Loading...
HomeMy WebLinkAbout20230103IPC to Staff 19-31.pdfLISA D. NORDSTROM Lead Counsel lnordstrom@idahopower.com January 3, 2023 VIA ELECTRONIC FILING Jan Noriyuki, Secretary Idaho Public Utilities Commission 11331 West Chinden Blvd., Building 8 Suite 201-A Boise, Idaho 83714 Re: Case No. IPC-E-22-27 In the Matter of Idaho Power Company’s Application for Review of the Company’s Current Wildfire Mitigation Plan and Authorization to Defer Newly Identified Incremental Wildfire Mitigation Costs Dear Ms. Noriyuki: Attached for electronic filing is Idaho Power Company’s Response to the Second Production Request of the Commission Staff in the above-entitled matter. The confidential attachment will be provided to the parties that execute the Protective Agreement in this matter. If you have any questions about the attached documents, please do not hesitate to contact me. Very truly yours, Lisa D. Nordstrom LDN:sg Attachments RECEIVED Tuesday, January 3, 2023 3:18:46 PM IDAHO PUBLIC UTILITIES COMMISSION CERTIFICATE OF ATTORNEY ASSERTION THAT INFORMATION CONTAINED IN AN IDAHO PUBLIC UTILITIES COMMISSION FILING IS PROTECTED FROM PUBLIC INSPECTION Case No. IPC-E-22-27 Idaho Power Company’s Application for Review of the Company’s Current Wildfire Mitigation Plan and Authorization to Defer Newly Identified Incremental Wildfire Mitigation Costs The undersigned attorney, in accordance with Commission Rules of Procedure 67 and 233, believes that the Attachment 1 in response to Request No. 28 to Idaho Power Company’s Response to the Second Production Request of the Commission Staff dated January 3, 2023, may contain information that Idaho Power Company or a third party claims is confidential as described in Idaho Code § 74-101, et seq., and § 48-801, et seq., and as such is exempt from public inspection, examination, or copying. DATED this 3rd day of January 2023. LISA D. NORDSTROM Attorney for Idaho Power Company IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 1 LISA D. NORDSTROM (ISB No. 5733) MEGAN GOICOECHEA ALLEN (ISB No. 7623) Idaho Power Company 1221 West Idaho Street (83702) P.O. Box 70 Boise, Idaho 83707 Telephone: (208) 388-5825 Facsimile: (208) 388-6936 lnordstrom@idahopower.com mgoicoecheaallen@idahopower.com Attorneys for Idaho Power Company BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION IN THE MATTER OF THE APPLICATION OF IDAHO POWER COMPANY FOR REVIEW OF THE COMPANY’S CURRENT WILDFIRE MITIGATION PLAN AND AUTHORIZATION TO DEFER NEWLY IDENTIFIED INCREMENTAL WILDFIRE MITIGATION COSTS ) ) ) ) ) ) ) ) CASE NO. IPC-E-22-27 IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY COMES NOW, Idaho Power Company (“Idaho Power” or “Company”), and in response to the Second Production Request of the Commission Staff (“Commission” or “Staff”) dated December 13, 2022, herewith submits the following information: IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 2 REQUEST FOR PRODUCTION NO. 19: Please describe alternative methods to the proposed vegetation-focused satellite and aerial patrols that the Company evaluated. Application at 21. Please provide the analysis the Company completed to determine the use of vegetation-focused satellite and aerial patrols. Please include Excel spreadsheets with cost comparisons between all alternative methods evaluated by the Company. RESPONSE TO REQUEST FOR PRODUCTION NO. 19: In 2022, Idaho Power evaluated a variety of new technologies and innovative practices that have potential to reduce wildfire risk and associated impacts to customers and communities. Satellite imagery was one such area the Company identified through benchmarking, as the practice is being used by several western utilities, including Avista. Given the expense of Idaho Power’s vegetation management program, the Company considers it prudent to explore the potential of aerial and satellite imagery in a pilot setting. With targeted satellite imagery, the process of tasking satellites, acquiring data, and performing in-depth analysis to identify vegetation encroachment and hazard trees takes only days to weeks to perform (significantly less time than the manual process of vegetation management and inspection), providing a greater degree of situational awareness prior to wildfire season. Such a tool would allow Idaho Power to focus resources more effectively and mitigate hazards more quickly than relying solely on traditional vegetation management and associated field inspections. The Company also explored using aircraft to conduct similar inspections with Light Detection and Ranging (“LiDAR”) technology. Both satellites and aircraft can scan large areas in short amounts of time to detect vegetation encroachment. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 3 Idaho Power started a pilot in the fourth quarter of 2022 to begin collecting satellite and aircraft imagery data and is working with vendors to gain insight into the value of using satellite and aircraft imagery in the Company’s high risk wildfire areas. The goal of the pilot is to confirm the accuracy of information received from vendors and to determine where efficiencies can be made to decrease ignition potential. Please refer to the attachment to this response for a table summarizing the line miles associated with the pilot and cost comparison between satellite and aircraft imagery used for vegetation encroachment and hazard tree detection. Idaho Power plans to assess the costs and benefits of these three technologies in the first quarter of 2023. Geiger LiDAR has the potential to survey larger areas at lower costs but does not provide insight into vegetation health and hazard tree detection like satellite imagery can. Additionally, satellite imagery can detect vegetation growth rate and individual tree species, which the Company is planning on exploring further in future years as a way to create efficiencies in traditional vegetation management. Through discussions with other utilities, the Company has learned that more targeted enhanced vegetation management, aided by satellite imagery and focused on tree species, has the potential to decrease vegetation contact and ignition risk. The Company’s pilot effort will explore whether the Company may be able to realize such efficiencies in its own vegetation management program. The response to this Request is sponsored by Jon Axtman, T&D Engineering and Reliability Senior Manager, Idaho Power Company. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 4 REQUEST FOR PRODUCTION NO. 20: Please explain how the proposed vegetation-focused satellite and aerial patrols described in the Application differ from currently used satellite methods such as how satellites are used for the Fire Potential Index (“FPI”) in the Wildfire Mitigation Plan (“WMP”). Wildfire Mitigation Plan at 34. Please describe the additional capabilities or advantages expected. RESPONSE TO REQUEST FOR PRODUCTION NO. 20: Idaho Power’s Atmospheric Science department uses satellite data to forecast the Fire Potential Index (“FPI”) used throughout fire season to gain situational awareness. Satellite imagery is used as part of a data assimilation process to develop numerical weather models that are used to forecast weather conditions in each region. Satellite data is also used to adjust timing on forecasted weather conditions (e.g., when the models are behind or ahead of actual conditions) and to determine the intensity of events (e.g., precipitation, wind, thunderstorms). This satellite data allows calculation of the weather component of the FPI. In addition, a satellite-derived product—the Normalized Difference Vegetation Index—is used to determine the state of native grasses, the green-up component of the FPI. The key difference between how satellite data is used between atmospheric science and vegetation management is in scale and context. The Atmospheric Science department uses satellite data at the scale of 30 meters to 10 kilometers to look at/collect parameters at a time scale of minutes to hours, whereas satellite imagery for the purposes of vegetation management uses a finer scale (30-50 centimeters) to determine proximity of vegetation to lines and facilities and generally is used at time scales of weeks. The data sets are distinctively different and cannot be interchanged. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 5 The response to this Request is sponsored by Jon Axtman, T&D Engineering and Reliability Senior Manager, and Mel Kunkel, Senior Atmospheric Scientist, Idaho Power Company. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 6 REQUEST FOR PRODUCTION NO. 21: The Company states that “in 2024 and beyond, it will utilize contract purchase services to aid in further refinement of the ensemble weather forecast system and weather and climate data analysis.” Application at 12. Please describe how the contract purchase services will be monitored following implementation. RESPONSE TO REQUEST FOR PRODUCTION NO. 21: Contract purchase services will adhere to and be monitored based upon executed Professional Service Agreements and Statements of Work that outline the scope of services, deliverables and milestones, and compensation of those providing services related to refinement of the ensemble weather forecast system and weather and climate data analysis in 2024 and beyond. The response to this Request is sponsored by Kresta Davis, Water Resources and Policy Senior Manager, Idaho Power Company. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 7 REQUEST FOR PRODUCTION NO. 22: Please provide the analysis used by the Company to determine that field observers will benefit from the deployment of mobile weather kits. Application at 14. a. How many field observers does the Company deploy? b. How will the Company determine which field observers will be issued kits? RESPONSE TO REQUEST FOR PRODUCTION NO. 22: In developing Idaho Power’s Public Safety Power Shutoff (“PSPS”) program, the Company benchmarked with other utilities to understand the benefit of deploying personnel to high wildfire risk and PSPS areas to monitor real-time conditions. The Company found that most utilities use Field Observers (“FOB”) in some capacity as part of their de-energization decision- making process. The Company currently has 24 trained Field Observers made up of Line Operations Technicians, Distribution Designers, Patrolmen, and other technician roles. There are between two and four FOBs for each major region within the Company’s service area to ensure timely response to a PSPS event and to provide backup for long- duration weather events. Each FOB is assigned weather instrumentation and carries it on their vehicle during wildfire season to ensure a rapid response for PSPS can be achieved. The use of weather instruments (that is, mobile weather kits) is key to accurately reporting real-time conditions, ensuring consistent observations, and helping supplement information from fixed weather stations. The weather instruments include a handheld wind meter, compass, and a notebook to record data. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 8 The response to this Request is sponsored by Jon Axtman, T&D Engineering and Reliability Senior Manager, Idaho Power Company. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 9 REQUEST FOR PRODUCTION NO. 23: Please explain why the Company’s Transition to/Maintain 3-yr Vegetation Management Cycle in Attachment 2 is approximately $1.175 million higher in 2024 than planned spend for 2025. Please provide supporting workpapers. RESPONSE TO REQUEST FOR PRODUCTION NO. 23: Idaho Power estimated that the transition to a three-year vegetation management cycle would be complete in the latter half of 2025. Once the transition is complete, maintaining the system on a sustainable three-year vegetation management cycle should require a levelized workload that is lower than the workload required during the transition. During the transition in 2024, Idaho Power estimated almost 135,000 crew hours would be needed. Fewer crew hours would be needed in 2025 after the transition is complete, bringing the estimated crew hours down to approximately 124,000 in 2025. The reduced workload in 2025 results in a $1.175 million dollar reduction compared to 2024. For documentation of vegetation management expenses, please see the workpaper associated with the Company’s response to Staff’s production request 16. The response to this Request is sponsored by Brent Van Patten, Engineering Leader, Idaho Power Company. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 10 REQUEST FOR PRODUCTION NO. 24: Please describe what membership in the Idaho Fire Board entails, provide how often the group meets, and supply copies of or links to meeting information and minutes. RESPONSE TO REQUEST FOR PRODUCTION NO. 24: Idaho Power has been a member of the Idaho Fire Board (“Board”) since 2021. The Board holds meetings at least quarterly. In response to this question, please see Attachments 1-4 to this request which include the Fire Board charter (Attachment 1), the Board’s meeting agenda from December 2022 (Attachment 2), the agenda from the October 2022 meeting (Attachment 3), and meeting notes from the October 2022 meeting (Attachment 4). The response to this Request is sponsored by Jon Axtman, T&D Engineering and Reliability Senior Manager, and Allison Murray, Environmental Manager, Idaho Power Company. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 11 REQUEST FOR PRODUCTION NO. 25: Please describe the composition of the Technology Strategy Initiative team and function of each member. RESPONSE TO REQUEST FOR PRODUCTION NO. 25: In 2021, Idaho Power established an initiative to explore new and innovative technologies that can be used to decrease wildfire risk and associated impact on customers and communities. The Wildfire Mitigation Technologies Project was established in support of the initiative and includes five Idaho Power employees with diverse experience in transmission and distribution operation, design, maintenance, reliability, protection, and analytics. The Wildfire Mitigation Technologies Project is sponsored by Mitch Colburn, Idaho Power’s Vice President of Planning, Engineering, and Construction. Project members and their function are as follows:  Jon Axtman, T&D Engineering and Reliability Senior Manager, project lead. Focus areas include advanced materials and risk management.  Steve Cozine, Senior Engineer, T&D Maintenance. Focus areas include wildfire detection cameras, satellite imagery, and vegetation management.  Brett Efaw, Senior Application Development Analyst. Focus area includes data analytics and incorporating artificial intelligence (AI) and machine learning into wildfire technology programs.  Steve Moodry, Senior Engineer, Reliability Engineering. Focus areas include advanced relay protection, decrease ignition potential under fault conditions, line sensors, and fault locating. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 12  Mike Spengler, Unmanned Aerial Systems (UAS) Program Manager. Focus area includes asset inspection using drones and high-altitude aircraft, AI for defect detection, and communication opportunities. As part of this technology initiative, the team developed a six-year roadmap to begin integrating new technologies and innovations into activities performed as part of the Company’s Wildfire Mitigation Plan. The response to this Request is sponsored by Jon Axtman, T&D Engineering and Reliability Senior Manager, Idaho Power Company. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 13 REQUEST FOR PRODUCTION NO. 26: Please clarify if the Company’s fuel reduction plan includes the regional fuel reduction program described on page 29 of the 2022 WMP. Additionally, please explain how costs are determined and allocated among participants in the regional fuel plan. Please provide supporting workpapers. RESPONSE TO REQUEST FOR PRODUCTION NO. 26: As an initial point of clarification, Idaho Power conducts vegetation management, but does not consider this a fuel reduction plan. Separately, the Company is taking part in a fuel reduction program, as discussed on page 29 of the WMP and inquired about by Staff. The efforts undertaken as part of the fuel reduction program are distinct from the activities performed as part of the Company’s vegetation management work. The fuel reduction program involves a partner-based strategy with the National Forest Foundation (“NFF”) and other agencies to perform thinning of fuels in the Boise Front Focal Area. Please see the Attachment 1 to this response for additional information about the NFF Boise Front Focal Area. The partnership is designed to enhance forest resilience, decrease hazardous fuel accumulations, increase powerline resiliency while minimizing the risk of ignitions, and improve forest conditions in the vicinity of Idaho Power infrastructure. While Idaho Power has not yet established agreements with the NFF, the Company expects that the NFF will act as an aggregator of funding for contracts associated with work on the ground and oversee the work to ensure it is completed to specification. Idaho Power’s estimated costs were derived through verbal discussions about costs incurred by Avista for a similar program with the Idaho Department of Lands. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 14 Additionally, the Company evaluated similar projects in Arizona and California, where utilities contributed $100,000-$500,000/year. The response to this Request is sponsored by Jon Axtman, T&D Engineering and Reliability Senior Manager, Idaho Power Company. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 15 REQUEST FOR PRODUCTION NO. 27: Please provide an analysis that shows how and why a 10-year cycle was selected for the detailed visual inspection and wood pole ground line inspection programs. Please provide supporting workpapers. RESPONSE TO REQUEST FOR PRODUCTION NO. 27: For clarity, Idaho Power established a 10-year inspection and treatment cycle many years ago and has not changed this cycle as a result of the Company’s WMP activities. That said, the Company below provides some explanation of the function and purpose of the 10-year inspection cycle across the Company’s service area. Idaho Power aims to maximize the service life of wood poles, with service life dependent on factors including pole classification, treatment, and conditions the pole is exposed to at a given location. Idaho Power conducts inspections on a 10-year cycle to detect decay and rot and to assess the remaining life. The inspection typically includes application of a fumigant to provide an effective means to combat the spread of insect damage and fungus decay in wood poles. The Company is part of the Oregon State University Utility Pole Research Cooperative (“UPRC”). The UPRC works to improve the performance of utility poles through research on preservative treatments, biological decay, specifications, maintenance, and disposal. As a member of the UPRC, the Company participates in meetings and provides feedback for wood pole performance and practices in Idaho Power’s service area. The UPRC and North American Wood Pole Council have published that a 10-year inspection cycle is common for utilities. In support of this response, please see Technical Bulletin on the Estimated Service Life of Wood Poles and Wood Pole Maintenance Manual provided as IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 16 Attachments 1 and 2, respectively, to this response. Based on work performed by the UPRC and feedback from other utilities, Idaho Power considers a 10-year inspection cycle accepted good practice for the industry. The response to this Request is sponsored by Jon Axtman, T&D Engineering and Reliability Senior Manager, Idaho Power Company. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 17 REQUEST FOR PRODUCTION NO. 28: Please provide a copy of the Company’s Emergency Response Communication Plan. RESPONSE TO REQUEST FOR PRODUCTION NO. 28: The Company has attached to this request a confidential copy of its Outage Communication Playbook, a document that was developed in 2022 and has taken the place of the Emergency Response Communication Plan for the purposes of PSPS and load shed events. This change is reflected in the 2023 WMP. The response to this Request is sponsored by Naomi Shankel, Customer Operations Support and Sustainability Senior Manager, Idaho Power Company. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 18 REQUEST FOR PRODUCTION NO. 29: Please quantify the updated overall cost for the entire Wildfire Mitigation Plan for the years 2021 through 2025. Please include the operating expenses specific to the wildfire mitigation plan, the increased vegetation management expenses, Wildfire Mitigation Plan capital investments, the depreciation expense associated with those capital expenditures, and the insurance cost. Please break down the expenditures by project, by type of expense, and by year. RESPONSE TO REQUEST FOR PRODUCTION NO. 29: Please see the spreadsheet attached to this request. The response to this Request is sponsored by Alison Williams, Regulatory Policy and Strategy Leader, Idaho Power Company. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 19 REQUEST FOR PRODUCTION NO. 30: Please provide the supporting documentation for the increase in insurance related to the Wildfire Mitigation Plan for 2021. Please provide any supporting documentation for the estimated increase to insurance costs for 2022 and 2023. RESPONSE TO REQUEST FOR PRODUCTION NO. 30: Idaho Power experienced significant increases in the Company’s insurance premiums from 2020 to 2021. Based on the calendar year, total insurance costs were $12.1M in 2021 and are expected to jump to $14.5M in 2022 and $15.6M in 2023. The Company’s 2022 costs are based on an allocation of invoiced policy premiums from 2021 and 2022, and 2023 costs are based on an allocation of invoiced policy costs for 2022 and an allocation of estimated costs for 2023 policy renewals. Please note that Idaho Power reported calendar year insurance costs in its Application in this case. However, the Company’s actual insurance costs are based on distinct policy years. For instance, the Company’s excess liability insurance renews each July, meaning a portion of a policy year falls within two calendar years. To provide reasonable cost comparisons across various insurance policies, Idaho Power converted the cost of each insurance policy from policy year to calendar year. These two breakdowns—policy year and calendar year—are provided in the attached spreadsheet (Attachment 1 to this response). Additionally, the Company has provided a 2021 memo from its third-party insurance broker (Attachment 2 to this response), explaining the challenges of utilities seeking to secure insurance in recent years based on wildfire risk. The response to this Request is sponsored by Amy Shaw, Compliance, Risk & IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 20 Security Director, Idaho Power Company. