13
,
20
1
1
'
14
20
1
8
"
1
5
20
1
9
16
20
2
0
'1
7
V
20
2
1
"
18
20
2
2
:,1
9
/:
2
0
2
3
:
:
20
20
2
4
f
17
8
2
0
0
4
$
I
k
W
0
p
e
r
c
e
n
t
0
p
e
r
c
e
n
t
Fi
x
e
d
C
o
s
t
s
Ca
p
i
t
a
l
R
e
c
o
v
e
r
y
a
n
d
M
i
s
c
e
l
l
a
n
e
o
u
s
En
e
r
a
v
Pr
o
l
e
c
t
F
i
x
e
d
C
h
r
a
.
To
t
a
l
C
o
s
t
s
Fi
x
e
d
(G
W
h
)
($
0
0
0
9
)
($
0
0
0
9
)
($
0
0
0
9
)
($
l
M
W
h
)
($
0
0
0
s
)
:,
t:
;
.
:~
;
85
(
)
:
:.
:
:
:
:
);
~
U
:
j~
t
;
(
i:
::
o
.
:
:
:
~
:
/~
;
~
$
i
;
C
;
:
;
:
:
;
:
:
ii'
.
;
:
r1
:
~
~
:
'
m
~
m
:
:
~
:
&:
q
!
~
:
:
67
9
0
6
,
67
9
1
2
.
1
3
,
17
0
':
:
:
.
:
.
.
\
:
41
a
:
:
:
:
;
:
:
:
:
'
:::
;
::
:
:
:
:
.
;
:
:
::
p
:
;
'
m
:
:
;
;
:
:
:
:
~
;
4
~~
i
:
~
:
l
;
;
J
E
:
t
q
)
p
;
)
:
m
m
:
:
~
~
~
$
:
:
~.,
/,
6
,
29
3
0
6
,
29
3
1
0
.
4
3
,
36
3
;?
:
r
:
:
:
:
:
'
,:.
:
~
i
2
aa
:
. e x '
/
)
:
:
:
:
:
:
:
:
'
/ :
:
Q
:
:
:
;
;
~t
~
;
?
~~
)
;
;
:
;
;m
:
:
:
~
:
:
:
~~
$
.
:
r
j
A
~
:
:
~
~
~
(
"
i5
i
~
36
4
0
6
,
36
4
8
.
'
3
,
56
8
.;
,
:
1~
;
1
'
::
.
:
:
:
:::
'
:
:
:
~
:
O
~
1
'
:
:::
:::'
:
:
:
:~
:
:
.
,
/
:
::
:
:
:
;
:
:
:
:
:
q
:
.
/
:
:
~:;
:
:
~
.
q2
j
:
:
/
k
:
;
;
:
:
;
;m
:
.
;
~
~
~
:
:
:
:
~:
:
~
:
~
%
~
;
M
p
:
:
,
'
,\
5
,
94
2
0
5
,
94
2
8
,
2
3
,
78
5
/'(
:
'
:
p,
1
~
(
:
:
::
:
:::
:
:
;
:
:
:
n
:
:
,
/:
:
O
:
:
)
:
:
:
;
5
~
7
~
f
t
;
:
%:
:
:
:
:
:
:
m
r
:
6
:
:
~
E
:
t
:
:
~
:
;
~
~
:
"
82
6
0
5
,
82
6
8
.
6
4
,
01
5
:::
:
:
:
:
:
:
:
:
5;
7
1
8
:
:
:
:::
,
:
.::
:
:
:
:::
.
:
:
'
:
/
:
:.
:
:
:
'Q
:
:
:
:
:
:
:
:
:
i
j
i
:
:
$
i
7
.
)
'
~:
:
X
:
:
:
:
:
;
:
:
g
:
::
~
~
~
:
:
:
:
:
:
~
:
U;:
:
.
:
A
~
t
~
6
:
:
/i
50
8
0
5
,
50
8
'
1
4
,
26
0
~~
"
'
..
,
:::
:
:
:
5
;2
~
8
"
::
.
:
:
:
:
;
:
,
:::
:
.
:
:
:::
:
:
D
;
i
:
'
q;i
:
:
:
:
:
.
:
.
:
:
:
;
5
:
;~
9
8
::
'
:
:
Y
:
:
:
:
:
m
:
.m
~
.
~
:
:
.
:
.
.
~
m
!
;
~
.
.
3~
~
:
.
as
:
5
,
08
8
0
5
,
08
8
7
.