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 21 REQUEST FOR PRODUCTION NO. 31: Please provide the actual costs for 2021, separated into the various components of the Wildfire Mitigation Plan. Please quantify the incremental amounts that have been deferred by component. RESPONSE TO REQUEST FOR PRODUCTION NO. 31: Please see the spreadsheet attached to this request. The response to this Request is sponsored by Alison Williams, Regulatory Policy and Strategy Leader, Idaho Power Company. IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 22 DATED at Boise, Idaho, this 3rd day of January 2023. ________________________________ LISA D. NORDSTROM Attorney for Idaho Power Company IDAHO POWER COMPANY’S RESPONSE TO THE SECOND PRODUCTION REQUEST OF THE COMMISSION STAFF TO IDAHO POWER COMPANY - 23 CERTIFICATE OF SERVICE I HEREBY CERTIFY that on the 3rd day of January 2023, I served a true and correct copy of Idaho Power Company’s Response to the Second Production Request of the Commission Staff to Idaho Power Company upon the following named parties by the method indicated below, and addressed to the following: Commission Staff Riley Newton Deputy Attorney General Idaho Public Utilities Commission 11331 W. Chinden Blvd., Bldg No. 8 Suite 201-A (83714) PO Box 83720 Boise, ID 83720-0074 Hand Delivered U.S. Mail Overnight Mail FAX FTP Site X Email Riley.Newton@puc.idaho.gov Stacy Gust, Regulatory Administrative Assistant BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION CASE NO. IPC-E-22-27 IDAHO POWER COMPANY REQUEST NO. 19 ATTACHMENT No. 1 SEE ATTACHED SPREADSHEET  BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION CASE NO. IPC-E-22-27 IDAHO POWER COMPANY REQUEST NO. 24 ATTACHMENT NO. 1 IDAHO FIRE BOARD CHARTER Version August 3, 2022 PURPOSE: This agreement expresses the commitment of Idaho Wildfire Board members to work together on issues and opportunities around wildland fire management in the state of Idaho. This document does not commit funding or other responsibilities or authorities to the group beyond that which individual members wield as a representative of their organization. The Idaho Wildfire Board will not attempt to engage in fire response and resource prioritization; that is the role of the respective interagency coordination and dispatch system. Our intent is to create a forum to discuss and solve wildland fire management issues at the statewide level that does not currently exist. BACKGROUND: The state of Idaho is a fire prone environment. Land ownership patterns are complex and fire management agencies and bureaus have a long history of working together and helping one another out. We work together in every aspect of fire management, from sending closest forces to initial attack new starts to determining fire restrictions and managing smoke. Wildland fire staffing and resource prioritization are well managed by two different Geographic Areas, with Northern Rockies coordinating fires in the north part of the state and Great Basin coordinating fires in the south. This duality creates unique challenges in the state, and there are opportunities to take a whole state view of issues and opportunities that are sometimes missed between the two geographic areas. OBJECTIVES: Members of the Idaho Wildfire Board will solicit issues ripe for discussion and create solutions. The goal is to create a forum for discussion and problem solving to benefit citizens of the state of Idaho and help the various partners be more efficient and successful in accomplishing their own missions. Examples of the kinds of issues for the Board to address may include dealing with the significant unprotected lands issue or crafting meaningful, consistent messaging and initiatives around Idaho’s wildfires. MEMBERSHIP: Membership is voluntary and open to all parties who participate in or are affected by wildfire management. Members may choose to designate a second member from their organization to represent their interests if they cannot attend. MEETINGS and GOVERNANCE: This group will meet in person or virtually quarterly or more frequently if deemed necessary. The Board will elect leadership for a term of two years, each position voted in every other year, to aid in consistency. The Chair will set the agenda and facilitate meetings. The Vice Chair will track issues and tasks, schedule meetings, and share information to the Board (i.e. notes, assignments, documents, etc.). There is no budget for this board at this time; all participants will pay their own expenses for travel and time spent on projects or issues. Decisions will be made by consensus of the Board. This charter is a living document. Review and revision will be conducted on an annual basis. BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION CASE NO. IPC-E-22-27 IDAHO POWER COMPANY REQUEST NO. 24 ATTACHMENT NO. 2 From:McCormick, Kyle To:Harris, Dana -FS; broeber@imd.idaho.gov; Cleverley, Susan (External); Murray, Allison; rah6759@gmail.com;tmyklebust@cityoflewiston.org; dstrange@blm.gov; jharvey@idl.idaho.gov; Rau, Ralph -FS;DDockter@idahopower.com; ZFunkhouser@idahopower.com; madell@blm.gov; Glazier, Craig -FS;knute.sandahl@doi.idaho.gov; Dingman, Gina - FS; basil.newmerzhycky@usda.gov Cc:Julia Sullens; swestbrook@idcounties.org Subject:December Idaho Fire Board Meeting Start:Wednesday, December 15, 2021 2:30:00 PM End:Wednesday, December 15, 2021 3:30:00 PM Location:https://fema.zoomgov.com/j/1608267220 Hello all- Looking forward to catching up with you all next week at our December Fie Board Meeting. Below is the agenda along with the Zoom meetinginformation. Please reach out with any questions. Agenda: * Introductions * Drought Update and Winter Forecast- Basil Newmerzhycky* Idaho’s Unprotected Lands- Dennis Strange Join ZoomGov Meeting- Click Link Below https://fema.zoomgov.com/j/1608267220 Meeting ID: 160 826 7220 Passcode: 930303 BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION CASE NO. IPC-E-22-27 IDAHO POWER COMPANY REQUEST NO. 24 ATTACHMENT NO. 3 IDAHO FIRE BOARD Agenda: Tuesday October 11, 2022 12:30 to 1:30 PM Mountain Time Join ZoomGov Meeting • https://fema.zoomgov.com/j/1605963819 • Passcode: 456405 Welcome and Opening Remarks - Introduction to new members Identify Top Concerns & Challenges—Group Discussion - Identify primary objectives/tasks to concentrate our efforts Next steps - Identify steps to take to address top challenges as well as a timeframe for next quarterly meeting BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION CASE NO. IPC-E-22-27 IDAHO POWER COMPANY REQUEST NO. 24 ATTACHMENT NO. 4 October Fire Board Notes Ideas for topics to tackle as a group: • Unprotected lands issues o Master agreements- implementation of protection plan- o Over protected areas--dual joint response issues – when multiple agencies respond o Utility infrastructure protection in unprotected areas o Overall question: What are the issues in areas not formally protected by fire agencies? What can this group do to solve those issues? • Identify opportunities for how to prioritize Federal funding opportunities for supporting fire management and mitigation opportunities. Breakdown how federal funding from infrastructure act can support priorities in Idaho o Need to identify what funding may be available and what priorities are along with partners needed to support those o Analysis of grants programs and funding o Overall Question: Identify how this group can help with connecting funding mechanisms to State’s priorities • Urban growth in high hazardous areas o Mitigation challenges related to increasing building/land use code requirements and challenges (local capacity) for obtaining federal funding for fuel reduction/defensible space/home retrofits o Infrastructure protection for utilities and challenges with permitting work on federal land before fire occurs o Need to differentiate what the ILRCC can support and what this group can support- follow up with Susan Cleverley Schedule next meeting for January – send out a when2meet poll BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION CASE NO. IPC-E-22-27 IDAHO POWER COMPANY REQUEST NO. 26 ATTACHMENT NO. 1 The National Forest Foundation To create healthier, more resilient forests, the National Forest Foundation (NFF) works to accelerate the pace and scale of forest restoration through highly leveraged projects across the United States. Chartered by Congress, the NFF is the only national nonprofit organization solely dedicated to enhancing the health of and promoting the public enjoyment of America’s 193-million-acre National Forest System. We are a key nonprofit partner of the U.S. Forest Service and work together with local government, conservation organizations, foundations, businesses, and individuals to spearhead landscape-scale restoration on these public lands. To secure the greatest return on investment, we focus our work in locations where projects are collaboratively prioritized by public and private stakeholders and in close partnership with the local communities. Working at a landscape scale and across jurisdictional boundaries, our approach is informed by the best available science and management practices. Through this work, we can reduce insect and disease issues across landscapes, reduce the likelihood of large-scale high-intensity wildfire, and reduce the risk of post-fire flooding and degradation of water quality due to sedimentation and debris runoff. Our projects also result in a net carbon benefit, as avoidance of severe fire equals more carbon retained in the forest. On average, NFF leverages every private dollar that is contributed by 5X for forest health and fuels reduction projects. Boise Front Focal Area Over the past year, NFF has been working with the Boise National Forest and other partners to develop an implementation strategy for fuels reduction, forest health, and fire risk prevention in the Boise Front Focal Area. The majority of the Boise Front Focal Area is located in the Idaho City Fireshed and the National Fireshed Registry ranks this fireshed as number 13 out of over 7500 firesheds in the country for wildfire risk to local communities. The fireshed is ranked as the #1 priority in the State and Region for addressing wildfire risk. The purpose of the partner-based strategy is to increase the pace and scale of on-the-ground work over the next 5-10 years in the Boise Front by building capacity and unifying priority areas for implementation. To achieve this, the intention is to utilize NFF as an aggregator of funding sources that can be used to leverage additional federal funding to complete priority fuels reduction and forest health work across jurisdictional boundaries. The National Forest Foundation’s Work with Utilities In many of the areas where the NFF works, utilities are a key investment and implementation partner that help shape implementation priorities for fuels reduction and forest health work. Below are some bullets on NFF’s existing utility partnerships: Boise Front Focal Area Existing Partners for Partner-Based Implementation Strategy • Liberty Utilities (CA) – This is the most involved partnership, which includes funding from the utility to NFF and coordination of implementation activities, within and outside of the utility’s rights of way. The partnership is designed to enhance forest resilience to wildfire, decrease hazardous fuel accumulations, minimize the risk of powerline wildfire ignitions, and overall improve forest conditions in the vicinity of Liberty infrastructure. Implementation priorities benefit wildfire resiliency of Liberty infrastructure in order to best serve the needs of Liberty rate payers. Types of projects may include, but are not limited to: o Mechanical Forest Thinning – Mechanically thin trees to reduce fuel loading, minimize the risk of high severity wildfires, and improve wildfire resiliency adjacent to Liberty infrastructure. o Mastication – Masticate trees and brush to reduce fuel loading, minimize the risk of high severity wildfires, and improve wildfire resiliency adjacent to Liberty infrastructure. o Hand Thinning and Hand Piling – Hand thin and hand pile trees to reduce fuel loading, minimize the risk of high severity wildfires, and improve wildfire resiliency adjacent to Liberty infrastructure. • Xcel Energy (CO) – Through the Upper Ark Forest Fund, we are coordinating our landscape-scale treatments with Xcel energy’s wildfire mitigation efforts. Xcel’s transmission and distribution infrastructure was also included as an asset in the area’s landscape-scale planning, in an effort to reduce the risk of fire damage to infrastructure. Xcel is supporting NFF’s landscape-scale fuel reduction treatments with annual contributions from its foundation. • Salt River Project (AZ) – In 2015, the NFF partnered with SRP to develop the Northern AZ Forest Fund. This program was designed to improve forest and watershed health in the Salt and Verde River watersheds, that provide surface water to the Phoenix Metro Area. The program implements numerous fuel reduction/forest resilience, wetland and stream restoration, and sediment reduction projects across National Forests in the watersheds. Through the partnership, SRP contributed annually to the fund ($100- $250K/year) and helped develop donor relationships between NFF and SRP’s large-scale corporate customers. • Southern CA Edison – SCE supports landscape-scale fuel reduction and forest resilience projects across its service area through annual donations to the NFF. Each year, the NFF proposes 2-4 specific projects that will reduce wildfire risk to SCE transmission and distribution infrastructure. SCE then provides a grant $350-$500K per year to support those specific projects. We welcome additional conversation with Idaho Power on potential partnership strategies and opportunities as it relates to Idaho Power’s goals and objectives under the company’s Wildfire Mitigation Plan for the utility service area. Contacts Dani Southard Director, Northern Rockies National Forest Foundation 208.720.0957 dsouthard@nationalforests.org Marcus Selig Vice President, Field Programs National Forest Foundation 720.437.0290 mselig@nationalforests.org BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION CASE NO. IPC-E-22-27 IDAHO POWER COMPANY REQUEST NO. 27 ATTACHMENT NO. 1 No. 16-U-101NORTH AMERICAN WOOD POLE COUNCIL TECHNICAL BULLETIN Estimated Service Life of Wood Poles Prepared by: Jeffrey J. Morrell Department of Wood Science & Engineering Oregon State University The North American Wood Pole Council (NAWPC) is a federation of three organizations representing the wood preserving industry in the U.S. and Canada. These organizations provide a variety of services to support the use of preservative-treated wood poles to carry power and communications to consumers. The three organization are: Western Wood Preservers Institute With headquarters in Vancouver, Wash., WWPI is a non-profi t trade association founded in 1947. WWPI serves the interests of the preserved wood industry in the 16 western states, Alberta, British Columbia and Mexico so that renewable resources exposed to the elements can maintain favorable use in aquatic, building, commercial and utility applications. WWPI works with federal, state and local agencies, as well as designers, contractors, utilities and other users over the entire preserved wood life cycle, ensuring that these products are used in a safe, responsible and environmentally friendly manner. Southern Pressure Treaters’ Association SPTA was chartered in New Orleans in 1954 and its members supply vital wood components for America’s infrastructure. These include pressure treated wood poles and wood crossarms, and pressure treated timber piles, which continue to be the mainstay of foundation systems for manufacturing plants, airports, commercial buildings, processing facilities, homes, piers, wharfs, bulkheads or simple boat docks. The membership of SPTA is composed of producers of industrial treated wood products, suppliers of AWPA-approved industrial preservatives and preservative components, distributors, engineers, manufacturers, academia, inspection agencies and producers of untreated wood products. Wood Preservation Canada WPC is the industry association that represents the treated wood industry in Canada. WPC operates under Federal Charter and serves as a forum for those concerned with all phases of the pressure treated wood industry, including research, production, handling, use and the environment. WPC is dedicated to promoting and supporting a stronger Canadian wood treating industry; informing the public on the benefi ts to be gained from the use of quality wood products; and preserving the integrity of the environment through the promotion of responsible stewardship of our resources. About NAWPC Estimated Service Life of Wood Utility Poles Prepared by Jeffrey J. Morrell Department of Wood Science & Engineering Oregon State University Introduction Utilities are often faced with questions about how long a pole lasts once it is placed in the ground. Why does it matter? There are a number of important reasons for paying attention to service life. First, utilities want to maximize their capital dollars and longer service life reduces the need for pole replacements. More recently, utilities have begun to examine their carbon footprint. Trees fi x or sequester carbon from the atmosphere as they grow and this carbon remains locked in the wood once the pole is manufactured. While thousands of tons of carbon are stored in the utility wood pole plant, a relatively small portion of a utility’s total carbon footprint is represented by the electric transmission and distribution system. Efforts to reduce this footprint can have important public relations value. Wood poles offer an opportunity for atmospheric carbon sequestration not provided by other materials. Assumptions About Service Life An Electric Power Research Institute study suggested that wood poles lasted 50 years. Most utilities assume that their poles provide 30 to 40 years of service life. Which is really true or are they both wrong? How would you fi nd out? How do you compare these numbers with claims by producers of competing materials that their poles will last 80 or more years? There are a variety of competing claims about how long poles last. In some cases, such as for wood, lattice steel and pedestal-mounted thick- walled steel poles, the claims are based upon actual performance data. However, there is little or no long term data for many more recently developed materials, or new use patterns such as direct-burial of steel poles. Instead, the producers of these products depend upon accelerated testing or extrapolations from the performance of similar materials to support claims. The assumptions about the service life of a treated wood utility pole represent a wide range in terms of years. In 2000, an Oregon State University survey of utilities across the U.S. revealed that a majority of respondents believe that their poles last between 31 and 40 years. An updated survey of utilities was conducted by OSU in 2013 and it determined the replacement rate indicates pole service lives “are far in excess of the 30 to 40 years estimated by many utilities.” There is compelling evidence indicating that the estimated 30-year pole service life originated from curves developed to estimate economic service rather than actual service life. The goal was to determine when the investment had been returned, rather than when the pole had actually failed. Service Life Factors Actual pole service life is a function of many factors including the specifi cation, the quality of treatment, the conditions to which the pole is exposed, and how well the pole is maintained during use. In a single utility, one can look at pole records to estimate service life. Many utilities record the date of pole installation along with supplier, wood species and treatment details. They may also record inspection dates along with any supplemental treatments applied and, fi nally, they record when the pole is changed out. Final information may not be directly tracked because new pole information automatically populates the data base replacing original data. But if it is, the utility can directly calculate service life. As you might expect, pole quality can have a major effect on service life. All poles should be Estimated Service Life of Wood Utility Poles Page 3 Estimated Service Life of Wood Utility Poles Page 4 specifi ed to the standards of the American Wood Protection Association (AWPA). These consensus standards provide minimum levels of treatment for all native pole species currently listed within the American National Standards Institute (ANSI) Standard O5.1. Although there will be differences in characteristics of poles treated with various preservatives, new formulations are assessed by the technical committees that set AWPA Standards with the assumption that they should all provide similar resistance to deterioration. This leaves the user with a suite of preservatives that may produce poles that are different colors, vary in fi re resistance, or differ in climbing characteristics. However, these preservatives should provide similar service with regard to resistance to fungal or insect attack. Utility enhancements to specifi cations can also enhance performance. For example, most users of Douglas Fir utility poles through-bore, radial drill, deep-incise or kerf to improve treatment at the groundline and these practices markedly reduce internal decay and extend pole service life. Environmental Factors The environment to which a pole is exposed has a major effect on service life. For the U.S., the AWPA Standards divide the country into fi ve decay zones (see Figure 1), with Zone 1 having the lowest risk of decay and Zone 5 the highest. Clearly, a pole treated to similar levels will perform differently in different zones. However, the AWPA standards address this issue by providing several retentions that can be specifi ed for a given preservative. The assumption is that poles exposed to a higher decay hazard will be treated to higher preservative loadings. Remediation and Service Life Maintenance is also a major factor in pole service life. A 2012 Quanta Technology study on wood pole service life calculated the average expected lifetime of a wood utility pole with an inspection and treatment program at 96 years. Osmose Utilities Services reviewed data on 751,000 utility poles inspected across the U.S. between 1988 and 1999. It determined a national predicted service life for poles without remedial treatment at 45 years, with ranges from 40 years in the most demanding conditions and 56.8 years in the low to moderate decay zones. However, application of a pole inspection and remediation program was determined to signifi cantly add to the service life. Assuming no pole will last longer than 71 years, remediation can increase the service life of a pole by 33 percent, or 16 years. With no cap on the potential length of service, remedial treatment can extend the service life by 60 percent, or some 28 years on average. The National Electrical Safety Code mandates that utilities maintain their wood poles so that they Figure 1 - The U.S. has fi ve decay hazard zones, where 1 is a low hazard and 5 is a severe decay hazard. In certain modifi ed environments such as banks along irrigation canals or irragated residential or agricultural lands, a higher degree of protectio might be needed than would be required in the local environment. Within individual regions, certain natural environments such as river valleys or coastlines may present greater potential for wood deterioration. (Map courtesy of American Wood Protection Assn.) retain 2/3 of their original required design strength. In order to meet this requirement, utilities must establish some regular program of inspection and maintenance. Most utilities inspect their poles on a 10-year cycle, using intrusive procedures that include boring into the pole at or below groundline and, for some species, excavating around the pole and examining the surface for external decay. Estimating Service Life So, how can we estimate pole service life across the United States? Utilities can examine pole purchasing records to infer replacement rates, but this depends on how much new line construction is occurring within the system. This data must be viewed carefully because it includes poles removed for all causes, not just those no longer capable of supporting their original design load. Poles may be removed for upgrades, road widening, car/pole interactions, storm damage, or a number of other reasons. The 2013 OSU survey collected pole purchasing data, with 86 utilities reporting they purchased on average 5,845 poles a year. When compared to the total pole population, the estimated pole replacement rate would be 1.12 percent a year, compared to 0.7 percent indicated in the 2000 survey. However, this rate must be viewed with some caution since the purchases include poles for new line construction. Pole Removal Data Pole removals provide a much better measure of pole service life. Data collected in the 2013 OSU survey indicated a replacement rate of 0.56 percent, which suggests an average service life far beyond the 30 to 40 years previously assumed. A 2006 survey of utilities in the Pacifi c Northwest found similar results and further segregated the causes for replacement (see Figure 2). In this case, the survey revealed a slightly higher replacement rate (0.8 percent vs. 0.6 percent in the larger survey). More than half of the poles removed from service (56 percent) were decayed; however, poles removed for road widening or upgrades represented 38.1 percent of poles removed from service. While some of these poles might have had reduced capacity, they had not deteriorated to the point where their condition necessitated replacement. This means that over a third of the poles removed from service were candidates for reuse and, if these poles could be reused, they would further reduce the replacement rate. Based on the 0.6 percent replacement rate, the average pole service life would easily reach 80 years in many areas of the country, far in excess of the perceived 30 to 40 years. Thus, old wood does not mean weaker wood. While service life will vary among utilities, if we look in most utility systems, we see enormous quantities of lines installed in the 1950s where the vast majority of the poles remain in service. In 2014, the Los Angeles Department of Water and Power reported that more than half of 320,000 poles in service were 50 years or older, with some exceeding 90 years or longer. Improving Quality It is also important to remember that like most materials used by utilities, wood pole quality has improved. Throughout the last century as the U.S. expanded the electrical grid, the AWPA specifi cations have shifted from gauge to results-type treatments, which means that actual preservative content in the wood is assayed. In addition, most utilities do regular inspections, ensuring all poles installed in a system are properly treated. Finally, development of effective maintenance programs further extends the life of poles. All of these actions have resulted in wood poles that perform more reliably for longer than ever before. Estimated Service Life of Wood Utility Poles Page 5 Figure 2 - While decay was the chief reason for removing a wood pole, the number of poles removed for road widening and line upgrades comprised nearly 38 percent of removals according to a survey of utilities. These poles could be candidates for reuse, which should be factored in when determining the overall service life. (Source: 2007 Utility Pole Research Cooperative Annual Report) Epilogue Wood poles already have substantial advantages over other materials because wood is renewable, sustainable, generates less greenhouse gases during manufacture and provides a long-term repository for atmospheric carbon. Internationally recognized life cycle assessments confi rm the production and use of wood poles has lower environmental impacts and less energy and resource use compared to galvanized steel, concrete and fi ber-reinforced composites. Prolonging the useful life of a wood pole further enhances the carbon footprint through requiring less replacement activities, keeping thousands of tons of carbon stored in the existing pole plant (i.e. utility distribution and transmission system) and allowing growing replacements to continue carbon sequestration in the forest. Thus, wood poles offer utilities some attractive options as companies move to do their part with regard to global climate change. The next time you are asked how long a pole will last, remember that the answer is as long as you want it and far longer than you ever thought. References Oregon State University Utility Pole Research Cooperative. 