7
4
51
9
~d
:
1
'
ij
~
.
:
:
'
:
)
:
:
1:
:
~
:
:
"
;:.
.
/
:
:
:
:
;
:
'
.::
X
:
:
.
:
'
:
g::
:
.
.
:
:
:
:
:
(
:
.
~:
:
~
:
'
::
;
:
:
:
i
:
:..
:
~
:
m
:
'
:
;:
~
;
:
~
W
:
:
.
:
:
.
i
:
.
~:~
~
5
'
:;:
:
:
:
:
4
;
5
6
1
:
.:
:
:
;
:
:
:
:
:
:
:
;..
'
::.
:
'
:
:
\
:
~
:
br
:
:
;
~
X
:
4
;
~
6
r
?
:
.
:
t':
m
m
;
:
:
6
\
~
'
.:
:
m
n
n
.
.
~
~
~
~
~
:
:
45
3
0
4
45
3
6
.
7
5
,
08
7
: H
:::
:
:
:
(4
,
3~
:
:
?
:
:
.
.
.
iN
:
:
:
;
:
:
:
:
:
:
:
:
:
~ :
(
j
'
;
r::
:
m
'
; ~
h
~4
$
:
:
;
:
:
:
:
.
.
:
:
:
::v
:
:~
(
~
:
.
;
0m
:
m
:
:
:
~
;
~
~
~
:
:
:
23
7
0
4
23
7
6
.
2
5
,
39
6
Ne
t
P
r
e
s
e
n
t
V
a
l
u
e
5
6
,
99
4
No
m
i
n
a
l
L
e
v
e
l
i
z
e
d
C
o
s
t
(
$
I
M
W
h
)
Re
a
l
L
e
v
e
l
i
z
e
d
C
o
s
t
(
$
/
M
W
h
)
99
4
CS
I
I
P
r
o
s
y
m
-
Op
t
i
o
n
R
e
s
u
l
t
s
I
n
S
C
2
F
o
r
m
a
t
Se
p
t
1
4
L
o
w
C
a
s
e
.
x
i
s
Op
e
r
a
t
i
o
n
s
&
M
a
i
n
t
e
n
a
n
c
e
'
T
o
t
a
l
F
l
x
e
d
-
Op
e
r
a
t
i
n
g
Op
t
i
o
n
Gt
r
a
n
s
Pr
T
a
x
'n
s
u
r
.
To
t
a
l
C
o
s
t
s
Co
s
t
s
Ma
r
a
i
n
Va
l
u
e
($
0
0
0
9
)
($
0
0
0
9
)
($
0
0
0
9
)
($
0
0
0
s
)
($
l
M
W
h
)
($
0
0
0
9
)
($
0
0
0
s
)
($
0
0
0
9
)
:~
:
~
f
~
:
;
,
4:$
~
:
:
~
j;;
j
:
N
~
~
~,
:
q ~
i
*
~
!
~
i
:
~
;
~
4
:
~
:
~:E
~
tJ
~~
J
i
t;
~
:
,
~:
~
l
f
J
.
.
i
~
~
&
J
9
~
~
~
~
:
: '
45
0
10
9
3
,
72
8
6
.
7
1
0
,
40
7
:;
~
;
J
m
:
:
f
~
~
:
'
i
)
f
;
i
;
:
:
m
m
:
:
:
)
J
:~
l
~
i
j
~
)
~
~
;
~
J
;
Q
I
J
:
f
~
~
!
t
i
~
~
:
~
~
~
:
D
~
T
~
t
t
:
K
8
.
)
O
i
?
?
~
:
1
41
7
11
5
3
,
89
6
6
.
4
1
0
,
18
9
:: Ia
;
.
:
;
;
:
i
~
~
'
1:
:
:
f
f
i
r
l
~
;
j
~
,
j:,
~
j
i
1
~
;
:
t
j
i
i
:
~
;
:
~
,
~4
:
~
:
~
:
~
~
~
W
:
1
~
~
:
i
~
~
p:
~
m
m
:
?
~
l
:
:
:
6~
??
?
;
:
38
5
,
12
2
4
,
07
5
5
.
4
1
0
,
43
9
::
m
n
:
;
)
::$
~
~
0
t
r
;
j
;
:
:
~
:
;
:f
j
:
~
~
f
.
m
~
:
j
;
l
~
;:
l
j
~
t
::(
i
:
:
&
:
1
!
m
i
i
:
:
:
$;
~
:
:
i
l
i
t
J
l
l
i
n
f
~
~
:
:
)
)
9~
f
~
~
35
3
'
13
0
.