2007. 27th Annual Report. Pages 93-97 Morrell, J.J. 2012. Wood Pole Maintenance Manual. Research Contribution 51, Forest Research Laboratory, Oregon State University, Corvallis, OR. 46 pages Oregon State University Utility Pole Research Cooperative. 2013. 33rd Annual Report. Pages 50-57 Los Angeles Daily News. “DWP’s Aging Power Poles” May 2, 2014 Bingel III, N. and Bonk, D. 2015. Wood Pole Life Extension & The Case for Capitalization. Osmose Utility Services. 6 pages Estimated Service Life of Wood Utility Poles Page 6 Disclaimer - The North American Wood Pole Council and its member organizations believes the information contained in this document to be based on up-to-date scientifi c and economic information and is intended for general informational purposes. In furnishing this information, NAWPC makes no warranty or representation, either expressed or implied, as to the reliability or accuracy of such information; nor does the Institute assume any liability resulting from use of or reliance upon the information by any party. This document should not be construed as a specifi c endorsement or warranty, direct or implied, of treated wood products or preservatives, in terms of performance, environmental impact or safety. The information contained herein should not be construed as a recommendation to violate any federal, provincial, state or municipal law, rule or regulation, and any party using or producing pressure treated wood products should review all such laws, rules or regulations prior to using or producing preservative treated wood products. North American Wood Pole Council NAWPC 16-U-101 02-2016© 2016 North American Wood Pole Council BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION CASE NO. IPC-E-22-27 IDAHO POWER COMPANY REQUEST NO. 27 ATTACHMENT NO. 2 Wood Pole Maintenance Manual: 2012 edition Research Contribution 51 December 2012 Forest Research Laboratory The Forest Research Laboratory of Oregon State University, established by the Oregon Legislature, conducts research leading to sustainable forest yields, innovative and efficient use of forest products, and responsible stewardship of Oregon's resources. Its scientists conduct this research in laboratories and forests administered by the University and cooperating agencies and industries throughout Oregon. Research results are made available to potential users through the University's educational programs and through Laboratory publications such as this, which are directed as appropriate to forest landowners and managers, manufacturers and users of forest products, leaders of government and industry, the scientific community, the conservation community, and the general public. the author Jeffrey J. Morrell is Professor of Wood Preservation in the Department of Wood Science and Engineering at Oregon State University. acknoWledgMents This report was completed with the support of the OSU Utility Pole Research Cooperative. disclaiMer Mention of trade names and products does not constitute endorsement, recommendation for use, or promotion of the products by the authors or the organizations with which they are affiliated. to order coPies Forest Research Laboratory publications are available online or in print at no charge. To view and order, visit www.forestry.oregonstate.edu/ forestry-communications-group Forestry Communications Group Oregon State University 202 Peavy Hall Corvallis, OR 97331 Voice: (541) 737-4270 Email: ForestryCommunications@oregonstate.edu Editing, design, and layout by Caryn M. Davis, Forestry Communications Group, OSU College of Forestry, Corvallis. Wood Pole Maintenance Manual: 2012 edition Research Contribution 51 December 2012 Forest Research Laboratory abstract Morrell, Jeffrey J. 2012. Wood Pole Maintenance Manual: 2012 Edition. Research Contribution 51, Forest Research Laboratory, Oregon State University, Corvallis. The specification, inspection, and remedial treatment of utility poles are addressed. Included are discussions of enhancing specifications for improved performance, techniques for detecting decay and other defects, and chemical treatments available for arresting decay of poles in service. contents AbstrAct .........................................................................................ii List of figures ..................................................................................vintroduction .....................................................................................1 .............................................................................................2 .......................................................................................3 ................................................................................3 ..........................................................................3 ....................................................................................4 ..................................................................5 ..................................................................7 ....................................................................................8 ..................................................................8 ...............................................................8 ...................................................................9 .................................................................11 ............................................................................11 .........................................................11 ....................................................11 ....................................................................................11 ...................................................................................12 ...............................................................................13 ........................................................................................13 ................................................................................13 ...........................................................................15 ......................................................................................15 ...............................................................................18 .............................................................................18 .....................................................................19 ..............................................................20 ..................................................................................20 ....................................................................21 .........................................................................22 .......................................................................23 .............................................................23 ..........................................................................................25 ............................................................................25 .........................................................................25 ............................................................26 ..........................................................................26 ......................................................................................26 .......................................................................................27 ...........................................................................27 ................................................................27 ...............................................................................28 ............................................................................28 decAy-detecting driLLs ..................................................................29 .......................................................................29 ........................................................................30 ..............................................................31 .........................................................31 ...........................................................31 ......................................................................31 .......................................32 ......................................................32 ....................................................................................32 .......................................................................32 ........................................................................32 .........................................................33 ................................................................33 ..............................................................33 .........................................................................34 ..............................................................................34 ..............................................................................34 ...........................................................................35 ................................................................35 .........................................................35 ................................................................36 ...........................................................37 ................................................................................38 ............................................................38 .....................................................38 ...............................................................................41 ............................................................................41 .......................................................................44 .....................................................................44 ...............................................................44 .......................................................................44 .............................................................................44 ....................................................................44 .................................................................44................................45 ...................................................................................46 .................................46 ..................................................................................46 ........................................................................46 list of figures Figure 1. Cross sections of Douglas-fir ................................................................2 Figure 2. Enlarged view of fibers in Douglas-fir .....................................................3 Figure 3. Air seasoning of poles. .........................................................................4 Figure 4. Decay at the bolt hole and pole failure caused by decay ...........................5 Figure 6. Deep incising, radial drilling, through-boring, and kerfing .........................6 Figure 5. Cross section of deep-incised and through-bored poles. ...........................6 Figure 7. Kerfing can be used to control checking of poles .....................................7 Figure 8. Checks have exposed heartwood to decay fungi. .....................................7 Figure 9. Relative risk of decay in poles in the United States. .................................9 Figure 10. Typical vacuum pressure cycles for treatment processes. .....................10 Figure 11. Bleeding from a creosote-treated pole. ...............................................11 Figure 12. Commercially applied pole barrier ......................................................12 Figure 13. Non-capped pole top with decay; available pole caps. ..........................12 Figure 15. Requirements for decay. ...................................................................13 Figure 16. The conk of a decay fungus produces microscopic spores .....................13 Figure 14. Weathering of a cedar pole turns the surface grey. ..............................13 Figure 17. Decay fungus growing over malt agar. ................................................14 Figure 18. Brown, white, and soft rot. ...............................................................14 Figure 19. Termite colony in a pole and reproductives. ........................................15 Figure 20. Termite damage to wood ..................................................................16 Figure 21. Carpenter ants (Camponotus sp.) ......................................................16 Figure 22. Carpenter ant damage in poles. ........................................................17 Figure 23. Golden buprestid beetle (Buprestis aurulenta). ....................................17 Figure 24. Woodpecker hole on pole surface and nest void. ..................................18 Figure 25. Section with old woodpecker nest attached to new pole .......................18 Figure 26. Gribbles and shipworms are marine borers ........................................19 Figure 27. Crossarms with and without end-plates that limit checking. . .................20 Figure 28. Polyurea-coated crossarms ..............................................................20 Figure 29. USA Climate-index map with decay potential for wood. .........................22 Figure 30. Decay hazard map, as reported by the REA ........................................22 Figure 31. Internal decay. ................................................................................23 Figure 32. Both external (a) and internal decay (b)..............................................24 Figure 33. Steel trusses used to reinforce deteriorated poles. ..............................24 Figure 34. “Pick test” to detect rot ....................................................................25 Figure 35. Cores extracted with an increment borer ............................................27 Figure 36. Shell-thickness indicator ..................................................................28 Figure 37. Shigometer™ measures electrical resistance .......................................28 Figure 38. Resistance-type meter for detecting MC levels ....................................28 Figure 39. Resistograph drill for detecting voids or softer wood ............................29 Figure 40. Strong and weak acoustic signals ......................................................29 Figure 41. Pole test with an acoustic inspection device. .......................................30 Figure 42. X-ray of wood. ................................................................................30 Figure 43. Hyphae of a decay fungus in a wood section. ......................................31 Figure 44. Theoretical strength vs. residual shell thickness of a pole. ....................33 Figure 45. Applying groundline treatment. .........................................................34 Figure 46. Ability of selected fumigants for eliminating decay fungi .......................35 Figure 47. Fumigant application. .......................................................................37 Figure 48. Example of field inspection form. .......................................................39 1 Wood poles have been used for over a century to support telephone and electric lines throughout North America. In the beginning, poles of selected species such as American chestnut (Castanea dentata) and western redcedar (Thuja plicata) were used untreated. Those naturally durable woods provided reasonable service life, but, as utilities rapidly expanded their systems, increased demand for poles forced a switch to alternative species. The alternative species had good mechanical properties, but generally lacked natural durability; thus, they required supplemental treatment. Wood species differ widely in the degree to which they accept treatment. Those differences result in variations in performance that affect decisions on how to maintain poles for maximum service life. Maintaining wood poles to maximize service life involves the development of good specifications for treatment, inspection after treatment to assure conformance to the standard, a well-developed inspection program to detect poles that are decaying in service, and a program to supplementally protect decaying poles. This manual describes the properties of wood used for poles, methods of treatment, and the process of inspection and remedial treatment. Although these guidelines were specifically developed for Douglas-fir (Pseudotsuga menziesii), western redcedar, and southern pine (Pinus spp.), they can be applied to poles of virtually all coniferous species. 2 When you cross-cut almost any Douglas-fir, southern pine, or western redcedar log, you will see that the tree is divided into distinct zones (Figure 1). The outer and inner bark, which can be peeled away, protect the tree from fungi and insects, and from drying. Bark is normally removed from poles during processing because it attracts many types of wood-boring insects, retards drying, and prevents preservative treat- ment. Inside the bark layer is the sapwood, a normally white-to-cream-colored band of wood in which fluids move up and down the living tree. Inside that zone is the heartwood, which consists of older, dead sapwood. Heartwood of many spe- cies is red or brown and may be more durable than the sapwood. Sapwood depth varies widely within and among wood species, depending on the health of the tree. Sapwood of western redcedar is thin, rarely exceeding 3/4 inches; sapwood of Douglas-fir is somewhat thicker, ranging from 1 to 3 inches. The thickness of Douglas-fir sapwood may be increas- ing as timber is more intensively managed to encourage growth. Sapwood of southern pine and ponderosa pine (Pinus ponderosa) is extremely thick, ranging from 3 to 5 inches. Sapwood can often be distinguished from heartwood through the use of chemical indicators that are based upon differences in pH between sapwood and heartwood (AWPA 2008). Sapwood of the three primary pole species has little natural durability and is susceptible to fungal and insect attack as long as it remains wet. As the sapwood ages in a live tree, it begins to die, and, in some species, the dying cells convert their contents into a diverse array of compounds called extractives. Some extractives are toxic to insects and decay fungi and can pro- tect the heartwood for many years. One of the best examples of this is western redcedar, which has highly durable heartwood. Heartwood of Douglas-fir and southern pine is classified as moderately durable. Some species produce no detectable heartwood, but those spe- cies are not typically used for poles. Poles from species with durable heartwood have long ser- vice lives, especially when the sapwood receives some supplemental preservative treatment. Users should be aware, however, that the durability of heartwood does vary among trees of the same species. Figure 1. Cross sections of Douglas-fir showing typical sapwood (left) and deep sapwood (right). Pith Heartwood Sapwood Inner bark Outer bark 3 In addition to sapwood and heartwood, there are differences in annual growth that produce distinct rings in most temperate woods species. Cells produced early in the season have large cell lumens and thin cells walls and are termed earlywood. Cells produced later in the season are thicker walled with smaller cell lumens and are termed latewood. Ninety percent of coniferous wood is made up of minute, hollow fibers (called tracheids) oriented lengthwise along the tree stem, which transport water and nutrients from the roots up through the sapwood to the leaves (Figure 2). The length of these fibers is 100 times longer than the width. The remaining 10% of the wood is composed of short, hollow, brick-shaped ray cells oriented from the bark toward the center of the tree as ribbons of unequal height and length. These rays (a mix- ture of tracheids and parenchyma cells) distribute food, manufactured in the leaves and transported down the inner bark, to the growing tissues between the bark and wood. density Density is a measure of weight per unit volume. Because of its low density, wood of cedar is light when dry, but may be very heavy when wet. Low-density wood contains more voids than does high-density wood and, therefore, more space for water. One cubic foot of water-free (ovendry) western redcedar weighs about 19 lb, about 9 lb less than Douglas-fir, which is more dense. Because density reflects the thickness of the fiber walls, it indicates the strength of the wood. The higher the density of wood at a specified moisture content (MC), the greater its strength. Therefore, a cedar pole must be larger in diam- eter than a Douglas-fir pole to support the same load. Density has little or no relationship to durabil- ity. Dense woods can have little durability, while light woods, such as western redcedar, can be quite durable. groWth rate The American National Standards Committee Standard ASC 05.1 specifies maximum growth rates in the outer 2 to 3 inches of a pole Figure 2. In this greatly enlarged view of fibers in Douglas-fir, large, open ends of thin-walled springwood fibers change abruptly to thick-walled summerwood fibers. Horizontal ribbons of short ray fibers are interspersed among long vertical fibers that make up about 90% of the wood. Photo provided courtesy of the N.C. Brown Center for Ultrastructure Studies, College of Environmental Science and Forestry, SUNY, Syracuse. (depending on pole size). This requirement reflects a tendency for faster grown wood to be less dense and therefore weaker. This standard also allows for use of poles with slightly faster growth, provided that the percentage of denser latewood is high. Moisture content Sapwood, which conducts nutrients in water from the roots to the leaves, is nearly saturated with water in a standing tree. Wood density tends to be lower at the top, enabling a tree to store large quantities of water where it will be readily avail- able to the leaves. Heartwood usually contains much less water than sapwood. Because of its low density, cedar can hold much more water than 4 Douglas-fir can. In freshly cut cedar trees, the MC of sapwood and heartwood approaches 250% and 60% respectively, calculated on a water-free wood basis. Ponderosa and southern pine both contain high percentages of sapwood, which holds more water than does heartwood. Moisture content is expressed as a percent- age of the dry weight of the wood. To determine the amount of water in wood, weigh pieces of the wood, then dry them in an oven at 220°F until their weights remain constant (wood 1 inch thick or less usually dries within 24 h). Do not use wood that contains resin or pitch for MC determina- tions, because it evaporates with the water. be driven into the wood so that the meter is read every 1/2 inch. The uncoated pins read MC only at the tip. Before driving the probes into the wood, be sure that they are parallel to each other and are aligned with the long fibers of the wood; that way, the probes will not break off and the data will be more accurate. The meter is useful for a MC range of 7% to 25%, but accuracy decreases rapidly outside this range (Graham et al. 1969). Creosote and oil-based preservatives have little effect on meter readings, but inorganic water-based preservatives may cause large errors (James 1976). seasoning Wood poles that are treated with preservatives must be dried either before or during preserva- tive treatment. The simplest moisture removal method is air seasoning, in which poles are stacked in well-ventilated piles for 1 to 12 mo (Figure 3). Air seasoning is inexpensive because it requires little equipment and minimal han- dling of the wood. This method does necessitate a large storage area for poles, and it includes the cost of carrying a large white, or untreated, wood stock in anticipation of orders. It also per- mits the entry of fungi and insects into the wet wood. Despite these drawbacks, air seasoning remains a common method for drying Douglas- fir and western redcedar poles before treatment. Air seasoning is less frequently used for southern pine because pine is much more susceptible to decay. Poles to be air seasoned should be placed Figure 3. Air seasoning poles. Then, MC can be calculated as: MC = (initial weight/oven dry weight) - 1 x 100 OR MC = [(initial weight - oven dry weight)/oven dry weight] x 100 For example, if 1.0 ft3 of Douglas-fir sapwood weighs 60.2 lb and its oven dry weight is 28.0 lb, the calculations would be: MC = (initial weight/oven dry weight) - 1 x 100 MC = (60.2/28.0) - 1 x 100 MC = 115% MC OR MC = [(initial weight - oven dry weight] x 100 MC = [(60.2 - 28.0)/28.0] x 100 MC = 115% MC Moisture content also can be determined with a moisture meter that measures the electri- cal resistance between two probes driven into the wood with a sliding hammer (Salamon 1971, James 1975). Because a moisture gradient indi- cates moisture distribution in a pole much better than does a single reading at a specified depth, the 3-inch-long probes with uncoated tips should 5 in well-aerated stacks with stickers (spacers) between rows to allow airflow. These poles should be kept at least 1 ft above the ground on well- drained sites that are free of vegetation. The need to produce poles quickly (without the long drying times required for air seasoning) has encouraged the development of alternative seasoning processes, which include Boulton sea- soning, steam conditioning, and kiln drying. These processes reduce wood moisture near the sur- face of the pole and, if carried out for a sufficient period, can heat-sterilize the wood, eliminating fungi or insects that became established between felling and treatment. Boulton seasoning was first developed in 1878. It involves placing the wood in a treat- ment cylinder, adding treatment solution, and applying a vacuum while raising the temperature to between 190 and 210°F. The vacuum lowers the boiling point of water, permitting vaporiza- tion of water in the wood in a process that may last 6 to 48 h. Boulton seasoning is a relatively mild method for removing water from wood and causes little or no strength loss; it is most com- monly used to dry Douglas-fir poles. Kiln drying is increasingly used for southern pine and Douglas-fir poles. In this process, the poles are placed on carts with stickers between the poles to permit air flow. The poles are then placed into a kiln, where they are subjected to combinations of elevated temperatures and rapid air flow. The rate of drying is controlled by the velocity of air passed through the kiln, as well as by temperature and relative humidity (RH). Kiln schedules that dry the poles too rapidly can result in excessive check- ing or in case-hardening of the wood, a process that makes subsequent preservative treatment more difficult. Careful control of temperature, RH, and air velocity can produce dry, high-quality poles over a period of 3 to 5 d. Steam conditioning can be used to treat southern pine poles while the moisture levels remain elevated (~40% MC). Partially seasoned poles are steamed for up to 20 h at 240°F in a process that results in the drying of the wood near the surface and the redistribution of moisture deeper within the pole. As a result, the wood can be treated at higher overall MC, reducing energy costs. Steam conditioning is typically used to treat southern pine poles with oil-based preservatives; it is not permitted for Douglas-fir, western redcedar, or ponderosa pine because of concerns about the potential for temperature-induced strength loss in these species. Southern pine is less susceptible to this damage. This process is less commonly used and has largely been replaced by kiln drying. PretreatMent Processing In addition to seasoning, there are a number of steps a utility can take to improve pole perfor- mance and reduce long-term maintenance costs. These include pre-boring, incising, deep incising, radial drilling, through-boring, and kerfing. Pre-boring all holes used for attachments such as guy wires or cross-arms helps to protect the preservative-treated shell from damage. Field drilling exposes untreated wood, creating the potential for aboveground decay (Figure 4). Incising can be used in the treatment of spe- cies in which the thin bands of sapwood pose a major challenge. Incising involves using sharp- ened metal teeth to punch a series of small holes into the wood, improving the uniformity of treat- ment to the depth of the incisions. Wood treats Figure 4. (a) Decay at the bolt hole and (b) pole failure caused by decay in a field-drilled hole. ba 6 more easily along the grain, and incising exposes more longitudinal flow paths, thereby improving treatment (Figure 5). Incising is recommended for western redcedar poles; utilities also incise Douglas-fir, lodgepole pine (Pinus contorta), and western larch (Larix occidentalis), particularly in the groundline zone. Deep incising and radial drilling improve on conventional incising, the effect of which is gener- ally limited to the outer 3/4 inch of the wood. In deep incising, a series of 3-inch-long knives are driven into the wood around the groundline area (Figures 5 and 6). Similarly, radial drilling involves drilling a series of holes to depths ranging from 3 to 5 inches in a diamond-shaped pattern in the groundline zone. Both of these processes allow preservative treatment to the depth of the knife or drill, which increases the zone of protected wood. Through-boring takes radial drilling further in that holes are drilled at a slightly downward- sloping angle completely through the pole in the critical groundline zone. Through-boring can produce nearly total treatment of the groundline zone (Figure 6). Although incising, radial drilling, and through-boring improve the depth of preserva- tive treatment, none control in-service checking, which results in exposure of untreated wood. These processes all protect the zone to which they are applied, but do not markedly affect the risk of decay above or below that zone. Kerfing involves making a saw cut to the pith of the pole prior to treatment (Figures 6 and 7). Once treated, the kerf acts to relieve subsequent drying stress, preventing the development of checks that penetrate beyond the treated shell. It is important to note that decay can occur above the kerfed zone; however, kerfing markedly reduces the incidence of internal decay in thin sapwood species around the groundline. Radial drilling, deep incising, through-boring, and kerfing are all typically used on species with thin sapwood and low to moderately durable heartwood. They are primarily used on Douglas- fir, but would also find application on western larch and lodgepole pine. Engineers have long expressed concerns about the effects of holes or cuts on pole flexural properties. Extensive full-scale tests indicate that these processes do produce slight reductions in properties; however, the losses are more than offset by the improve- ment in treatment that limits subsequent decay development in the critical groundline zone. A B C D Figure 6. (A) Deep incising, (B) radial drilling, (C) through- boring, and (D) kerfing can improve treatment of the affected zone. Figure 5. Incising and through-boring can markedly improve preservative penetration. (a) Cross section of a deep-incised pole and (b) a copper naphthenate through-bored pole.ba 7 As poles dry or season, they lose water from the surface, but they shrink only when MC drops below 30%. This is the fiber saturation point, the point when the wood fibers contain a maxi- mum amount of water, but there is no “free or liquid water” in the cell lumens. Wood shrinks more along than across the growth rings. As a result, many small, V-shaped seasoning checks form in the surface of poles. As drying continues deeper into the wood, the number of small checks decreases; however, a few checks drive deep into the wood. Deep checks to the center indi- cate a well-seasoned pole and do not adversely affect strength. Numerous small checks do not always reliably indicate the extent of seasoning because some poles check very little as they dry. However, most softwood poles eventually develop deep checks (1/8 to 1/2 inch wide). Pretreatment seasoning removes moisture from the wood and encourages check development before treatment. Even under the most favorable drying conditions, however, large poles require a long time for the heartwood to completely dry to in-service equi- librium MC. Consequently, most poles are treated with preservatives and put in service while they still have high internal MC. As checks on these poles continue to deepen, they expose untreated wood to attack by wood-destroying organisms, which results in the development of internal decay (Figure 8). The development of checks before treatment results in well-treated checks that help to reduce the risk of internal decay. Many utilities incorporate a pre- or post-treat- ment MC requirement into their specifications to ensure that the wood is dry before treatment or that it will not check excessively once in service. A typical pretreatment MC might be 20% to 25% at 2 inches from the surface, although this will sometimes vary seasonally to reflect both the dif- ficulty of seasoning during wet periods and the inability of in-cylinder treatment processes to remove some of this moisture. Most utilities also limit the maximum width and length of checks to avoid creating a hazard to linemen climbing the poles. This is particularly true in drier climates where the poles are likely to dry to much lower in-service moisture levels. These requirements must be applied cautiously, however; unreasonable check limitations will force treatment at higher MC when the poles have not yet developed a normal checking pattern. These poles will then continue to dry after treat- ment and may develop even deeper checks that penetrate beyond the treated zone. The degree of drying required before treat- ment will vary by species and by ultimate exposure site. For example, southern pine can be treated at higher MC through the use of pre- steaming, although care must be taken to ensure uniform treatment gradients. Douglas-fir and western redcedar poles are normally treated when dry (approximately 25% MC). Ultimate exposure conditions may also affect the degree Figure 7. Kerfing (arrow) can be used to control checking of poles, thereby reducing internal decay in service. Figure 8. Narrow checks that widened and deepened after treatment have exposed the untreated heartwood of this Douglas-fir pole to decay fungi. 8 of drying required. Poles that are exposed in dry regions (precipitation <20 inches annual precipi- tation) should be drier before installation because they are more likely to develop deep checks. Users should carefully consider the impacts of drying and check requirements on initial pole costs and ultimate service life. Preservatives Wood poles can be treated with various pre- servatives specified under the standards of the American Wood Protection Association. These systems are either oil- or water-based. Preservatives listed under the AWPA Standards have been reviewed by technical committees for their effectiveness under a variety of regimes. Chemicals that meet these standards are expected to produce equivalent biological perfor- mance, although they may have other attributes such as color or “climbability” that make them attractive in a given utility. oil-based Preservatives Oil-based systems include creosote, penta- chlorophenol (penta), and copper naphthenate. Creosote and penta are both restricted-use pesti- cides; those seeking to use these liquid chemicals must be licensed by an appropriate state agency. Although wood treated with these chemicals is not restricted, users should carefully read and follow all product information with regard to application. Creosote is the oldest preservative in gen- eral use for wood protection; it was patented in 1838 by John Bethell. Creosote is a mixture of polynuclear aromatic hydrocarbons produced by the destructive distillation of coal. Creosote is an oil substance that is typically used undiluted for wood-pole treatments. It is highly effective against many decay organisms and provides long service life. One hazard is that contact with this chemical can sensitize the skin to sunlight. Creosote can be used either as a stand-alone preservative or diluted with a heavy petroleum solvent Pentachlorophenol (penta) was developed in the 1930s as an easily synthesized substitute for creosote. Penta is normally used in a heavy hydrocarbon solvent (P-9 Type A) for treatment of wood poles. Penta is broadly toxic to fungi and insects. The one major concern with penta is the presence of dioxins; however, manufactur- ing processes have sharply reduced the amount of dioxin. Despite its potential drawbacks, penta remains the preservative of choice for many utili- ties because of its excellent field performance. The solvent system used with penta has a marked influence on performance, as evidenced by the diminished performance of poles treated with penta in liquefied petroleum gas (Arsenault 1973). The use of heavy aromatic oils tends to produce the best performance with this chemical. These oils are typically specified in AWPA Standard P9 Type A. Copper naphthenate was developed in the early 1900s. It is produced by combining copper with naphthenic acids derived from the oil-refining process. Copper naphthenate has been available for wood-pole treatments for many years, but its slightly higher cost, combined with a general sat- isfaction with penta, have limited its use. Unlike creosote and penta, copper naphthenate is not a restricted-use pesticide, and it is commonly used to field-treat cuts or holes made in poles after ini- tial preservative treatment. In addition to the previously described sys- tems, a variety of newer oil-based chemicals are being evaluated for wood poles. These include chlorothalonil and isothiazolone. The development of new systems for protecting wood poles is gen- erally slow because of both the need for highly reliable protection and a general reluctance on the part of utilities to accept new treatments rap- idly without first performing limited tests within their systems. It is likely, however, that we will see a gradual evolution to a new generation of less broadly toxic preservatives for wood poles. Water-based Preservatives Water-based preservatives for wood poles include chromated copper arsenate (CCA), ammonia- cal copper zinc arsenate (ACZA), copper azole (CA), and ammoniacal copper quaternary (ACQ). Although CCA and ACZA are restricted-use pes- ticides, wood treated with these systems is not. Wood treated with ACQ is not restricted, and ACQ itself is not a restricted-use pesticide. 9 Water-based systems produce clean, resi- due-free surfaces. Many utilities object to the hardness of poles treated with these systems, however, as well as a tendency for the wood to be more conductive when wet. Another concern with water-based preservative treatment is that the processes require lower temperatures. Treatment with ACZA does sterilize the wood, as does kiln drying before treatment with CCA, but an alter- native sterilization process must be used when air-seasoned poles are treated with CCA. CCA was first developed in the 1930s in India. It is an acid system containing copper oxide, arsenic pentoxide, and chromium trioxide. The system uses chromium reactions with the wood to fix the copper and arsenic. The process takes several days to many weeks, depending on the wood temperature. CCA is increasingly used to treat poles of southern pine; however, it is difficult to impregnate Douglas-fir with CCA. Thus, this chemical/species combination is not recommended unless material is selected by pre- treatment permeability trials. ACZA, originally formulated without zinc as ammoniacal copper arsenate (ACA), was first developed in the 1930s in California. ACA and ACZA use ammonia to solubilize the metals. Once applied to the wood, the ammonia evaporates and the metals precipitate. The presence of ammonia and the use of heated preservative solutions gen- erally result in deeper preservative penetration than is found with CCA. For this reason, ACZA is typically used to treat refractory woods such as Douglas-fir. ACQ is among the most recently standardized preservatives for wood poles. This formulation uses ammonia or ethanol amine to solubilize copper and it adds a quaternary ammonium compound to limit the potential for damage by copper-tolerant fungi. This preservative is not yet widely used for wood poles, but comparative field tests suggest that its performance will be similar to that of other alkaline copper systems. Copper Azole Type B (CA-B) is also a recently standardized system that uses copper as the primary biocide, with a small amount of a tri- azole compound to protect against fungi that are tolerant of copper. Like ACQ, this system is not widely used for poles. 3 1 2 3 3 4 5 2 4 Figure 9. Relative risk of decay in poles (1 = low risk, 5 = high risk) exposed in various sites in the United States. Preservative treatMents Preservative treatment involves forcing oil- or water-based preservatives into wood to a desired depth of penetration at a level or retention that confers biological protection. The depth of penetration varies with wood species; western redcedar requires the shallowest penetration and southern pine the deepest. Penetration require- ments are generally based upon the amount of sapwood present and the ease with which it can be treated. Retention is expressed as the weight of preservative per volume of wood (lb/ft3 or kg/ m3); this varies with wood species and applica- tion. For example, wood poles used in warmer, wetter climates are exposed to a higher risk of decay and are usually treated to a higher reten- tion than are those exposed to drier, cooler conditions. The AWPA Use Category standards provide a map showing relative risk of decay across the United States (Figure 9). Three general treatment processes are used to impregnate wood poles. In the thermal pro- cess, dry poles are placed in either a large tank or a closed cylinder. Oil-based preservative is added to cover the wood and is heated over a 6- to 18-h period. The oil is pumped out of the vessel, then pumped back in a process that cools the oil slightly. As the cooler oil touches the hotter wood, a partial vacuum is created, which draws additional preservative into the wood. The thermal process is used primarily to treat west- ern redcedar, although it is occasionally used to treat lodgepole pine, western larch, or Douglas-fir 10 poles for drier or cooler climates, where the decay hazard is lower. The other two treatment meth- ods use elevated pressure in a treatment vessel or retort to force chemical into the wood to the required depth (Figure 10). The full-cell process was developed in 1836 by John Bethell. It begins with an initial vacuum to remove as much air as possible from the wood. The preservative solution is then added to the treatment vessel and the pressure is raised (100 to 150 psi). Gauges on the treatment vessel allow the treater to determine how much solution has been absorbed by the wood; this information, in combination with the amount of wood in the treatment cylinder and the retention required, dictates the length of the treatment cycle. Once the desired amount of solution has been absorbed, the pressure is released. The release of pressure forces some preservative from the wood in a process called kickback. After the pressure period, a series of vacuums are drawn to recover excessive preservative and minimize bleeding. In addition, poles of some species are steamed to clean the surface and enhance fixation reac- tions. The full-cell process is normally used to treat wood poles with water-based preservatives whose concentration can be changed to achieve the desired retention. Empty-cell processes were developed in the early 1900s. In these treatments, the process begins when preservatives are introduced into the treatment cylinder at atmospheric pressure without a vacuum. In the absence of a vacuum, air trapped in the wood at the start of the pres- sure cycle is compressed; at the end of the pressure period it expands and carries additional preservative or kickback from the wood, reducing retention. Kickback can be further increased by introducing a slight pressure prior to the addition of preservative, thereby increasing the amount of trapped, compressed air and the subsequent kickback. Empty-cell processes are normally used to treat poles with oil-based preservatives and are used to reduce the amount of preserva- tive injected into the wood, thereby producing a cleaner, drier pole. In addition to the initial vacuums and pressure processes, most treatment processes also incor- porate practices that relieve internal pressure, recover solution from the wood, or encourage fixation reactions. Expansion baths at the end of oil-borne processes heat the wood to relieve internal pressure. Removing this pressure reduces the risk of bleeding in service. Similarly, steam- ing heats the wood surface to force chemical from the wood, cleans the surface, and can accelerate fixation reactions with water-based systems. All of these processes produce a cleaner pole. Many of these processes are incorporated in a series of specifications termed Best Management Practices that are used to produce treated wood for use in or near aquatic environments. Figure 10. Typical vacuum pressure cycles used to impregnate wood poles with preservative. (A) Full-cell, (B) Rueping, and (C) Lowry processes. 