4
,
26
8
5
.
9
1
0
,
21
0
::
:
tJ
;
~
~
7
i8
~
1m
~
~
1
l
i: j ~
~
t
~
f
~
*
~
~
i;
~
~
~
e~
;
(
:
r
!
i~
i:
i
:
:
:
~j
;
;
i
~:1
~
~
~
%~
m::
:
1
ij;
~
'
M/
:
32
1
13
8
4,
4
7
4
6
.
6
1
0
,
30
1
" :
:;!
~
:
:
:
i
:
~Q
~
l
i
:
i
j
%
;
!
N
:
m
;
t
4
g
;
~
i
~
~
t
~
:
4
;
:
~
~
a
:
~
:
~
:
m
I
$
~
m
~
;
i
m
:
~
~
z
;
:
m
~
~i
~
j
f
M
Q
~
~
9
1
;
:
28
9
14
6
4
,
69
5
,
9
'
10
,
20
3
:j
:
::
2
:
;
:
:
:
?1
~
f
t
X
~
1
~
m
~
~
x
~
;
t
:
~~
%
;
m
:
:
~
;
~ r
t
~
:
m
H
:
~
j
m
t
;
?
I
i
l
l
~
~
~
f
~
)
t
1
9
'
;:
t
P
~
'
25
7
15
5
4
,
93
1
7
.
4
1
0
,
01
9
::
~
:
i
;
j
i
:
:
8
j
:
:~
4
f
m
r
i
f
c
i
~
:
j
i
i
~
)
:
~
g
;
i
l
i
f
J
\
(
~
:
~
;
9
$
$
:
:
:
:
D
m
~
:
:
:
:
m
~
:
t
;
t
:
1
i
J
:
m
m
~
~
1
~
8
W
:
~
.
~ ~
~
:
22
5
16
4
5
,
18
4
8
.
0
9
,
85
3
~?
~
g
:
:
:
? b
~
:
f
0
:
:~
i
i
m
f~
:
:
j
:
~
~
;
~
~
~~
~
;
~
1
7
:
:1
:
)
~~
~
m
;
1
:t
~
~
~;:
~
~
~
i
~
Q
~
1
~
j~
~
:
: g
;
~
'
!
~
:
:
19
3
17
4
5,
4
5
4
8
,
2
9
,
90
7
,
"
,
,
~~
~
;
:
j
t
t
~
~
i
;
1
~
K
:
j
.
8
.
9
-
mm
f
m
;
~
;
:
~:
~
:
~
t
N
~
~
~
f
~
;
;
~
:
~
~
~
f
f
~
:
m
~
~
:
~
w
!
:
:
:
~:~
~
1
G
;
:
37
,
02
2
16
1
18
5
74
2
8.
4
41
5
27
0
41
,
70
7
98
,
70
1
Ne
t
Pr
o
i
e
c
t
B
e
n
e
f
i
t
(5
0
0
0
9
)
(S
l
M
W
h
)
::
:
:
:
:
(
4
;
i
~
i
:
i
E
U
:
.
:
1
i
;
:
r
(
~
~
3
)
;
67
2
)
(8
.
4
)
(H
4
;
~
1
b
F
m
I
:
mt
:
(
r
6
)
:
:::
:
:
::
~
:
:
~
;
~
L
'
L
\
H
J
~
:
:
~
!!
(2
1
7
)
(
0
.
~;;
"
r~
'
::::.'
2.;
!
:
I
1
t
.
:L
:
~
:
W(
~
:
l
:
~
/
r
.
.
28
5
1
.
::
?
:
:
2;
'
~t*
L
?
:
:
:
~
i
\
~
:
:
;
;
:
~
/
t
.
59
5
3
.
.:
:
:
:
:
:
:
:
:
:
2
;
6
6
~
,
:t:
;
:
\
~
:
K
~
.
:
:
~
:
63
9
3
.
(:
)
~
,
~f
'
::j
j
!
:
:
:
:
~
;
:
;
~
~
:
i
j
63
0
4
.
f
2
;
5
2
$
:
:
\
~
W
r
~
~
~
1
?
~
~
~
55
6
3
.
:::
:
:
:
~::
:
'
ii
:
~
:
::1
~
~
i
;
~
~
:
i
:
;
:
~
~
'
33
3
9
.