105 0 26 A 105 0 26 B 105 0 26 C 0 1 2 3 4 5 6 7 8 Pr e s s u r e (p s i ) Va c u u m (i n . H g ) Pr e s s u r e (p s i ) Va c u u m (in . H g ) Pr e s s u r e (p s i ) Va c u u m (i n . H g ) Time (h) 11 Treatment of wood poles is specified under the AWPA Use Category Standards, which set minimum levels for penetration and retention of preservatives for wood poles and define pro- cess limitations for each species. The standards are results-oriented, in that they specify chemi- cal levels but do not require a specific treatment method for achieving the goal. Successful treat- ment is confirmed by post-treatment sampling. The standards should be considered minimum specifications. Utilities that desire greater treat- ment, however, should carefully consider the costs and benefits of additional requirements. For example, higher loadings of chemical may not always increase service life and they can sometimes lead to higher loss rates into the sur- rounding environment. Pole treatments are specified under the Use Category System under Standards U1 and T1. U1 lists the various chemicals that can be used for various commodities, while T1 lists the various process requirements. Utility poles are specified under Use Categories 4 A, 4B or 4C where 4A is the lowest risk of decay and 4C is the high- est for land-based poles. Utilities can use either prior experience or a risk map in the Standard to determine the appropriate level for their system. fire Protection Poles in some areas are also subjected to fire risk. This becomes a special concern in rural areas, particularly when poles are treated with either CCA or ACZA. There are a number of field applied fire retardant barriers. These systems have been shown to limit the risk of fire damage for at least 5 years. There are also temporary fire retardants that can be applied shortly before a fire. In addition, some utilities have used barriers, such as aluminum or steel sheets to protect the wood. While these systems can be effective, care must be taken since the sheets trap water and can sometimes accelerate decay. other treatMent requireMents In addition to preservative loading, utilities may incorporate other requirements into their speci- fications. Among the most common are surface color and cleanliness. Some utilities require that poles be treated to a uniform color, particularly with penta, and this is accomplished by using the proper solvent and avoiding the accumulation of debris in the treatment solution. Pole bleeding can be minimized by varying process conditions to avoid over-treatment and relieve excess pres- sure remaining inside the pole (Figure 11). This pressure can eventually force preservative to the pole surface. The most comprehensive pro- cedures for reducing bleeding are described by the Western Wood Preservers’ Institute Best Management Practices (WWPInstitute.org). Preservative Migration froM Poles All preservatives used for wood poles have some degree of water solubility and will migrate from the wood into the surrounding soil over time. This ability to migrate is essential for their function since the chemical must be able to move into a fungus or insect to be effective. Numerous field surveys indicate that this chemical migration is limited to a zone 6 to 12 inches around the pole. As a result, the risk of environmental contami- nation from a properly treated pole is minimal. There are specially designed pole barriers for use in especially sensitive environments where utili- ties feel extra protection is warranted. barriers A variety of barrier products have recently emerged that are applied to the area below the Figure 11. Example of bleeding from a creosote-treated pole. 12 groundline (Figure 12). These systems do not contain any biocides and are designed to limit preservative migration from the pole and to limit soil contact. These two activities should improve pole performance. Barrier systems include sock–like materials that are applied prior to pole installation and polyurea coatings that are applied at the treating plant. These systems have the greatest potential use where poles are used in sensitive environments or where poles might be Figure 13. (a) example of an older, non-capped pole top with extensive decay, (b and c) commercially available pole caps. installed in concrete, making future inspection extremely difficult. Barrier systems that use hard coatings may have an impact on an inspector’s ability to perform future inspections. Pole toPs Pole top decay can become a problem on older poles and, if allowed to progress, can eventually necessitate pole replacement. A number of sys- tems are available for capping poles (Figure 13). Caps can be simple plastic discs that have spaces underneath to allow for air-exchange or they can be plastic wraps that exclude all moisture. Field tests indicate that these systems mark- edly reduce the risk of pole wetting which in turn reduces the risk of internal decay. a b c Figure 12. Example of a commercially applied pole barrier used to protect the belowground portion of a pole. 13 Wood can be degraded by a variety of living and non-living agents. The most important non-living agent is ultraviolet light, which degrades the wood surface (Figure 14). This damage occurs very slowly and is normally not an issue for poles. fungi The structural integrity of wood may be destroyed by decay fungi that feed on wood. Wood also contains a wide variety of so-called non-decay fungi that usually do not weaken wood. Insects, woodpeckers, and marine boring animals also can extensively damage wood structures in some areas. Decay fungi are, by far, the most destructive of the organisms that inhabit wood. Fungi require water, air, a favorable temperature, and food (Figure 15). Wood with MC below 20% (oven-dry basis) usually is safe from fungi. Lack of air limits fungal growth only when wood is submerged in water or buried deep in the ground. Freezing temperatures stop fungal growth but seldom kill fungi. Above 32°F, fungal activity increases, peaking between 60 and 80°F and decreasing as temperatures approach 100°F. Most fungi are killed at temperatures exceeding 150°F. decay fungi Mushrooms and “conks” are typical fruiting bodies of decay fungi; they produce billions of micro- scopic seed-like structures called spores (Figure 16). However, not all fungi produce large, visible fruiting bodies; they may produce microscopic structures that also produce large numbers of spores. In favorable conditions, these spores germinate and produce hyphae, minute thread- like strands that penetrate throughout wood. The hyphae secrete enzymes that dissolve the cel- lulose and lignin of wood into simpler chemicals that fungi can use as food. “Decay” describes wood in all stages of fungal attack, from the initial penetration of hyphae into the cell wall to the complete destruction of the wood. Early fungal attack on wood usually can be detected only by microscopic examination or by incubating wood on nutrient agar for outgrowth of decay fungi (Figure 17). If decay fungi can be Figure 15. Requirements for decay. Figure 16. The conk (fruit body) of a decay fungus produces microscopic spores that, finding suitable conditions for growth, infect other wood products. Fungal threads spread decay through moist wood. Food Spores Mycelia Heat Air Food Moisture Fungus fruiting body Figure 14. Weathering of a cedar pole turns the surface grey, but the wood underneath is unaffected. cultured from wood that appears visu- ally sound, the solid wood is in the incipi- ent stage of decay. During the early stages of decay, some fungi may discolor or substantially weaken the wood, especially its toughness. As decay contin- ues, wood becomes brash (breaks abruptly across the grain), loses luster and strength, and 14 noticeably changes in color; eventually, it may be completely destroyed. Wood that is visibly decayed, greatly weakened, and conspicuously brash or soft is in the advanced stage of decay called rot. Three groups of fungi, brown rot, white rot, and soft rot, cause wood degradation; each affects the wood in a different manner (Figure 18). Brown rot is a brown, advanced decay that crumbles when dry and is common in most softwoods. Although it is called “dry rot,” this nomenclature is misleading because at one time the wood must have been wet enough to sup- port fungal growth. At very early stages of decay, brown rot fungi preferentially remove cellulose from the wood, producing extensive strength loss and significantly damaging the wood’s utility. Brown rot fungi are important because they cause very substantial strength losses at the early stages of decay. White rot fungi are more prevalent on hard- woods, although they are also present in many conifer species. In the advanced stage of decay, white-rot fungi bleach or whiten wood or they form small degraded white pockets in the wood. Brown and white rot fungi tend to be inside the pole where moisture conditions are more stable. They are often associated with deep checks that penetrated past the original treat- ment zone. While their damage is important, they can generally be controlled by the application of volatile or water diffusible treatments. The end result of internal decay is a shell of treatment surrounding a hollow core. The thickness of that Figure 18. (a) Brown, (b) white, and (c) soft rot. cb a Figure 17. A decay fungus growing over malt agar from a sound-appearing increment core is a positive sign of decay, even though the pole may contain no visible rot. 15 original treatment can determine whether an internally decayed pole is salvageable. Soft rot fungi attack the surfaces of both hardwoods and conifers, particularly where pre- servative levels have declined below their initial treatment levels through leaching. Soft-rot fungi slowly cause external softening of treated wood, resulting in extensive damage below ground. Soft rot fungi are most prevalent on southern pine poles, although they are also common on poles of Douglas-fir that have been treated with pentachlorophenol in either methylene chloride or liquefied petroleum gas. Although neither of these treatments is currently used, many poles treated with these systems remain in service. Soft rot fungi are especially important because they reduce the effective pole circumference, producing very sharp declines in flexural prop- erties. Many of these fungi are also tolerant of preservatives, allowing them to attack wood that may have lost some, but not all of its original treatment. non-decay fungi Numerous non-decay fungi also inhabit wood; they feed on cell contents, certain components of cell walls, and the products of decay. Frequently, only non-decay fungi can be isolated from rotten wood because the decay fungi, having run out of food, have died. Sapwood-staining fungi may reduce the toughness of severely discolored wood; other non-decay fungi gradually detoxify preservatives, preparing the way for decay fungi. Some rapidly growing non-decay fungi may inter- fere with efforts to culture the slower growing decay fungi from wood. The interaction of fungi, both decay and non-decay types, and their roles in the decay process are still to be defined. insects Wood in or above ground may be attacked by ter- mites, carpenter ants, or beetles. Termites work within and use wood as a food source; there is virtually no external evidence of their presence until winged adults emerge and swarm in late summer and early fall. These social insects have a well organized colony structure with a queen, workers and soldiers. Workers feed nearly con- tinuously and a large colony can approach one Figure 19. A termite colony includes many workers that burrow in wood for food and shelter, soldiers that protect the colony from other insects, and one egg-laying queen. (a) These reproductives later will fly from the nest to initiate new colonies (photo credit: Scott Bauer, USDA Agricultural Research Service, Bugwood.org). (b) Usually poles show no sign of termites until the reproductives emerge, discard their wings, and mate to start new colonies (photo credit: Gerald J. Lenhard, Louisiana State University, Bugwood.org). million workers. Collections of wings outside the nest in checks or other collection areas, discarded by reproductives (alates) as they mate to start new colonies, may be the first indicator of termite presence. Some species also produce mud tubes up the pole surface or inside checks that indicate the presence of an infestation. Although their lengths vary from 1/4 inch or less (subterranean and drywood) to 3/4 inch (dampwood), termites have bodies of fairly uniform width; the reproduc- tives have wings of equal length (Figure 19). Subterranean termites are wide-spread and cause extensive damage, especially in southern states but they are also present in drier parts of the country. Sure signs of their presence are the mud tunnels that the termite workers build from their nests in the ground up across treated wood or concrete to non-treated wood above. Subterranean termites are distributed between 50° N and 50° S latitude although there may be b a 16 isolated occurrences north of this zone. Global changes in climate are likely to extend this range. In warmer portions of the country, wood may also be subject to very aggressive attack by an introduced species, the Formosan termite (Coptotermes formosanus). This subterranean termite has large colonies with as many as 6 to 7 million workers. Fortunately, this species is cur- rently only found in Hawaii, along the Gulf Coast and in extreme southern California. The presence of this termite in Hawaii, however, has resulted in a requirement that all wood used in houses be preservative protected. Dampwood termites (Zootermopsis augus- ticollis) inhabit moist wood in, on, or above the ground along the Pacific Coast. The workers of this species are very large and easily identified, while the soldiers have extremely large pincers. This species can be a problem in poles, but it is most often associated with very deep wide checks or prior woodpecker attack. In both cases, the openings allow moisture to enter, creating ideal conditions for attack. Dampwood termites appear to be very susceptible to preservative treatments. Drywood termites feed on dry wood, primar- ily in the southern United States and the Pacific Southwest. These species can live in wood at 12% MC, and the only evidence of their presence is the frass or insect droppings that they periodically expel from their colonies. (Figure 20). Drywood termites can invade poles and crossarms, where their presence is difficult and expensive to detect. The best preventative method is a well-treated preservative shell. The initial treatments currently used for poles are all capable of preventing termite attack, but checks or other damage to the wood can create non-treated zones where termites can invade. Termites are best controlled by producing a well- treated pole without deep checks that penetrate beyond the treated shell. Carpenter ants are also social insects with a queen and major or minor workers (Figure 21). The ants have a restricted waist, and the reproductives have wings of unequal length. The dark-colored ants grow as long as 3/4 inch. Unlike termites, which eat wood, ants hollow out wood only for shelter, forming piles of “sawdust” at the base of poles, which attest to their presence in the wood Figure 22). Ants must leave the nest to find food and are frequently seen scurrying around poles particularly at night (they are noc- turnal). They are difficult to control because they do not eat the wood. They also tend to have a main nest along with satellite nests. This makes it Figure 21. In contrast to termites, carpenter ants (Camponotus sp.) have restricted waists and reproductives have shorter wings of unequal length (photo credit: Clemson University - USDA Cooperative Extension Slide Series, Bugwood.org). Figure 20. Example of termite damage to wood. Note the debris and termite excrement on the wood. 17 difficult to treat the pole and expect to eliminate the infestation. A well-treated pole without checks penetrating beyond the treated shell is the best method for preventing carpenter ant attack. Beetles that attack poles typically invade the wood while the bark is still on the freshly fallen tree. The adult lays eggs that hatch into larvae that tunnel beneath the bark. If the bark is not removed in a timely manner, the larvae will then move into the wood. An effective sterilization treatment will kill the larvae; however, inadequate treatment can allow the beetle to survive, con- tinue its life cycle and emerge once the pole has been placed in service. The most common beetles in poles are buprestids, also called flat-headed or metallic wood borers (Figure 23). The golden buprestid is the most common of these beetles in the Pacific Northwest. This beetle has a life cycle that can range from 2 to 40 y. The 3/4-inch-long, metallic golden or green adult makes an elliptical hole as it emerges from the pole to mate. Trained pole- maintenance personnel recognize these elliptical holes as indicators of internal rot often associated with beetle attack. Numerous emergence holes may indicate an unsafe pole. Beetles in other wood species may be indica- tors of prior insect attack. For example, western redcedar heartwood may have been attacked by another species of buprestid beetle as a stand- ing tree. This species attacks only living trees, and the damage does not spread in the finished product. Similarly, some buprestid species attack wounds in standing southern pine. Those beetles do not cause further damage in the finished products. Beetle damage, while not always a long-term problem, can be an indicator of poor handling. As a result, the ANSI specifications reject poles with beetle holes. Figure 23. Golden buprestid beetle (Buprestis aurulenta). As an indication of internal rot in the aboveground portion of poles, look for the oval holes (0.5 in. long), that the buprestid beetle leaves as it emerges from wood. Many holes could mean an unsafe pole. Figure 22. Carpenter ant damage in poles. Carpenter ants also live in colonies, hollowing out nests in poles for shelter. A pile of sawdust at the base of the pole is a sure sign of their presence. 18 Woodpeckers sometimes nest in poles, drum on poles as part of their mating rituals, use poles as a source of insects, store acorns in small holes as a future food source, and make holes for other unknown reasons (Figure 24). Woodpecker holes also open the pole interior to moisture intrusion, creating an ideal environment for fungal and insect attack. Dampwood termite colonies have been found 30 to 40 ft above ground in aban- doned woodpecker nests. Woodpeckers will tend to be more prevalent in forested areas; however, there are very few areas in a rural or suburban setting that would not be suitable for woodpecker habitat. Woodpeckers also appear to choose poles because they offer a clear unobstructed view of the area, allowing them to avoid predators. Woodpeckers are feder- ally protected and it is illegal to disturb nesting birds. Chemical repellents, plastic wraps that deny the birds a toehold and stuffed owls have been tried as woodpecker deterrents. When poles with woodpecker damage have been replaced, the pole section containing the nest cavity has even been retained and attached to the new pole at its original height (Figure 25). These methods, how- ever, usually do not prevent woodpecker damage. Heavy galvanized hardware cloth applied tightly over much of the pole has been the most suc- cessful preventative measure, but can cause problems when poles must be climbed. The use of ACZA-treated poles has been reported to reduce, but not completely prevent woodpecker damage. Damage is most often repaired by treat- ing the wood with preservative and filling holes with an epoxy resin or foam. These actions, how- ever, do not prevent renewed attack. It is critical that woodpecker holes be repaired as soon as possible so that they do not provide entry points for other agents of decay. Marine borers Utility poles are rarely used in salt water contact, but where they are, utilities must be concerned about marine borers. Non-treated wood piles and poles in saline coastal waters are attacked rapidly by marine borers. Shipworms (Bankia or Figure 24. (a) Example of a woodpecker hole on the pole surface and (b) the extent of void associated with a nest. Figure 25. A section of old pole containing a woodpecker nest attached to a new pole in hopes of discouraging new attack. b a 19 Teredo spp.) riddle interior wood with long holes, and Limnoria (gribbles) burrow small tunnels near wood surfaces (Figure 26). Shipworms are bivalves (mollusks) with a pair of small shells at their heads. As small larvae, they burrow into wood and continue to tunnel away from the hole. Their tunnels may be up to 3/4 inch in diameter and 2 ft in length (Figure 26). Gribbles, small crustaceans about 1/10 inch long, tunnel in large numbers just below the surface of wood. Waves then break off these weakened surface layers, which gradually reduces the effective diameter of the wood. Marine borers are very destructive in southern latitudes, where wood needs special preservative treatments (south of San Francisco, CA or New York Harbor, NY). In northern latitudes, they do little damage to wood that has been pressure- treated with marine-grade creosote or wood with high retentions of certain water-based salts, unless cracks, bolt holes, or cuts expose non- treated wood. Pentachlorophenol-treated wood should not be used in marine waters. Non-treated wood such as bracing should not be fastened to treated wood below the tidal zone, because borers can become established in the non-treated wood and penetrate the treated wood. Where damage occurs, plastic wraps or concrete barriers have proven useful for arresting attack by cutting off oxygen to the organism. insPection of neW Poles The treater is responsible for ensuring adher- ence to specifications and plants routinely test the quality of their treated poles prior to ship- ping. Utilities may find it helpful to have in-house or third-party inspection of all incoming poles to ensure compliance. In-house inspection is usu- ally most practical for large utilities with specially trained quality control staff. Third-party inspec- tion is more appropriate for smaller utilities that buy fewer poles. New pole inspection combines a final check on wood quality with an assess- ment of treatment quality. The inspector checks the pole for knots that exceed the specification, the presence of excessive spiral grain, checks or splits, and other wood defects limited in the ASC 05.1 Standard (ANSI 2008). The inspector then removes increment cores from the designated sampling zone and assesses preservative pen- etration. The cores are then collected, combined and ground to a fine powder so that they can be analyzed for chemical content. This is most often done using an x-ray fluorescence analyzer. The treatment quality inspection follows the standards Figure 26. Marine borers attack wood in coastal waters where salinity and oxygen supply are favorable. Gribbles (a) make smaller tunnels near the surface (photo courtesy Wikimedia Commons). Shipworms (b) are marine borers that make long tunnels (c,d). c a d b 20 of the American Wood Protection Association or the Rural Utility Services. This practice provides a final check on pole quality and helps to identify potential problems before costly construction time is wasted install- ing an inferior pole. Inspection can occur in the plant or at the final destination. The small cost associated with inspection is easily offset by avoiding placing an inadequately treated pole in service. insPection of in-service Poles For many years, utilities installed poles with little thought to the necessity of regular mainte- nance. The need to minimize potential liabilities while maximizing the investment in wood poles has encouraged many utilities to institute regu- lar programs of inspection and retreatment. Inspection programs and the tools they use vary widely depending on the wood species, chemical treatments, and climate to which the poles are exposed. crossarMs Crossarms are a critical, but often overlooked element in a utility structure. Crossarms are exposed to less severe decay risk than the pole itself, but eventually, decay will develop in these elements. Tests of arms removed from service suggest that they are often removed while still retaining sufficient capacity. This often occurs because excessive weathering makes the arm appear weak. In other cases, checks developing on the upper surface of the arm trap moisture and allow fungi to grow. At least one crossarm manufacturer produces arms coated with a polyurea polymer that may provide long term protection against checking and ultra-violet light damage. The other types of damage incurred by cross- arms are splits or deep checks. These splits can widen to the point that insulator bolts fall out of the arm. Field trials indicate that end-plates can markedly reduce this checking (Figure 27). Arm damage can also be limited by the application of polyurea coatings (Figure 28). Figure 28. Polyurea-coated arms designed to reduce the risk of checks developing on the upper surface. Figure 27. Crossarms (a) with and (b) without end-plates that limit end-checking. Note the large checks on non-plated ends. b a 21 The timing and extent of a pole inspection pro- gram varies greatly depending on the climate, geography, wood species, initial preservative, and age of the system (Table 1). The risk of decay above the ground can be estimated using average monthly temperatures and days with precipitation to produce a climate index (Scheffer 1971). The risk of decay in soil contact also varies and maps have been developed to guide utilities. For exam- ple, wood exposed in cool, dry regions, such as those in the Upper Great Basin, can be inspected less frequently than wood in sub-tropical south- ern Florida (Figures 29 and 30). In wetter regions, internal decay typically starts at or slightly below the groundline, whereas in drier regions it often extends more deeply below the ground. Similarly, internal decay in wetter regions can extend many feet up from the ground. Some aboveground internal inspection should be considered for older poles in these regions or for poles in coastal regions. It can be difficult to predict the rate of decay in ground contact because soil conditions can have such a major impact on biological activ- ity. As a result, inspection programs are best determined using local data on pole performance. In addition, the Rural Utility Service has devel- oped maps of decay risk and these are cited in the AWPA Standards. Wood species and the initial treatment chemi- cal can strongly influence both the type and frequency of inspection due to the rates and types of decay. Most decay in well-treated south- ern pine poles occurs below the groundline on the wood surface. As a result, inspections that include digging, combined with an inspection and probing of the wood surface below groundline, Table 1. Recommended pole inspection schedules, from RUS 1730B-121 (1996). Decay zone Years before initial inspection Years before subsequent re-inspection Percent total poles inspected each year 1 12–15 12 8.3 2 & 3 10–12 10 10.0 4 & 5 8–10 8 12.5 are essential for detecting damage in this spe- cies. Most pole strength is in the outer 2-3 inches, so external surface decay can have a significant impact on the strength of the pole. Douglas-fir, western larch, western redcedar, and lodgepole pine are more prone to internal decay at and/ or below the groundline (although older cedar may also have some external decay), which makes internal inspection critical for early decay detection. The initial treatment chemical can also influ- ence inspection. For example, poles treated with pentachlorophenol in liquefied petroleum gas by either the Dow® or the Cellon® process tend to have surface decay below the ground level, regardless of the wood species. As a result, dig- ging inspections are required for poles treated by these processes, regardless of species. Conversely, CCA- or ACZA-treated poles tend to have much slower rates of surface decay, and excavation is probably advisable after approxi- mately 30 y of service (although some partial excavation prior to that is advisable to make sure that poles are performing as expected in your system). Finally, inspection in the through-bored region is not necessary because the wood is thor- oughly treated in that zone. The wood above that level should be inspected. Most utilities in North America physically inspect poles on a cycle of 8-15 y. This inspection comes in addition to annual drive-by inspections used by some utilities to detect obvious physical defects such as cracked insulators, split pole tops or other damage that can be seen from either the ground or air. An examination of national field inspection data suggests that a cycle of 8-12 y is best; rejection rates increase markedly when a longer cycle is employed for utilities in areas with moderate decay risks (Figure 30). Shorter Note: see Figure 9 (p. 9), AWPA Use Category Standards. 