\:
:
:
:
;
8
2i:
i
6
;
:
g
C
U
:
:
)
2
~
'
~:
.
10
,
06
0
1
4
.
73
,
36
3
74
%
25
,
33
9
26
%
(0
)
To
t
a
l
P
r
o
j
e
c
t
To
t
a
l
V
a
r
i
a
b
l
e
C
o
s
t
s
Co
s
t
s
($
0
0
0
9
)
(S
l
M
W
h
)
($
0
0
0
9
)
(S
l
M
W
h
)
.:
:
:
~
W
:
;
~
~
~
~
/
:
:
;;
:
/
:
)
"
:
3
1
62
7
:
;
:
;
'
:
:
:
"
:
:
:
:
:
55
~
:
q
38
.
6
3
1
76
8
5
7
.
:.;
:
m
:
:
:
;
t
~
~
:
,
~
)
:
:
T
t
/
,
42
9
:
.
.
:
:
:
.
:
:
:
:
:
:
:
5q
~
i
"
35
.
8
3
1
87
8
5
2
.
:j
:
:
2
\
3
8
~
(
:,
~
9
;
8
0
4
:
' .
,;
:
.
f
j
3
:
40
.
9
4
1
,
33
5
5
4
.
S~
(
(
)
t
~
:
:m
;
:
;
/
:
:
:
:
3
!
.
~
9
a
,
:
:
:
.
:
.
:
:
-
.
=
4
7
.
40
.
6
3
9
47
7
5
4
.
:
:
:
:
;
:
X:
:
:
~
~
f
:
(
:
:
:
?
)
'
:;
:
:
)8
;
4
2
0
:
:
:
(
H
~
5
~~
3
50
.
0
4
4
03
5
6
5
.
""
"
"
""
'
""
"
"
"
""
"
"
""
'
'i
~
~
:
;
.
)
:
:
~
;
;
f
j
9
~
.
.
:;:
:
:
:
\
:
:
:
:
/
"
:::
::
:
\
,
65
,
, '
,
5
0
.
0
4
4
,
14
4
6
5
,
::
M
:
g
:
.
:
'
;~
:
:
;
:
:
:
~
:
;
;
:
::
4
,
i:
i
9
0
I
:
:
'
::
:
::
,
;
6
4
.
48
,
3
4
2
,
04
0
6
3
.
;;
:
:
:
;
,
:
'\
A
t
~
;
:
:
:
d
W
;
r
:
:
4b
;
9
9
4
r
:
:
:::
:
:
:
:
L
6
2
~
~
46
.
5
3
9
,
95
3
6
1
.
:X
S
j
J
:
4
t
~
/
'
t:
t
:
(4
1
;
12
3
:
:
:
:
:
:
:
'
:::
:
;
:
'
6
2
;
48
.
.
4
2
29
8
6
3
.
:::
:
'
:
t:
:
.
;
~
W
:
~
.
'
'
:':
'
43
i
:
41
~
.
:
:
.
:
:
r::
:
;
::
:
:~
,
50
.
8
4
4
,
66
3
6
5
.
36
3
,
98
2
(0
.
(0
.
41
.
33
,
56
.
45
.
10
/
4
/
2
0
0
4
J
R
F
AV
I
S
T
A
U
T
'
In
s
t
a
l
l
e
d
C
o
s
t
In
s
t
a
l
l
e
d
C
o
s
t
Pr
o
j
e
c
t
C
a
p
a
c
i
t
y
He
a
t
R
a
t
e
Ga
s
U
s
a
g
e
R
a
t
e
Pr
e
-
ta
x
O
p
t
i
o
n
v
a
l
u
e
N
P
V
Ye
a
r 1
'
,
20
0
5
,
20
0
6
3
,
20
0
7
20
0
8
"
5
,
:
2
0
0
9
20
1
0
:2
0
1
1
20
1
2
::
2
0
1
3
"
10
20
1
4
1.
1
,
,2
0
1
5
12
20
1
6
'
13
:
:2
0
1
7
14
20
1
8
15
'
:2
0
1
9
:
16
20
2
0
"
11
:
\
2
0
2
1
:
:
:
:
18
20
2
2
19
,
:2
0
2
3
20
20
2
4
En
e
r
a
v
::,
,
(C
;
;
W
h
)
50
0
/
0
o
f
Co
y
o
t
e
S
p
r
i
n
g
s
2
(
C
C
C
T
a
n
d
D
u
c
t
Bu
r
n
e
r
)
Ec
o
n
o
m
i
c
A
n
a
l
y
s
I
s
D
e
t
a
i
l
11
1
,
05
3
78
1
14
2
.
44
4
25
.
4
20
0
4
$
O
O
O
s
20
0
4
$
/
k
W
Bt
u
l
k
W
h
OO
O
s
d
t
h
/
d
a
y
Fi
x
e
d
C
h
a
r
g
e
Fi
x
e
d
O
&
M
Es
c
a
l
a
t
i
o
n
R
a
t
e
s
Fix
e
d
O
&
M
Tr
a
n
s
p
o
r
t
a
t
i
o
n
31
1
2
0
0
4
$
I
k
W
0
2
0
0
4
$
p
e
r
kW
-
m
o
75
2
0
0
4
$
p
e
r
kW
-
m
o
A!
!
s
u
m
t
l
o
n
s
In
s
u
r
a
n
c
e
C
o
s
t
Ga
s
T
r
a
n
s
p
o
r
t
Ge
n
e
r
a
l
I
n
f
l
a
t
i
o
n
Op
t
i
o
n
V
a
l
u
e
0
p
e
r
c
e
n
t
0
p
e
r
c
e
n
t
Fix
e
d
C
o
s
t
s
Ca
p
i
t
a
l
R
e
c
o
v
e
r
y
a
n
d
M
i
s
c
e
l
l
a
n
e
o
u
s
Pr
o
j
e
c
t
A
x
e
d
C
h
r
a
.
To
t
a
l
C
o
s
t
s
Ax
e
d
($
O
O
O
s
)
($
0
0
0
s
)
($
O
O
O
s
)
($
/
M
W
h
)
($
0
0
0
9
)
:::
:
::
2
0
;
~
q
g
;
:
'
.
:
:
;::
:
;
:
:
:
:
:
;.:
:
:
:
:
,
::
~
:
:
:
:
(
)
:
\
:
:
f
:
;
~
i
)
,
$a
9
:
:
~
.
f
:
~
;
:
:
;
:;:
:
g~
;
~
7
:
:
;
;
m
:
:
;
;
:
~
;
6
t
~
:
:
20
,
01
4
0
2
0
,
01
4
2
7
.
8
3
,
17
0
: :
:
:
:
:
:
1
9
;
1
3
2
c::
:
:
:
:
:
:
::'
:
:::
:
:
:
::
:
i
:
::
:
:
(
i
:
)
:
:
;
:
;
:
1S
;
1
~
~
;
:
:,:
:
:
'
:?
m
:
g
$
:
:
~
;
'
:m
?
:
m
:
:
:
~
;
?
&
$
.
:
18
,
56
3
0
1
8
,
56
3
2
5
.
1
3
,
36
3
"
'
i
::::::
)
8;
j
J
a
,
:::
,
:::
:
;
/::
.
t
:
;
;
:
:
:
:
:
o
.
:
:
:.:
:
:
:
:
:
J
~
;
3
1
?
:
m
:
:
;
::~
:
:
:
:
:
~
:
:g
1
:
'
~:
;
:
:
;
:
.
:
:
:
;
m
t
3
A
~
~
:
()
~
;
..
1
8
05
9
0
1
8
05
9
1
9
.
9
3
,
56
8
'
"
~~
.
::,
:
:;
:
j
1
.
52
2
'
:;:
:::
:.:
:
.
:
::
:
::
:
:
:
:
::
:
:
:
:
:
O
:
:
.
:;
:
:
:
:
'
:
t
t
;
$
?
?
'
~;
i
:
;
j
:
~
:
:
:j
9
;
~
~
:
:
:
.
m
:
;
:
:
~
:
:
:~
;
M
~
:
\
1
7
00
6
0
1
7
00
6
1
9
.
8
3
,
78
5
:::
;
;
:::
;
:
1
$
;
5
6
(
j
:
.
..';:
;
:
:
.
:
:
:
:
:
:
:
1
:
:
:
,
:
:
.
:
::(
j
'
;::
i1
:
~
;
M
6
:
:
:
?;:
:
~;;
:
:
:
;
~
'
ij/
t
:
.
:
.
m
e
~
;
m
:
~
;
~
~
~
j
:
:
15
,
99
6
0
1
5
,
99
6
1
9
.
7
4
,
01
5
;::
:
:
:
:
1
5
;
4
9
3
,
:::
;
y:;
:
:
:
:
:
:
:
:
'7
:
,
:'
j
j
:
:
:
;
:
'
:
:
1
$
.