22 cycles may be advisable in areas with extreme decay risk, such as those along the Gulf Coast of the United States. Utilities in extremely dry areas may extend their cycle because the risk is so low, but they should use their own data to decide whether this extension is advisable. Even within these areas; however, there may be loca- tions where the decay risk is high, such as in 70 70 70 100 70 80 90100 110120 6050 40 30 2010 0 30 405060 70 40 Less than 35 35 to 70 More than 70 Climate Index 20 3020 130 Figure 29. This climate-index map of the United States provides an estimate of potential for decay of wood above ground (Scheffer 1971). Low LowMedium Medium High Severe Figure 30. Decay hazard map, as reported by the Rural Electrification Administration (REA), is derived from the decay hazard to which the wood is exposed. zones where the soil is irrigated. A good inspec- tion process incorporates local knowledge in order to tailor the program to the system. Obviously, it is not possible to treat each pole as an individual, but it is possible to identify problem areas within a system where climate, wood species, or initial treatment type may require some different steps in order to ensure long service life. the initial insPection When first evaluating a line or system, it is helpful to thoroughly inspect a smaller population of representative poles through an excavation 18-20 inches deep and 360° around the pole. These poles can provide useful informa- tion on wood species, original treatment, seasoning checks, insect attack, internal or external decay, and any other defects. The pre-inspection can also identify populations of poles that should receive extra attention. The number of poles sam- pled in the initial inspection will depend on prior mainte- nance practices, as well as the exposure hazard (Figure 30). Where personnel continually check poles above and below ground and detect developing problems, the initial sampling inspection may be limited to relatively few poles in certain lines or in certain areas. If little is known about a pole system, the inspection could involve a statistical sampling of poles in each line throughout the system. Some utilities sample a set number of poles (e.g., 300) of a similar age, species, and treatment that were produced by the same manufacturer. RUS 170B-121 generally 23 recommends inspecting a “1,000 pole sample made up of continuous pole line groupings of 50 or 100 poles in several areas of the system” (RUS 1996). The percentage of poles deteriorating and rejected then becomes a basis for decisions on the scope and nature of the pole maintenance program. The 1000-pole sample is arbitrary. Utilities should use some judgment based upon more intimate knowledge of their pole plant to determine appropriate initial samples. to dig or not to dig? Initial pole inspection should include digging, because poles can be sound above the ground- line, but badly decayed below. As poles age and as poles of new species or with new preservative treatments are installed, do not hesitate to make early digging inspections to find out how the poles are performing. As you become better acquainted with the condition of poles in your system, you can vary the frequency and extent of digging to suit the local conditions. Some utilities use what is called a partial excavation, where they dig only one-third of the pole’s circumference in the groundline area. These “partial excavations” can vary in depth from 6-20 inches or deeper. If nothing is found, the exposed surface is treated with a supplemental paste and a wrap or a pre- made bandage, and the hole is filed in. If decay is evident, then the rest of the pole should be excavated. Digging 18 inches deep will reveal surface decay in most areas, but you may have to dig deeper in dry areas where poles can decay below the incised zone (about 1 ft above to 3 ft below the groundline). One utility found that cedar poles set in gravel decayed “from the butt up.” To get the facts, inspect and cut up poles removed from service. Although surface rot is uncommon in pressure-treated Douglas-fir poles, it does occasionally occur, so some initial dig- ging is still necessary to ensure that it is absent in your locality. Most southern pine poles should be excavated. The exception would be younger CCA-treated poles (<30 y old). Older CCA-treated poles should receive at least a partial excava- tion. Internal decay pockets can also occur well below or above the groundline, depending on local conditions. to culture or not to culture? Early decay in the pole interior is difficult to detect visually. It can be helpful during the ini- tial sampling of poles in a system to culture the wood for decay fungi. Culturing involves remov- ing increment cores from the poles and placing the core on nutrient media (called agar) in petri dishes. Any fungi in the wood can then grow onto the media surface where they can be identified. Most decay fungi have distinctive characteristics that make them easy to distinguish; however, the process requires trained personnel, such as plant pathologists, who use microscopes to distinguish between decay and non-decay fungi. Although numerous cores can be cultured simultaneously, this process is not feasible for large-scale inspec- tion. It is most useful for determining the risk of decay in a line. Culturing can also indicate whether it is advisable to remedially treat poles that might not have visible decay. For example, inspection of Douglas-fir trans- mission poles installed 10 y earlier revealed only a few poles with internal rot; yet 30% of the poles contained decay fungi, warranting a program of internal treatment (Zabel et al. 1980). In western Oregon, for each Douglas-fir pole that contained rot, we found one or two poles that contained decay fungi. These decay fungi represent a future risk of damage that can be easily controlled by active remedial treatments. Decay can be internal (Figure 31), external, or a combination of both on the same pole (Figure 32). Appearances can be deceiving, however. Figure 31. Internal decay. 24 Poles that look weathered or checked are often rejected because of their appearance, but further inspection often reveals that the damage is shal- low. Checks have little or no effect on strength. A careful internal inspection by boring and probing is always warranted before arbitrarily rejecting Figure 33. Examples of steel trusses used to reinforce deteriorated poles. Figure 32. Both external (a) and internal decay (b). a pole. External decay is typically found in older southern pine poles below the groundline. This damage develops slowly, but eventually reduces the effective circumference and strength of the pole, forcing replacement or reinforcement. (Figure 33). ba 25 Pole inspectors in areas with low hazards of decay or termites should not be complacent. Warm, dry climates are conducive to pole checking. Both surface and internal decay of poles can occur below ground in dry climates in areas along rivers or in irrigated land. It is important to inspect poles in these areas to a depth of 3 ft below the groundline. Termites can attack wet wood any- where and they can be surprisingly abundant in desert areas. Metal wraps around butt-treated cedar as well as around older, full-length treated poles to protect against fire can encourage decay and termite attack of unprotected sapwood beneath the wrap. The same can apply to fire retardant coatings that do not breathe, such as polyurea coatings. Linemen sometimes cut longer poles to length during installation. This practice is costly, since it wastes wood, but it also exposes untreated wood at the top. Internal decay can begin in untreated pole tops within 1 y and reach the visible advanced stage called rot within 2 to 4 y under ideal conditions. Any cuts or borings made in the field should be treated. Pole tops should have a cap to protect against decay. The cap sheds water, creating conditions that are less suitable for fungal attack. inciPient decay Before it is visible, decay can produce dramatic reductions in wood strength (Wilcox 1978). Termed “incipient decay,” this damage can extend 4 ft or more above internal rotten areas in the groundline zone of Douglas-fir poles. Because incipient decay is invisible to the unaided eye, it cannot be reliably detected in the field. Microscopic examination and the culturing of wood remain the only ways to detect decay fungi at the earliest stages of attack; however, these are clearly not feasible for regular pole inspection. As a result, inspectors must be fairly conserva- tive when estimating remaining pole flexural properties. sound or rotten? Eventually, decaying wood becomes discolored or the physical properties of its fibrous structure change sufficiently to be recognized as rot. Sound wood has a fibrous structure and splinters when broken across the grain, whereas rotten wood is brash and breaks abruptly across the grain or crumbles into small particles. Decaying wood also may have an abnormal moldy or pungent odor. Wet, sound wood, which is much softer than dry sound wood, is frequently confused with rot on the surface of poles below the groundline. If in doubt, use the “pick test” (Figure 34). Lift a small sliver of wood with a pick or pocket knife and notice whether it splinters (sound) or breaks Figure 34. Use the “pick test” to detect rot. When a sliver of wood is lifted, abrupt failure (a) usually indicates rot, whereas a splintering failure (b) indicates sound wood. Photo courtesy of the U.S. Forest Products Laboratory, Madison, WI. b a 26 abruptly (rotten). Sound wood has a solid feel when scraped or probed. Surface rot feels soft and usually has minute fractures like charred wood. Remember—”sound” and “solid” wood cannot be reliably distinguished in the field! As discussed earlier, rot in cedar heartwood may occur as voids or as well-defined pockets of rotten wood that abruptly changes to the adjacent sound heartwood. In Douglas-fir and southern pine, the change from rotten to sound wood is much less distinct because incipient decay usually extends a considerable distance from the rot. Drilling and probing with a metal gauge with a hook may reveal natural voids that can be con- fused with decay, or wet wood may drill easily like decayed wood. Ring shake, a natural separation along a growth ring, usually creates a short radial void with wood on both sides that feels solid. Internal radial checks create long narrow voids that may or may not be coated with preservative. In cedar poles, decay pockets caused by fungi in living trees can be misleading. While ANSI speci- fications allow the presence of visible decay in the butts of cedar poles, they limit the distance from the butt that decay pockets can extend in cedar. This decay is allowed because the smaller pock- ets do not affect strength in this location and the fungi that caused the damage do not survive the seasoning and treatment process. Surface rot can be detected by scraping, probing with a dull tool, or visually examining the wood. Internal decay is detected by sounding, drilling, coring, measuring electrical resistance, or feeling within a drilled hole with a metal gauge with a hook as it is pulled across the growth rings. Poles with extensive rot are easy to detect, but detection becomes more difficult as the extent of the rot decreases. The sooner decay can be detected, the earlier remedial treatments can be applied to arrest the attack and retain the structural integrity and strength of poles. Field personnel should practice scraping, probing, lift- ing slivers, drilling, and coring both sound and decaying poles to develop and improve their abil- ity to detect rot. Use pole sections removed from service to verify predictions by boring, then cut- ting, the cross section to see the actual damage. Select the equipment that best meets your needs. Some sources of equipment are listed in the Equipment Appendix. insPection tools and techniques scraPing devices A shovel, scraper with triangular blade, wire brush, or dull probe can be used to detect below- ground rot on the pole surface and internally, in some cases. Cutting the blade of a shovel back several inches facilitates the removal of earth around poles and from the surface of poles. The pole is excavated to a depth of 18 to 24 inches; the scraper is then rubbed along the surface. If scraping exposes untreated or decayed wood, treat that area with a preservative paste or a groundline bandage. Be careful not to confuse softer, wet wood with decay. A scraper or wire brush can often be useful in identifying inter- nal decay, particularly when the decay occurs at or near the bottom of the excavation where a hammer is difficult to use effectively (see below). With a thin shell, an experienced inspector can pick-up an audible difference between solid wood and internal decay when the brush or scraper is rubbed along the surface. haMMer In the hands of an experienced inspector, a hammer is a simple, rapid, and effective tool for sounding poles to detect internal rot. Use a lightweight (16-24 oz) hammer that is comfort- able to swing and strong enough to withstand 27 repeated solid blows to the pole. Start hammer- ing as high as you can reach, and work down the pole. Experienced inspectors can tell much about a pole by the “feel” of the hammer during sound- ing. A sharp ring indicates sound wood, whereas a hollow sound or dull “thud” indicates rot. Because seasoning checks, internal checks, and knots can affect the sound, suspicious areas should be drilled or cored with an increment borer. A leather punch 1/4 inch in diameter can be welded to the back of the hammer to make a starter hole for an increment borer bit. drills Drilling into the wood at a steep angle produces a hole through which the pole interior can be fur- ther investigated. Some utilities use a 3/8-inch diameter bit for this purpose, but larger diameter bits are used where the hole will also be used to apply remedial treatments. A careful inspec- tor will listen to the drill as it enters the wood. Sudden speeding up of the drill indicates softer wood that merits further investigation. Drills used for this purpose can be gas or battery powered. Chips from sound wood tend to be bright and larger than those from decayed wood. In addi- tion, shavings from weak wood will be darker and more easily broken than those from sound wood. For southern pine poles, inspectors typically use 3/8-inch diameter bits; for Douglas-fir or western redcedar, inspectors often use 13/16-inch or 7/8- inch diameter bits. The latter bits create an ideal hole or “reservoir” for subsequent application of remedial treatments for arresting internal decay. increMent borer Increment borers were originally used to measure tree growth and consist of a hollow, fine-steel bit that is twisted into the pole along with an extrac- tor for removing the wood core from inside the tube (Figure 35). The cores can be examined for visible decay and measured for shell thickness and depth of preservative treatment. Starter holes created with a metal punch welded on one face of an inspection hammer can speed coring and reduce breakage of the expensive bits. Gas or battery-powered drills can also be used, but must be used carefully to avoid damaging the bits. To speed drilling, special chucks can be Figure 35. Cores extracted with an increment borer permit detection of rot, as well as measurement of shell thickness and depth of preservative penetration. Cores can be retained and cultured for fungi. fabricated to fit into a variable-speed power drill. This arrangement works well, but be careful not to damage the bit by drilling too fast. If boring resistance increases, back out and remove the core before boring deeper. Unusual or abrupt force can snap the bit or can pack wood in so tightly that the bit must be cleared of compacted wood by drilling with a smaller diameter bit. Rubbing increment borers with a moistened bar of soap or wax eases drilling. Increment corers work best when the cores are taken at a 90° angle to the pole in order to cut across growth rings. It is also important to regularly sharpen the bits with a fine hone, espe- cially when cores become twisted and difficult to remove. Cores taken with a dull borer may appear decayed or damaged. Some suppliers of incre- ment borers also sharpen bits. Keep the bits free of rust or pitch. To avoid corrosion, keep a small can of machine oil on hand to coat the outside of the bit during use and to coat the inside after use, especially during wet weather. A rifle cleaning kit is handy for cleaning increment borers. shell-thickness indicator An important part of the inspection process is determining how much residual shell remains in a pole along with the extent of any internal decay. The inspection hole, either drilled or from an increment borer, provides a convenient mea- surement location. The shell-depth indicator is a calibrated metal rod with a hook on the end 28 (Figure 36). The indicator is inserted into the hole and pulled back out so that the hook rides along the wood. The hook at the end should catch on the edge of the rot pocket. When pushing a tight- fitting shell-thickness indicator into a hole, you can feel the tip of the hook pass from one growth ring to another in solid wood, but not in rotten wood. Inscribe marks on the sides of the rod to indicate the shell thickness at different drilling angles, usually 45° and 90°. The rod will occa- sionally overestimate the residual shell, but it is a useful tool for identifying dangerous poles. Some inspectors automatically subtract 1/2 inch from the measurements to account for the decayed wood. The rods can be home-made or purchased from pole-inspection agencies. shigoMeter® The Shigometer® (Figure 37) was developed for detecting decay in living trees by measur- ing electrical resistance (Shigo et al. 1977). It should be used in wood with MC at or above 27%, which is typical of decaying wood at the ground- line of poles. A probe with two twisted, insulated wires with the insulation removed near the tip is inserted to various depths into a hole 3/32 inch in diameter. A marked change in electrical resis- tance as the probe goes deeper indicates rot or a defect. The device effectively detects rot, but it also can yield “bad” readings on apparently sound poles. For example, free water in the wood may affect resistance. As a precaution, drill or core all poles to determine the nature of the defect. The Shigometer® should be used by trained person- nel and calibrated frequently (Zabel et al. 1982). Moisture Meter Resistance-type meters can be used to detect wood with MC exceeding 20%, the safe limit to prevent decay (Figure 38). They are also useful for assessing post-treatment MC specifications. Long electrodes can measure moisture to a depth of about 2-1/2 inches. Because the high MC of decaying wood (usually greater than 30%) causes steeper-than-normal moisture gradients in poles decaying internally, the meter becomes a useful tool for determining the extent of decay in poles and other timbers. For example, meter read- ings above 20% and steep moisture gradients Figure 37. The Shigometer™ measures electrical resistance to detect rot in poles. Use an increment borer to determine the nature of the defect. Figure 36. A shell-thickness indicator detects rot in poles by “feeling” growth rings in sound, but not rotten, wood when inserted or removed from snug-fitting holes. Figure 38. A resistance-type meter can be useful for detecting MC levels that are high enough (over 20%) for decay. As a sliding hammer drives two electrodes into the wood, a ruler emerging from the top of the hammer measures their depth. Shanks of the electrodes are coated so moisture readings are made between the uninsulated points. 