~
4
9
3
:
:
:
:
?
:
'
:
/
:
:
J\
t
t
H
~
~
:
:
m
;
A
;
J
~
6
:
:
:
:
87
6
0
1
4
87
6
1
9
.
1
4
,
26
0
:/
/
j
4
,
25
9
:
~
:
;
:
:
:
:
:
:
)
)
)
,
::
:
/
(
i
:
:
:
:
:
:
i':
)
~
h
2
~
.
~:~
/;
t
:
:
:
J
.
~:
~
;
:
:
:
:
;
l
~
j
I
:
:
)
t
~
~
a
:
:
:
:
13
,
64
2
0
1
3
,
64
2
1
7
.
8
4
51
9
f)
)
:
:
1
3
,
O2
6
Y
(
:
:
:
:
:
:
;
:
:
:
:
:
/
:
:
:
:
:
:
:
:
::
J
~
;
Q
?
6
:
:
:
?\
:
:
:
:
:J
t
~
:
:
n
:::
;
;
~
:
A
~
~
5
$
:
12
,
41
0
0
1
2
,
41
0
1
6
.
5
4
,
79
5
(;
:
:
'
1
J
i
S;
'
*
//
:
:
:
:
;
:::
;
:
:
:
:
:::
:
:
)
)
;
(
:
(
:
:
:
'
J
t~
f
4
.
:
:
:
:
:
:
i
:
:
:
:
:
:
/
j
$
:
:
F
:
:
:
:
:
:
:
:
;
:
U
;
#
~
~
~
~
:
11
,
33
9
0
1
1
33
9
,
15
,
7
5
,
08
7
;:
~
:
:
,
:
j
:
j
6
;
i
1
b
4
:
:
:
:
:
:
:
:
:
:
:
~
g
:
:
:
:::
.
:
:
:
:
;
;
:
:
(
i
:
:
.::
~
?
:
:
j:
9
;
~
9
'
4J
\
:
r
:
:
;
~
:
:
A
~
:
;
~
:
:
~
w
~
m
:
:
;
:
t
$
;
~
~
i
i
:
:
27
0
0
1
0
27
0
1
4
.
8
5
,
39
6
Ne
t
P
r
e
s
e
n
t
V
a
l
u
e
1
6
2
,
46
1
No
m
i
n
a
l
L
e
v
e
l
i
z
e
d
C
o
s
t
(
$
I
M
W
h
)
Re
a
l
L
e
v
e
l
i
z
e
d
C
o
s
t
(
$
/
M
W
h
)
0
1
6
2
46
1
02
2
21
,
17
.
CS
I
I
P
r
o
s
y
m
-
Op
t
i
o
n
R
e
s
u
l
t
s
I
n
S
C
2
F
o
r
m
a
t
Se
p
t
1
4
H
i
g
h
C
a
s
e
.
xl
s
Op
e
r
a
t
i
o
n
s
&
M
a
i
n
t
e
n
a
n
c
e
"
T
o
t
a
l
F
i
x
e
d
-
Gt
r
a
n
s
Pr
T
a
x
'n
s
u
r
.
To
t
a
l
C
o
s
t
s
Co
s
t
s
($
0
0
0
9
)
($
0
0
0
9
)
($
0
0
0
9
)
($
O
O
O
s
)
($
/
M
W
h
)
($
0
0
0
9
)
~ ;
~
~
~
,
1;;
~
:
1
,
~
.
:;
;
~M
;
~
~
~
:
~:
~
m
i
l
i
;
:
f
;
#
~
;~
~
4
.
:
:
Wj;
~
i~
:
ff
i
~
:
:
8 ~
;
~
%
i
.
i
~0
!
~
~T
~
$~
~
;
46
1
35
3
4
,
98
5
.
6
.
9
2
4
99
9
:)
~
'
:t
;
4
Q
~
:
;
:
~f
;
:
~
t
~
:
;
m
~
,
6:
~
i
:
i
;
:
;
~
;
~
~
~
:
;
9
:
~
~
:
:
m
r
~
~
~
;
1
~
:
~
/t:
i
:
~
~
7
~
T
~
~
~
r
1
~
4
:
~ :
t
9
.
:
:
35
7
37
5
5
,
09
5
6
.