29 can indicate the height of decaying wood in Douglas-fir poles with rot below, but not above, the groundline. Similar readings in poles without rot should be suspect. Moisture readings below 20% indicate the absence of conditions for fungal growth to the depth of the electrodes. Check the batteries regularly, and calibrate the meter frequently. Make sure the coating on the shank of the electrodes is intact. When necessary, correct meter readings for ambient temperature and wood species. Moisture meters should be considered secondary tools for inspec- tion because they are limited in the zone they can inspect and are not able to detect decay; instead, they can only detect the conditions where it might occur. decay-detecting drills Although conventional drills create a large hole in the pole, decay-detecting drills use a small, 1/8-inch diameter bit to bore into the pole (Figure 39). As the bit enters the wood, the bit rotation is recorded (either on paper or electronically), providing a viewable graph of the pole’s internal condition. These graphs can be saved for record keeping purposes. Bits require fewer rotations to penetrate weaker, decayed wood than sound material. These devices were originally developed for detecting decay pockets in living trees, where the tree could later grow over the inspection hole. Poles cannot “grow over” the hole; there- fore, some caution must be exercised to ensure that the poles are flooded with a supplemental Sound wood Decayed wood Figure 40. Strong and weak acoustic signals showing sound and weak wood, respectively. Figure 39. The resistograph drill uses a very fine bit to detect voids or softer wood that may be decayed. preservative to avoid creating avenues of entry for decay fungi. These devices are especially useful where there may be concerns about drill- ing too many holes or where unsightly holes might be objectionable. They are also useful for above-ground inspection near attachments or on crossarms. acoustic insPection The desire for nondestructive inspection tech- niques that do not cause wood damage has stimulated the development of acoustic inspec- tion devices. In principle, a sound wave moving across a wood pole is affected by all character- istics of the material, including growth rings, moisture, checks, decay pockets, knots, and a myriad of other wood properties (Figure 40). These characteristics affect both the speed at which the wave moves across the pole (time-of- flight) and the shape of the wave that exits the wood (attenuation of the wave). Large voids, 30 Figure 42. X-ray of wood. Figure 41. Pole test with an acoustic inspection device. checks, ring shakes, or internal burst increase the time required for a sound wave to traverse a pole cross section. Early acoustic inspection devices used time- of-flight to detect voids, but the effectiveness of those devices was limited by the presence of natural defects that affected time-of-flight in a similar manner. Later devices used time-of-flight, but also recorded the changes in wave-form, or modulation of the sound wave as it passed through the pole, which provided more reliable estimates of pole condition (Figure 41). The devel- opers of acoustic devices then tested poles both sonically and in bending to failure and used sta- tistical techniques to relate sonic parameters to residual strength. Data from this population was then used to produce estimates of residual modu- lus of rupture of poles in service. These devices do not detect decay; instead, they use acoustic parameters to estimate residual strength based upon the relationship between modulus of elasticity and modulus of rupture. Thus, a strong pole with significant decay may produce a reading similar to a weaker pole with- out decay. In this case, the device might infer that no action was required on either pole; how- ever, the initially strong pole would continue to decay between inspections and could fail. There is considerable debate concerning the merits of the currently available systems. They are best used as supplemental tools to the con- ventional inspection methods and should never be the sole inspection method used (Wright and Smith 1992). One especially useful application is for re-inspection of poles that have been rejected by prior physical inspection. The acoustic device can be used to help assess pole properties to determine whether the pole can be restored or needs to be replaced. This process must take place in conjunction with a remedial treatment program in order to arrest any existing decay, otherwise pole condition can continue to decline. X-ray toMograPhy Like the bones in our bodies, wood varies widely in density, and those variations can be detected with x-rays (Figure 42). X-rays were used in the 1960s and early 1970s for in situ inspec- tion of wood poles, but the process was slow, the equipment was bulky, and interpretation of 31 Figure 43. Hyphae of a decay fungus in a wood section. the resulting x-rays was difficult. As a result, the technique was abandoned. The use of x-ray tomography, similar to that used in the medical field, has been explored for this purpose but the cost and speed make it largely impractical for field use. Continued improvements in computing power may someday make this technology feasible. Even with these improvements, however, considerable research will be needed to fully understand the result- ing variations that may occur in the field. For example, variations in moisture can affect x-ray attenuation, producing the image of a decay pocket. Methods are needed for rapidly separat- ing natural wood characteristics from defects that threaten a pole. This technique could provide a powerful new inspection tool when methods for segregating defects from natural wood character- istics are developed. ground Penetrating radar Ground penetrating radar has recently been commercialized for assessing the internal condi- tion of both poles and crossarms. The process produces three dimensional maps of internal con- dition (density) using a system mounted on either a truck or a helicopter. At present, the system does not appear to be practical for rapid inspec- tion of every structure, but it can be useful for detailed analysis of critical structures. In addition, the system does not detect decay, so it must be used in conjunction with some other inspection process. Mechanical Pole tester (MPt) The MPT essentially deflects the pole a short dis- tance at the groundline and then uses the resulting load/deflection data to calculate a modu- lus of elasticity (MOE) of the pole. This value is, in turn, used to estimate modulus of rupture (MOR). This device has been used in Australia for many years and is just beginning to see application in the United States. The advantages include the ability to directly test flexure instead of relying on acoustic tests to derive MOE; however, the device cannot distinguish between a strong, decaying pole and a non-decaying, but weaker pole. As a result, the device is best used in conjunction with other devices or methods that can detect decay. MicroscoPic decay detection Most inspection techniques detect decay in its intermediate to advanced stages, when the damage is clearly visible. Ideally, an inspector would detect damage at an earlier stage when treatment chemicals are more effective. At pres- ent, the most reliable technique for detecting the early stages of decay is microscopic examination of either wood fibers or thin sections cut from the wood (Figure 43). Microscopic analysis is tedious and time consuming, and is not suitable for routine evaluations. It is, however, useful for delineating the cause of failure in specific cases. The observer looks for bore holes, cell-wall thin- ning, and other evidence of fungal attack. One shortcoming of this technique is that it cannot determine whether the attack was actively occur- ring at the time of failure. Culturing wood from the same zone can help determine whether viable fungi remain in the wood. This is more of a research technique and would not be feasible for decay detection on a larger scale. infrared assessMent Infrared technologies are used in a variety of industries to measure minor changes in tempera- ture. Temperature differences can be useful in inspecting wood because the temperature of wet or decaying wood will change at different rates from that of sound wood. Infrared devices detect these differences and thus can be used to image or map decay pockets. These devices are not cur- rently used for pole inspection but have some potential applications. 32 shell thickness and depth of preservative treat- ment. Poles that sound “good” should be drilled or cored at the groundline or, better yet, 1 ft below the groundline, near or below the widest check. Generally, all poles in service for more than 15 y should be inspected by drilling. In some cases, depending upon pole species, original treatment and geographical location, poles should be bored earlier. • If the wood is solid, rate the pole as good. • If rot is present, drill or core the pole at additional points around the circumference and above or below the defect until there is no sign of decay. Measure shell thickness in each hole, depth of preservative treatment (if using an increment borer), and pole circumference. From minimum circumference tables such as those used by RUS 1730B-121 (1996), but modified for your system, determine if the pole should be replaced, rein- forced, left in service and remedially treated to stop or prevent the decay, or scheduled for re-inspection. Poles that sound suspicious should be drilled or cored in those areas and near the widest check at or below the groundline. • If the shell is inadequate (i.e., fails National Electric Safety Code minimum for bending strength), schedule the pole for reinforcement or replacement. • If the shell is adequate, remove cores at additional points; depending on shell thickness, schedule the pole for replace- ment, stubbing, supplemental treatment, or re-inspection. digging insPection To check for surface rot, dig around the pole to a depth of 18 inches in wet climates and deeper, if necessary, in dry climates. Some utili- ties initially limit digging to one side of the pole and only completely excavate if surface decay is found in the smaller zone. This reduces inspec- tion costs, but may miss some decay in the non-excavated zone. Brush the pole free of dirt Procedure for insPecting Poles froM the ground This general procedure for inspecting poles from the ground should be modified to meet the requirements of your pole system. condition of Pole above ground Note the general condition of the pole, unusual damage to the pole or attachments, and the size and location of seasoning checks. In general, the wider the checks, the deeper they penetrate and the more likely they are to expose untreated heartwood; however, some narrow checks can be very deep. Look for the following: • elliptical holes made by buprestid beetles • mounds of sawdust and the carpenter ants that make them • mud tubes in checks made by termites • woodpecker holes Examine cedar poles for surface rot and shell rot that are typical of non-treated sapwood above the treated butt. Surface rot below the groundline of pressure-treated Douglas-fir poles can occur with Cellon® or Dow® process poles. Inspect the top of the pole for evidence of splits, cracked insulators, and other defects. sounding Sound the pole from as high as you can reach to the groundline and around the circumfer- ence. Excavated poles should be sounded below ground. “Bad” poles usually are easy to detect and, as you gain experience, you will become more proficient in detecting isolated suspicious areas that should be cored or drilled. Sounding alone is a poor inspection procedure that locates only the worst poles. drilling or coring After sounding, drill holes downward into the pole at an angle of about 45° beginning at the groundline or slightly above in wetter areas and farther down the pole in drier climates. Determine 33 and examine its surface for rot. Probe suspicious areas for soft wood that may be indicative of decay. Scrape the surface with a dull tool, shovel, or chipper to remove all rotten wood. If in doubt, use the “pick test” to check for rot. To detect internal rot, drill or core the pole below the largest check. If rot is present, determine shell thickness and preservative pen- etration. Measure the pole circumference after the rot has been removed from the surface. Using the minimum circumference tables, determine if the pole should be scheduled for reinforcement, replacement, given a supplemental treatment, or scheduled for re-inspection. holes Made during insPection Unless the hole is to be used for the application of internal remedial treatment, some utilities treat all openings made during inspection with a preservative solution or paste (for example, 2% copper naphthenate as Cu) prior to plugging all holes with tight-fitting preservative-treated dowels or plastic plugs. Wear protective goggles when this is done, because preservative may squirt out of the hole when the dowel is driven. treating eXcavated Poles Preservatives may bleed, migrate, or leach from poles into the surrounding soil, and, in some cases, creosote or pentachlorophenol in heavy petroleum solutions may build up a protective barrier around the pole. Removal of this treated soil during excavation often is considered reason enough for applying an external supplemental treatment to poles with no evidence of surface decay. Many pole managers consider the added cost of such treatment as good insurance that the outer shell of the poles will be protected until the next inspection 8 or more years later. A policy of treating all excavated poles at the ground- line, especially those in lines of mixed-age poles, removes a difficult decision from the inspec- tor’s shoulders and can be a good habit. On the other hand, if the external shell of a pole is free of rot and still well protected by the original pre- servative, the additional cost of the groundline treatment may be an unnecessary maintenance expense. Experience, good records, and random follow-up inspections can be useful for develop- ing criteria for each component of an inspection. Since conditions for preservative users vary with climate, wood species, and chemical treatment, utilities should consider some analysis of residual preservative content in the surface of excavated poles before applying supplemental external preservatives. One utility performing such an analysis on Douglas-fir poles treated with penta in heavy oil found that residual chemical levels were far in excess of those needed and eliminated excavation and external treatment for these poles. treatMent of in-service Poles Once a pole has been found to be visibly decay- ing, the inspector must make one of three decisions based on the amount of sound wood remaining and the configuration of the pole. The poles can be accepted with remedial treatment, accepted with remedial treatment and reinforce- ment, or rejected. These decisions are often based upon prior experience within the system. To comply with NESC requirements, poles must be replaced or rehabilitated when they have 67% or less of the original required strength. In most cases, utilities require a minimum of 2 inches of remaining sound wood in the outer shell of poles with internal decay, although thickness require- ments can vary with pole load, configuration, or climatic conditions. These requirements reflect the fact that most of the bending strength of a pole lies in the outer shell (Figure 44). Figure 44. Theoretical strength vs. residual shell thickness of a pole. 10 2 43 100 90 80 70 60 50 40 30 20 10 Residual Shell (inches) Re s i d u a l S t r e n g t h ( % ) 34 redcedar should be aware that sapwood decay will eventually occur, and that damage will reduce the effective cross-sectional area and may prevent climbing. Thus, butt treatments should not be used in wetter climates. The lower cost of butt- treated poles should therefore be weighed against the costs of performing future maintenance from bucket trucks. beloWground Decay below the groundline is normally controlled by the application of external preservatives, either in thickened pastes or deposited on self- contained wraps. For many years, external preservatives included mixtures of various oil and water soluble preservatives. The water-soluble components were presumed to diffuse for rela- tively short distances (1/2 inch for Douglas-fir, 2 to 3 inches in southern pine) into the wood to control the existing fungal attack, whereas the oil-based components were presumed to stay near the wood surface, where they acted as bar- riers against renewed attack. Concerns about the safety of many components in older systems have resulted in a shift to formulations contain- ing copper naphthenate, sodium fluoride, or boron. Recent studies suggest that these systems perform similarly to older systems. More recent formulations also include copper, permethrin, bifenthrin, and tebuconazole. Wraps or bandages are typically applied at the groundline, then extended downward for 18-24 inches (Figure 45). Preservative pastes are Deciding on the fate of poles with external decay requires a different approach. The inspec- tor measures the residual circumference after all of the decayed wood has been removed and makes adjustments for any internal decay or exposed decay pockets, then consults a chart showing the amount of circumference permitted for a pole of that class. Poles that retain adequate shell thickness, percent remaining strength, or circumference are then remedially treated. There are strength calculating programs available that calculate the percent of remaining strength and/ or residual circumference, taking into account the orientation of defects relative to the line of lead. The inspector simply inputs in the field the mea- surements associated with the decay or defect conditions and the program outputs percent remaining strength and/or residual circumference. For a utility, the economic benefits of a main- tenance program, compared with no maintenance program at all, can be exceptional. The exten- sion of average pole service life by a maintenance program results in the deferral of capital replace- ment costs and reduced disposal costs. New York State Electric & Gas Corp., a mid-sized utility that has a wood pole plant with a pole replacement cost of $1.3 billion, estimated annual savings of $53 million resulting from pole maintenance in 1983 dollars. Regular inspection coupled with aggressive remedial treatment markedly extends pole service life. eXternal treatMents aboveground External decay above the ground can occur in western redcedar poles that were initially treated only in the butt zone. Sapwood above this zone decays and separates from the more durable heartwood. These separations create a hazard for personnel climbing the pole. Until recently, this damage was controlled by spraying the surface of the pole with a 2% solution of copper naph- thenate in diesel oil. Spraying was performed at 10-15 y intervals and was a highly effective method for protecting this wood. Concerns about the potential effects of chemicals that drifted from the poles during the spray operation, how- ever, have largely curtailed this practice. Utilities that continue to specify butt-treated western Figure 45. Applying groundline treatment. 35 identification of fumigants and water diffusible chemicals as internal treatments provided a new technology for controlling decay. Fumigants Fumigants are either liquid or solid at room tem- perature, but have high vapor pressures. As a result, fumigants rapidly become gases and are able to move throughout the wood. Four fumigants, metham sodium (32.7% sodium n-methyldithiocarbamate in water), chloropicrin (97% trichloro-nitromethane), methy- lisothiocyanate or MITC (97% active in aluminum vials), and dazomet (Tetrahydro-3,5-dimethyl- -2H- 1,3,5-thiodiazine-2-thione) are registered for wood use (Figure 46). All are restricted-use pesticides in the United States. Applicators must pass a state test on pesticide handling and safety before using these chemicals. Metham sodium is a caustic, yellowish liquid with a strong sulfur odor like rotten eggs. This fumigant must decompose into methyliso- thiocyanate to become active. Previous trials suggest that metham sodium provides protection to Douglas-fir poles for 7-10 y and to southern pine poles for 3-6 y. These differences appear to reflect the higher permeability of southern pine, which enhances chemical diffusion through the wood. Chloropicrin is among the most effective wood fumigants and has been detected in wood up to 20 y after application. This highly volatile, 100 80 60 40 20 0 5 10 15 20 ControlMetham sodiumVorlexChloropicrin Years in Test % C o r e s I n f e s t e d Figure 46. Ability of selected fumigant treatments to eliminate decay fungi in Douglas-fir poles. applied at the specified label thickness, then cov- ered with polyethylene backed paper; the soil is then backfilled against the barrier. Some external systems are also supplied in self-contained wraps that require no chemical application to the wood surface. These treatments are generally designed to protect the wood for about 10 y. internal treatMents internal void treatMents Poles that contain large voids caused by insects or fungal attack are often treated with internal void chemicals. These treatments are injected under low pressure into a hole drilled directly into the void, and are presumed to coat the surface of the void to prevent further expansion. They may also kill any insects in the galleries where the chemicals penetrate. Void treatments gener- ally consist of a water-based preservative, but they may also contain insecticides. Sodium fluo- ride, boron, and copper naphthenate have been used for internal void treatments. Although these chemicals will kill insects on direct contact, their ability to penetrate the wood is a more important component of their use. Boron and fluoride can diffuse with moisture. The value of internal void treatments in a regular maintenance program is the subject of some debate; utilities should carefully examine their use. These chemicals are most effective in wood poles that have well-defined rot pock- ets and an abrupt transition between sound and decayed wood. In addition, many voids are check associated and therefore have a connection to the surrounding soil. Pumping chemicals under pres- sure can permit them to escape from the pole into the surrounding soil. When considering the use of void treatments, utilities may want to set up treated and non-treated test poles to assess the chemicals’ ability to arrest expansion of voids, and to evaluate other effects of treatments. internal diffusible treatMents Until the late 1960s, internal remedial treatments were largely restricted to oil- or water-based chemicals. These chemicals were unable to move through the heartwood and were largely ineffective for controlling internal decay. The 36 difficult-to-handle chemical must be applied by applicators wearing respirators and there are strict requirements for signage on vehicles car- rying this chemical. As a result, its use is largely confined to poles that are away from inhabited areas. MITC is a solid at room temperature, but sub- limes directly to a gas. Pure MITC is caustic and causes skin burns, but this problem is overcome by placing the chemical into sealed aluminum vials prior to application (MITC-Fume). The entire ampule is added to the pole. Field trials indicate that this chemical is more effective than metham sodium, and is much safer and easier to apply. Dazomet is a caustic, crystalline powder that decomposes in the presence of water to produce MITC along with an array of other compounds. Although it initially produces less MITC than either metham sodium or solid MITC, it tends to produce protective levels in the wood for longer time peri- ods than either of these systems. The slow initial MITC production may be a concern when treat- ing poles with active decay. The initial breakdown rate can be accelerated by the addition of copper naphthenate at the time of application. Field trials are underway to determine the rate of MITC pro- duction in drier climates. Water-diffusible chemicals Although fumigants are highly effective, their volatility and toxicity have led some utilities to consider alternative treatment systems that are based on water-soluble fungicides, such as boron and fluoride. These chemicals are usually applied in a concentrated rod form and move through the wood with any moisture present to eliminate fungal infestations. Borate rods have been widely used in Europe and Australia, where the chemical is reported to move well through most wood species. In gen- eral, it takes 2-3 y to reach protective levels with boron rods; however, these levels remain effec- tive for up to 15 y in poles. Thus, the slow release rate is offset by the long protective period. The negative aspect of the slow release rate is the fact that active fungal decay can continue to occur until the boron levels reach the threshold for fungal protection. In North America, boron rods are produced by heating material to a molten state and then pour- ing this liquid into a mold. The cooled rods are glass-like and release boron as they are wetted. Two systems are available, a boron rod and a boron/copper rod. Both work equally well. Fluoride and fluoride/boron rods are more chalk like and less dense than boron or boron/ copper rods. As a result, they contain less active ingredient. Fluoride has been used for decades for fungal control and is used in Australia in a fluoride/boron rod. Fluoride tends to remain in the wood for longer periods and moves at least as well as boron. At present, the primary advantage of fluoride and boron over fumigants is applicator safety; the drawbacks include little ability to move upward from the point of application, a slower release rate, and a dependency on moisture for move- ment. The slower release rate can permit fungal infestations to cause more damage before they are finally controlled. Moisture levels vary widely in poles, both positionally and seasonally. Rods placed in drier zones of the wood will be unable to diffuse to the wetter sites. Once they do diffuse into place, however, the field data indicate that they remain at effective levels for up to 15 y after installation. drilling treatMent holes Drill a reasonable number of holes to obtain good distribution of the fumigant or the water-diffus- ible chemical in rod form, but stagger the holes so they do not weaken the pole. Table 2 speci- fies the number of holes of different diameters and lengths needed to place various amounts of liquid fumigant in poles. Note that the hole length allows for the insertion of a 3-inch treated plug. Shorter plastic plugs may allow for the use of shorter holes. One utility recommends that the number of holes meets the limits of knot sizes in Table 2 of American National Standard 05.1 (ANSI 2008). Because water-soluble rods vary in diameter and length, consult the product label to determine the number of rods needed to treat a particular diameter pole. Plug treatment holes as described above. 