9
2
3
,
65
7
:n
:
J
~
~
(
j
~
:
U
;
~
m
;
~
~
:
m
~~
~
n
:
m
i
l
i
:
m
~
H
~~
m
4
~
~
M
m
~
m
;;~
;
~
?
:
m
~
\
0
;
~
~
t
:
?~
;
~
S
~
:
:
;
25
3
39
8
5
,
21
8
5
.
7
2
3
,
27
7
::
:~
:
;?
9
t
i
.
A
~
i
~
~
l
m
;
~
~
~
t
;
d
f
:
~
~
f
f
i
J
~
~
g
~
$
;
i
;
:
j
~
8
0
t
r
*
j
~
~
~p
)
~
f
~
1
r
~
~
~
f
,
2
.
2
;
~P
.
t
:
14
8
42
2
5
,
35
5
6
.
2
2
2
,
36
1
,"
'
:: ;1
;
09
$
;
:
:
l
f
~
1::
;
J
f
#
i
3
~
t
:
;
m
~
~
$.i
4
~~
m
:
:
~ ~
~m
\
.
~
;
~
~~
j
~
~
t
~
J
r
~
r ;
~
~
S
,,:
04
4
44
8
5
,
50
7
6
.
8
2
1
50
3
:~
A
i
~
M
9
2
g
:
:
!
~
t
~
~
~
)
t
~
J
:
m
m
:
m
t
i
~
~
:
I~
~
~
;
m
j
;
;
l
~
:
%m
~
:
!
:
;
f ~
~
~
~
~
~
?
;
;
m
)
!
1
:
;
g8
i
:
:
:
:
:
93
9
47
5
5
,
67
4
7
.
3
2
0
,
55
0
~:
n
b
:
:
:
:
:
Ba
t
;
~
:
;
'
~
j
~
m
m
:
;
:~
~
:
m
l
l
i
N
:
&
;
1
~
4
2
n
m
~
:
:
:
j
:
:
t
t
:
;~
m
:
f
:
~
~
~
~
~
:
:
2
0
;
9
2
3
:
:
:
:
83
5
50
4
5
,
85
8
7
.
7
1
9
,
50
1
:; :::
:
:
;
1
~
~
:
:
;
;
m
~
,
~~
f
:
$
'
~
:
:
m
z
;
W
~
~
~j
~
~
?T
i
l
l
;
:
?
:
\::
:
'
:t;
~
;.:
m
T
i
~
t
(
~
;
:
:
1
-
~
;
~
~
~
:
:
'
73
1
53
5
6
,
06
0
8
.
1
1
8
46
9
. ;
~
:
;
:
:
;
:
6
~ :
1
:
g
i
i
l
i
m
;
,
fm
r
8
.
~
W
:
~
;
:
i
"
~~
2
:
~
i
*
~
j
~
:
~
~
4
f~
(
~
0
J
W
:
:
j
~
;P
4
2
;
:
:
:
:
62
6
56
7
6
,
28
0
8
.
'
1
7
,
61
9
, "
:::
:
:;:
~
~
1
'
(
i
m
~
~
m
~
$~
7
~
f
~
~
~
:
'
~;~
~
,
an
~
~
:
:
:
i
:
:
(~
m
:
~;
;
p
:
:
:
t
~
1
i
l
l
i
j
~
~~
:
t
l
1
~
2
.
p
~
:
:
.
52
2
60
2
6
,
52
0
9
.
4
1
6
,
79
0
11
;
1
0
3
21
4
71
4
12
8
25
3
33
3
.
16
2
0
0
4
$
O
O
O
s
00
2
0
0
4
$I
d
t
h
l
d
a
y
0
p
e
r
c
e
n
t
0
2
0
0
4
$
o
o
o
s
Op
e
r
a
l
i
n
g
Ma
r
a
i
n
($
O
O
O
s
)
Op
t
i
o
n
Va
l
u
e
($
O
O
O
s
~
17
0
,
45
4
79
%
44
,
26
0
21
%
Ne
t
Pr
o
j
e
c
t
B
e
n
e
f
i
t
($
0
0
0
9
)
($
I
M
W
h
)
~~
a
(
n
)
)
S
?
J
1
f
;
~
)
'
(1
1
,
14
9
)
(
1
5
.
/::
(
9
,
9$
B
r
.
:
E
:
~
r
'
:f
2
)
'
(6
,
51
6
)
(
8
.
, "
:;:
:
:
:
(~
f
J
~
r
\
:
:
\
)
"
:
t
r
2
)
;
53
3
9
.
\?
A
t
t
/
)
:
'
:
:
;
;
.
:;:
:
l~
'
01
2
7
.
:::
:5
j
:
1
?Q
:
r
m
)
i
:
:
m
:
:
;
;
:
:
:
~
:
::1
,
57
8
4
.
::
)
;
;
3
;
1
.
~
~
,
::
:
:
D
t
:
f
:
:
:
:
::
4
:
'
IJ
'
84
2
4
.
::
\
4
5~
5
)
g
:
~
?
\
:
f
$
,
. '
28
3
6
.
-':
:
6
,
21
"
6
'
:C
:
:
~
U
.
:
:
:
:
\
~
~
2
11
1
9
.
:j
,
49
$
"
'
/:
m
U
:
;
:
:
J
Q
~
~.
.
'
83
3
1
0
.
:?
~
,
j~
6
.
:
t/
t
?
)
:
j
~
5
:
51
3
1
2
.
(0
)
IN
T
E
R
:
'
'R
A
F
T
No
m
i
n
a
l
D
i
s
c
o
u
n
t
Re
a
l
D
i
s
c
o
u
n
t
22
pe
r
c
e
n
t
50
pe
r
c
e
n
t
To
t
a
l
P
r
o
j
e
c
t
To
t
a
l
V
a
r
i
a
b
l
e
C
o
s
t
s
Co
s
t
s
($
0
0
0
s
)
($
I
M
W
h
)
($
0
0
0
s
)
($
/
M
W
h
)
:"
"
"
'
::
:
:
:
\
:
:
::
:
~
w
n
~
;
:
:
.
)
)
;
:
:
6
(
3
4
.
::
:
,
:
:
:
;
:
'
a8
)
57
.
2
6
6
,
13
1
.
9
U
:n
t
)
A
~
~
(
r
:
:
(:
'
::
"
O1
3
:+
H
Y
/
l
H
,
52
,
0
6
2
,
16
8
8
3
,
:::
:
;
:
:
:
5
5(
'
:::
:
;
'
'.
6
9
~
7
7
f
J
'
:
:
.8
3
,
l~
%
',
~
"4
5
9
.
0
7
6
,
87
5
8
4
.
"0
0
'
P
'
c
"
"
"
O~
~
:
;
?
:
:;
6
1
,
6
:
:
:
;
.
7
7
,
;3
1
3
'
'
87
:
4
64
.
4
7
7
77
5
90
.
4
32
3
.
,
.
' '
67
.
4
.
"
7
8
,
25
2
9
3
,
70
.
5
7
8
,
73
5
9
7
.
::~
:
:
:
:
:
:
\
J
:
:
r
~
:
)
:
(/
/
:
7
!
J
;
2
2
1
:
:
~:
.
10
0
.
72
.
7
7
7
,
22
7
9
9
,
::
U
:
1
)
f
t
!
$t
:
\
:
;
;
)
/
7
5
~
2
~
6
:2
~
:
:
:)
:
:
9
1
;
4
70
.
2
7
3
,
25
1
9
5
.
":
'
:
'
:
"
':
"
:':
"
:,:
"
,
::
:::
:
'
:
:
:
:::
:
'
::"
:'~
:::
,
,
:
:,:
:
' "
.
;
,
.
:::
:
,
:
: :
67
.
7
6
9
,
29
3
9
2
,
:?
:
:
(
:
.
a:~
;
:
t
:
:
:
:
;
~
:
::;
:
:
:
:
:
:
:
:
6
9
;
0
8
~
:
:
:
'
:
:
;
:
:
:
:
::
:
::
~
3
;
8
70
.
-
6
8
,
.8
8
3
9
5
,
:'t
~
q
~
6.
a
~
6
8
i
.
: 9
6
:
;13
74
.
3
6
8
,
49
5
9
8
,
,
6
8
4
,
01
6
62
.
50
.
91
.
73
.
10
1
4
/
2
0
0
4
J
R
F
EXHIBIT L
Purchase and Intent Agreement
Application of A vista Corporation
Case No. A VU-O5-
Purchase mid Sale
of the Undivided
50% Ownership Interest
Mirant Oregon, LLC in Coyote Springs 2
:, ,~ )\)'1
Table of Contents
Document
Asset Purchase and Sale Agreement.. .
. . . . . . . . . . .. . . . . . . .. .. .. . .. . . . . . . . . . . . . . . . .. . . . . . . .
Schedules. .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Escrow Agreement.........................................................................
Tab