37 Figure 47. Fumigant application includes drilling holes at a steep angle (a), adding chemical (b), then plugging the holes. In (b), copper accelerant is being added to a dazomet treatment. Note the plastic plugs, which are used to plug inspection and treatment holes. Starting at the groundline, drill a hole directly toward the center of the pole at a steep down- ward angle that will not go through the pole or through seasoning checks where much of the fumigant could be lost (Figure 47). If the hole intersects a check, plug that hole and drill another. Space the remaining holes equally around the pole upward in a spiral pattern with a vertical distance of 6-12 inches between holes. If more than two treating holes intersect an internal void or rot pocket, re-drill the holes farther up the pole into relatively solid wood where the fumigant will gradually volatilize and move through the wood. Much of the fumigant placed in rot pockets will be lost if the void connects to a seasoning check. Where a rot pocket is above the ground- line, drill holes in solid wood below and above the pocket. aPPlying internal treatMents Pour powdered dazomet or liquid fumigants from polyethylene bottles directly into holes drilled into the pole. Care should be taken to avoid overfilling the holes. MITC-Fume tubes are uncapped and inserted into the treatment hole. Water-diffusible chemicals in concentrated rod form should be inserted into the treatment holes. Drive tight-fitting, preservative-treated wooden dowels or plastic plugs into the holes to minimize chemical loss. Threaded plastic plugs are driven in with a hammer, but can be removed for reapplication of fumigant. Some users have b a Table 2. Number of holes required in poles of different sizes to hold varying amounts of liquid fumigant. Hole dimensions in inches Pints of fumigant Pole circumference* in inches Diameter Total length per inch of hole < 32 (3/4 pint)32–45 (1 pint)> 45 (2 pints) 5/8 15 0.010 6 –– 18 0.010 5 –– 3/4 15 0.015 4 6 – 18 0.015 –5 – 21 0.015 4 –– 24 0.015 –3 6 7/8 21 0.024 –3 5 24 0.024 ––4 * Total dosages per pole are in parentheses. 38 noted that these plugs deform to an oval shape in some poles, but the effect of the deformation on treatment is not known. Wood dowels generally must be drilled out whenever poles are retreated. This process can enlarge the treatment hole, making it difficult to seal tightly. The use of an oversized plug can overcome this problem. retreatMent The timing of retreatment schedules varies with the wood species and climate. Poles under severe conditions may be inspected as often as every 5 y. Those in drier climates may be inspected at 15-y intervals; most utilities, however, use a 10-y retreatment cycle. Metham sodium, chloropicrin, MITC and dazomet all appear to be effective for 10 y in Douglas-fir, and limited studies suggest that the results should be similar in western red- cedar. Retreatment cycles with fumigants will tend to be shorter in southern pine because the chemicals dissipate and wood degrading organ- isms invade the wood more rapidly. Most utilities add more chemical to the origi- nal treatment holes. Questions remain about what to do when retreating with dazomet, since some residual chemical is often present in the holes. Some utilities now add small amounts of addi- tional dazomet plus more copper naphthenate accelerant. Retreatment cycles for boron and fluoride remain poorly defined because the rate of initial movement is limited. Utilities using these chemicals should consider limited, mid-cycle inspections to confirm that the chemicals are per- forming as expected. Unless there is a compelling reason to do otherwise, re-inspection should use the original inspection holes for assessing decay and chemical application. This minimizes the potential effects of repeated drilling on pole properties. aboveground decay control Although decay at the groundline remains the most prevalent in-service wood problem, decay above ground can also cause severe problems wherever adequate moisture from wind-driven rain occurs. This decay can either be associated with deep checks that form after the pole has been placed in service or from damage to the treated shell during field drilling. Controlling aboveground decay can be both expensive and challenging. Metham sodium, MITC and dazomet are registered for aboveground use and should effectively control decay. Diffusible rods or pastes can also be used for this applica- tion, but both require moisture for movement. Therefore, the treatment holes must be close enough to the decay zone to ensure that moisture is present for diffusion. Field-damaged wood on the surface can be remedially treated with an oil-based preserva- tive, such as copper naphthenate, applied as soon as possible after the damage occurs. This treat- ment does not penetrate far into the wood, but provides a surface barrier against fungal attack. Studies also show that applying a concentrated borate paste to the exposed wood in a protected site, such as a bolt hole, can provide excellent protection against fungal attack. record keePing and data ManageMent No inspection and maintenance program is com- plete without a thorough record-keeping system. At their simplest, accurate records can help iden- tify dangerous poles so they can be removed or repaired as soon as possible. Good records can also be used to track the performance of par- ticular treatments, wood species, suppliers, or specifications. In larger systems, they can be used to monitor performance under different environmental conditions. All of these factors can be used to more carefully allocate scarce main- tenance dollars to those poles most in need of attention. A good initial record should include pole sup- plier, wood species, chemical treatment, retention, height/class, and year installed (Figure 48). Later entries should include the results of inspections, including preservative penetration, presence of internal decay (with shell thickness), presence of external decay (with loss of circumference), pres- ence of above ground defects such as woodpecker holes and split or decayed tops and the types of internal and external treatments applied for each year. This information can then be used to iden- tify poles that are in need of immediate remedial attention. 39 5 6 Mi l e St r Ht P Mi l e Co m m e n t E O St r P Mi l e St r P W o r k o r d e r C a u s e I n s Mo Da y Da t e Yr Xar m / Po l e q t r s Yr in s Po l e q t r s H r t r o t Yr in s Yr in s Yr in s Da t e In s p e c t o r Li n e n a m e 7 8 9 1 0 5 6 7 8 5 6 7 8 9 1 0 Mi l e St r P 5 De s i g n T y p e L e n g t h Yr in s t Yr rp l d 79 8 0 79 8 0 Yr in s p K I O 79 8 0 A O 1 2 3 4 Ad n o Va C M Pt Tr e a t m e n t s X - a r m 11 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 5 0 5 1 60 6 1 54 5 5 5 6 5 7 5 8 5 9 6 7 8 9 1 0 11 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4 7 9 8 0 A 9 A 9 A 9 A 9 251 1 2 3 4 2 3 4 Dp t h Dia Shell rot Cracks Insect B/A Fire Cond Method Other VAPAM Aboveground Pole top Yrrpld 26 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 7 0 X- A R M TR E A T M E N T S CO M M E N T S ( C O M P U T E R P R O C E S S A B L E ) PO L E R E P L A C E M E N T : O L D P O L E PO L E R E P L A C E M E N T : N E W P O L E MIS C . BU T T I N S P . CL I M B A.G . H . R . I N S P . ID E N T . PE WO O D P O L E I N S P E C T I O N A N D M A I N T E N A N C E R E P O R T Fi g u r e 4 8 . E x a m p l e o f f i e l d i n s p e c t i o n f o r m . 40 A good database can be a powerful tool for tracking the performance of various treatments and specifications, for prioritizing maintenance, and for identifying other system issues. For example, Bonneville Power Administration work- ers carefully followed the performance of the Douglas-fir poles in their system before and after they implemented through-boring of new poles and fumigant treatments of existing poles. In both cases, the results were dramatic—pole fail- ures declined to levels that approached those found with western redcedar and fully justified the use of both through-boring before treatment and maintenance after treatment. Record keeping used to be a labor intensive process, but the development of handheld data loggers eliminates the need for paper and permits the field inspector to enter all pertinent inspec- tion data directly. These systems can store data for later transfer directly to a personal computer or can even be transferred directly from the field. The risk of error can be further reduced through the use of bar codes on poles or GPS coordinates. These systems can be integrated so that a line crew can access data on how to best get to a structure and prior pole treatments, as well as prepare work orders for items identified in the inspection. Whatever system is employed, all software and hardware should be thoroughly compatible and should be usable without exten- sive training. Databases that require extensive training to access will be under-utilized. Examples of several handheld data entry systems are listed in the Equipment Appendix. 41 ANSI. 1992. American National Standard for Wood Poles - specifications and dimensions, 05.1-1992. American National Standards Institute, New York.Arsenault, R.D. 1973. Factors influencing the effectiveness of preservative systems. P. 121-278 in Wood Deterioration and its Prevention by Preservative Treatments. Volume II. D.D. Nicholas, ed. Syracuse University Press, Syracuse, New York. AWPA. 2011. Book of Standards, America Wood Protection Association, Birmingham, Alabama.Graham, R.D., D.J. Miller, and R.H. Kunesh. 1969. Pressure treatment and strength of deeply perforated Pacific Coast Douglas-fir poles. Proceedings, American Wood-Preservers’ Association 62:155-158.James, W.L. 1976. Effects of wood preservatives on electric moisture-meter readings. USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin. Research Note FPL-0106.RUS (Rural Utilities Service). 1996. Pole Inspection and Maintenance. USDA Bulletin 1730B-121. US Department of Agriculture, Washington, DC.Salamon, M. 1971. Portable electric moisture meters for quality control. Western Forest Products Laboratory, Department of the Environment, Vancouver, B.C. Information Report VP-X-80. 36 p.Scheffer, T.C. 1971. A climate index for estimating potential for decay in wood structures above ground. Forest Products Journal 21(10):25-31.Shigo, A.L., W.C. Shortle, and J. Ochrymowych. 1977. Detection of active decay at groundline in utility poles. USDA Forest Service, Northeastern Forest Experiment Station, Upper Darby, Pennsylvania General Technical Report NE-35. 26 p.Wilcox, W.W. 1978. Review of literature on effects of early stages of decay on wood strength. Wood and Fiber 9:252-257.Wright, M.E. and W.B. Smith. 1995. Performance of utility pole strength prediction techniques. Proceedings, America Wood Preservers’ Association 91:34-54. Zabel, R.A., F.F. Lombard, and A.M. Kenderes. 1980. Fungi associated with decay in treated Douglas-fir transmission poles in the northeastern United States. Forest Products Journal 30(4):51-56.Zabel, R.A., C.J.K. Wang, and F.C. Terracina. 1982. The fungal associates, detection, and fumigant control of decay in treated southern pine poles. Electrical Power Research Institute, Palo Alto, California. EPRI EL-2768, Project 1471-1, Final Report. related literature Arsenault, R.D., J. Ochrymowych, and J.N. Kressbach. 1984. Solvent and solution proper-ties affecting pentachlorophenol performance as a wood preservative. Proceedings, American Wood Preservers’ Association 80:140-170. ASTM. 1993. Standard D1036-83. Standard meth-ods of static tests of wood poles. Volume 04.09. American Society for Testing and Materials, Philadelphia, Pennsylvania.ASTM. 1993. Annual book of ASTM standards. Volume 04.09 - Wood. American Society for Testing and Materials, Philadelphia, Pennsylvania.ASTM. 1989. Standard G53-89. Annual book of standards. American Society for Testing and Materials, Philadelphia, Pennsylvania.Baker, W.L. 1972. Eastern Forest Insects. USDA Forest Service, Washington, D.C. Miscellaneous Publication 1175. 642 p.Barbera, P., and M.R. Wagner. 1988. Introduction to Forest and Shade Tree Insects. Academic Press, San Diego, California. 639 p.Barnes, H.M. 1985. Trends in the wood-treating industry: state-of-the-art report. Forest Products Journal 35(1):13-22. Barton, G.M. 1973. Chemical color tests for Canadian woods. Western Forest Products Laboratory, Department of the Environment, Vancouver, B.C. 5 p.Bodig, J., and J.R. Goodman. 1986. Wood pole prop- erties. Volume 3: Western red cedar data and size effect. Electric Power Research Institute, Palo Alto, California. EPRI EL 4109.Brown, D.L., and D.F. Davidson. 1961. Field tests of relative strength of incised poles. Unpublished report. Portland General Electric Co., Portland, Oregon.Furniss, R.L., and V.M. Carolin. 1977. Western Forest Insects. USDA Forest Service, Washington, D.C. Miscellaneous Publication 1339. 654 p. Gjovik, L.R., and R.H. Baechler. 1977. Selection, production, procurement and use of preser-vative treated wood; supplementing Federal Specification TT-W-571. USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin. General Technical Report FPL-15. 37 p.Goodell, B.S., and R.D. Graham. 1983. A survey of methods used to detect and control fungal decay of wood poles in service. International Journal of Wood Preservation 3(2):61-63. Graham, R.D. 1973. Preventing and stopping inter-nal decay of Douglas-fir poles. Holzforschung 27:168-173.Graham, R.D. 1983. Improving the perfor-mance of wood poles. Proceedings, American 42 Wood-Preservers’ Association 79:222-228. Graham, R.D., and M.E. Corden. 1977. Controlling biological deterioration of wood with volatile chemicals. Electric Power Research Institute, Palo Alto, California. EPRI EL-366, Project 212-1, Interior Report 1. 61 p. Graham, R.D., and M.E. Corden. 1980. Controlling biological deterioration of wood with volatile chemicals. Electric Power Research Institute, Palo Alto, California. EPRI EL-1480, Project 212-1, Final Report. var. p. Graham, R.D., and R.J. Womack. 1972. Kiln and Boulton-drying Douglas-fir pole sections at 220° to 290°F. Forest Products Journal 22(10):50-55.Grassel, E. 1969. Bonneville Power Administration Mechanical Laboratory report on bending tests of through-bored poles. Unpublished report. Bonneville Power Administration, Vancouver, Washington.Haygreen, J.G., and J.L. Bowyer. 1989. Forest Products and Wood Science. Second edition. Iowa State University Press, Ames, Iowa. 500 p. Helsing, G., and R.D. Graham. 1976. Saw kerfs reduce checking and prevent internal decay in pressure-treated Douglas-fir poles. Holzforschung 30:184-186. Helsing, G.G., J.J. Morrell, and R.D. Graham. 1984. Evaluations of fumigants for control of internal decay in pressure-treated Douglas-fir poles and piles. Holzforschung 38:277-280.Inwards, R.D., and R.D. Graham. 1980. Comparing methods for inspecting Douglas-fir poles in ser- vice. Proceedings, American Wood-Preservers’ Association 76:283-286.James, W.L. 1975. Electric moisture meters for wood. USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin. General Technical Report FPLGTR-6. 27 p.Lassen, L.E., and E.A. Okkonen. 1969. Sapwood thickness of Douglas-fir and five other west-ern softwoods. USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin. Research Paper 124. 16 p.MacLean, J.D. 1946. Temperatures obtained in tim-bers when the surface temperature is changed after various periods of heating. Proceedings, American Wood-Preservers’ Association 42:87-139.Merz, G.K. 1959. Merz method for heartwood treat-ment of ground line area of poles. Unpublished report. Portland General Electric Co., Portland, Oregon. Meyer, R.W., R.A. Zabel, C.J.K. Wang, and F.C. Terracina. 1988. Wood pole decay character-ization: Volume 2. Soft rot characteristics and identification manual for the decay fungi in utility poles in New York. Empire State Electric Energy Research Corp., New York, Research Report EP84-5. Miller, D.J., and R.D. Graham. 1963. Treatability of Douglas-fir from the western United States. Proceedings, American Wood-Preservers’ Association 59:218-222. Morrell, J.J. 1989. The fumigants used for controlling decay of wood: a review of their efficacy and safety. International Research Group on Wood Preservation, Stockholm Sweden. IRG/WP/3525.Morrell, J.J., and M.E. Corden. 1986. Controlling wood deterioration with fumigants: a review. Forest Products Journal 36(10):26-34.Morrell, J.J., P.G. Forsyth, and M.A. Newbill. 1994. Distribution of biocides in Douglas-fir poles 42 months after application of groundline pre- servative systems. Forest Products Journal 44(6):24-26.Morrell, J.J., M.A. Newbill, and C.M. Sexton. 1992. Remedial treatment of Douglas-fir and southern pine poles with methylisothiocyanate. Forest Products Journal 42(10):47-54. Morrell, J.J., C.M. Sexton, and A.F. Preston. 1990. Effect of wood moisture content on diffusion of boron from fused borate rods. Forest Products Journal 40(4):37-40. ANSI. 1992. National electrical safety code ANSI C-2 1990, Section 012-General Rules, Section 26-Strength Requirements. American National Standards Institute, New York.Newbill, M.A., J.J. Morrell, and K.L. Levien. 1988. Internal temperature in Douglas-fir poles during treatment with ammoniacal copper arsenate or pentachlorophenol. Proceedings, American Wood-Preservers’ Association 84:48-54.Panek, E. 1963. Pretreatments for the protection of southern yellow pine poles during air-season- ing. Proceedings, American Wood-Preservers’ Association 59:189-202.Parshin, A.J., and C. de Zeeuw. 1980. Textbook of Wood Technology. Volume I. McGraw-Hill, Inc., New York. Przybylowicz, P.R., B.R. Kropp, M.E. Corden, and R.D. Graham. 1987. Colonization of Douglas-fir by decay fungi during air-seasoning. Forest Products Journal 37(4):17-23. REA. 1974. Pole inspection and maintenance. USDA, Rural Electrification Administration, Washington, D.C. Bulletin 161-164.Richardson, B.A. 1993. Wood Preservation. Second edition. E. and F.N. Spon, London. 226 p. Ruddick, J.N.R. 1981. The effect of kerfing on check formation in treated white spruce (Picea glauca) poles. International Research Group on Wood Preservation, Stockholm, Sweden. IRG/WP/3167.Sahle-Demessie, E., K.L. Levien, J.J. Morrell, and M.A. Newbill. 1992. Modeling internal 43 Rockville, Maryland. 365 p. Wood, L.W., E.C.O. Erickson, and A.W. Dohr. 1960. Strength and related properties of wood poles. American Society for Testing and Materials, Philadelphia, Pennsylvania. ASTM Wood Pole Research Program Final Report. Wood, L.W., E.C.O. Erickson, and A.W. Dohr. 1960. Strength and related properties of wood poles. American Society for Testing and Materials, Philadelphia, Pennsylvania. Special Technical Publication 295. Wood, L.W., and L.J. Markwardt. 1965. Derivation of fiber stresses from strength values of wood poles. USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin. Research Paper FPL 39. 7 p. Zabel, R.A., and J.J. Morrell. 1992. Wood Microbiology. Academic Press, San Diego, California. 476 p. temperature changes of timber poles during ACA treatment. Wood Science and Technology 26:227-240.Scheffer, T.C., and J.D. Lew. 1976. Bioassay of residual preservative protection in wood. Forest Products Journal 26(7):45-50. Trumble, W., and E. Messina. 1985. Effects of the addition of polyethylene glycol to the CCA-C preservative treatment. International Research Group on Wood Preservation, Stockholm, Sweden. IRG/WP/3337. Wang, C.J.K., F.C. Terracina, and R.A. Zabel. 1988. Fumigant effectiveness in creosote and penta treated southern pine poles. Electrical Power Research Institute, Palo Alto, California. EPRI EL-2768, Project 1471-2, Final Report (pending). Wang, C.J.K., and R.A. Zabel. 1990. Identification Manual for Fungi from Utility Poles in the eastern United States. American Type Culture Collection, 44 EDM International 4001 Automation WayFort Collins, CO 80525(Pole Test)www.edminternational.com MetriguardP.O. Box 399Pullman, WA 99163www.metriguard.com PoleScanPO Box 342 Orewa, AucklandNew Zealandwww.polescan.com b. drills (resistograPh) IML, Inc1275 Shiloh road, Suite 2780Kennesaw, GA 30144 800-815-2389www. Imlusa.com c. Moisture Meter Delmhorst Instrument Co.51 Indian Lane EastTowaco, NJ 07082www.delmhorst.com Wagner Electronic Products326 Pine Grove RoadRogue River, OR 97537www.wagnermeters.com Lignomat USA Ltd.P.O. Box 30145Portland, OR 97230www.lignomatusa.com d. insPectors Osmose Utilities Services, Inc.215 Greencastle Road Tyrone, GA 30290www.osmoseutilities.com National Wood TreatingP.O. Box 1946Corvallis, OR 97330 Davey Tree Co. P.O. Box 351 Livermore, CA 94551 www.davey.com McCutchan InspectionPO Box 397Banks, OR 97106 Intec Services, Inc. 4001 Automation Way Fort Collins, CO 80255 Ph 970-482-6550 www.intecservicesinc.com Independent Inspection Co.P.O. Box 1776Havre, MT 59501http://www.iic-us.com/ Utility Pole Technologies 708 Blair Mill Rd. Willow Grove, PA 19090 www.utiliconltd.com/utiliconpolemaintenance.htm Estrada Consultants LLCPO Box 1239 Redmond, OR 97756 aestrada@bendcable.com Southeast Woodland Services431 Caines Landing Road Conway, SC 29526 www.southeastwoodland.com e. increMent borers The Ben Meadows Co.3589 Broad StreetAtlanta, GA 30341www.benmeadows.com Forestry Suppliers, Inc. P.O. Box 8397 Jackson, MS 39284-8397 www.forestry-suppliers.com f. reMedial treatMents 1. Wraps/Bandages ISK Biocides, Inc. 416 East Brooks Road Memphis, TN 38109 www.woodguard.com 45 Osmose Utilities Services, Inc. 215 Greencastle Road Tyrone, GA 30290www.osmoseutilities.com Copper Care Wood Preservatives, Inc. P.O. Box 707 Columbus, NE 68602-0707www.coppercarewoodpreservatives.com Genics Inc. 561 Acheson Rd., 53016 Hwy 60 Acheson, AB T7X 5A7 CANADAwww.genicsinc.com Poles, Inc. 336 Clarksley Road Manitou Springs, CO 80829www.poles.com Preschem Ltd 147-149 Herald Street Cheltenham, Victoria 3192Australia www.preschem.com 2. Internal Treatments a. Fumigants Osmose Utilities Services, Inc. 215 Greencastle Road Tyrone, GA 30290 www.osmoseutilities.com(Metham sodium, chloropicrin, MITC-Fume) ISK Biocides, Inc. 416 East Brooks Road Memphis, TN 38109 www.woodguard.com (Metham sodium) Great Lakes Chemical Co.P.O. Box 2200 West Lafayette, IN 47906 (Chloropicrin) Copper Care Wood Preservatives, Inc.P.O. Box 707 Columbus, NE 68602-0707 www.coppercarewoodpreservatives.com(dazomet) Poles, Inc. 336 Clarksley Road Manitou Springs, CO 80829www.poles.com(metham sodium, dazomet) b. Diffusible Rods Genics, Inc.561 Acheson Rd., 53016 Hwy 60 Acheson, AB T7X 5A7 CANADA www.genicsinc.com(copper boron rods) Intec Services, Inc. 4001 Automation Way Fort Collins, CO 80525Phone 970-482-6550www.intecservicesinc.com(boron rods) Poles, Inc.336 Clarksley RoadManitou Springs, CO 80829www.poles.com (boron rods) Wood Care SystemsPO Box 2160Kirkland, WA 98083 www.ewoodcare.com (boron rods) Osmose Utilities Services, Inc.215 Greencastle Road Tyrone, GA 30290 www.osmoseutilities.com(sodium fluoride rods) g. bolt hole and surface Preservative treatMents Copper Care Wood Preservatives, Inc.P.O. Box 707 Columbus, NE 68602-0707 www.coppercarewoodpreservatives.com Poles, Inc.336 Clarksley Road Manitou Springs, CO 80829 www.poles.com Nisus Corporation100 Nisus Drive Rockford, TN 37853 www.nisuscorp.com Osmose Utilities Services, Inc. 215 Greencastle Road Tyrone, GA 30290www.osmoseutilities.com 46 Osmose Utilities Services, Inc.215 Greencastle Road Tyrone, GA 30290www.osmose utilities.com (plastic and wood plugs) Materials Procurement L.L.C. 7885 Guemes Island Road. Suite 40. Anacortes. WA. 98221 www.replugs.com (plastic plugs) Morgan Lumber Co.625 West Indian Creek Road Collinwood, TN 38450 (wood plugs) Poles, Inc.336 Clarksley Road Manitou Springs, CO 80829 www.poles.com(plastic and wood plugs) i. handheld data loggers and data ManageMent EDM International2301 Research Blvd, #110 Fort Collins, CO 80526-1825 (Husky FS2/Micropalm data logger) Corvallis Microtechnology, Inc.413 SW Jefferson Avenue Corvallis, OR 97331 SPIDA Software560 Officecenter PlaceGahanna, OH 43230 www.spidasoftware.com VarassetAccent Business Services Inc. 7710 Northeast Greenwood Drive, Suite 170 Vancouver, WA 98662 www.varasset .com J. drills Forestry Suppliers, Inc. P.O. Box 8397Jackson, MS 39284-8397www.forestry-suppliers.com The Ben Meadows Co. 3589 Broad Street Atlanta, GA 30341www.benmeadows.com k. other devices MPTDeuar Pty Ltd92 Hawthorn RoadMorayfield, Queensland Australia 4056 www.deuar.com 1. Pole Setting Foams Chemque 6101 Guion Road, Indianapolis, IN 46254www.chemque.com GRA Services 5000 East 2nd Street Edmond, OK 73034-7545www.graservices.com Intec Services, Inc. 4001 Automation WayFt. Collins, CO 80525www.intecservicesinc.com/ Rainbow Technology Corporation 261 Cahaba Valley Pkwy Pelham, AL 35124www.rainbowtech.net 2. Pole Reinforcements GRA Services5000 East 2nd Street Edmond, OK 73034-7545 www.graservices.com (Fiberglass and steel reinforcements) Laminated Wood SystemsPO Box 386 Seward, NE 68434 www.lwsinc.com(Phase riser, steel reinforcements) Osmose Utilities Services, Inc. 215 Greencastle Road Tyrone, GA 30290www.osmoseutilities.com(steel reinforcements and ET Truss ) BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION CASE NO. IPC-E-22-27 IDAHO POWER COMPANY REQUEST NO. 28 ATTACHMENT NO. 1 CONFIDENTIAL BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION CASE NO. IPC-E-22-27 IDAHO POWER COMPANY REQUEST NO. 29 ATTACHMENT NO. 1 SEE ATTACHED SPREADSHEET  BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION CASE NO. IPC-E-22-27 IDAHO POWER COMPANY REQUEST NO. 30 ATTACHMENT NO. 1 SEE ATTACHED SPREADSHEET  BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION CASE NO. IPC-E-22-27 IDAHO POWER COMPANY REQUEST NO. 30 ATTACHMENT NO. 2 Greg Miller Marsh USA Inc. 1301 Fifth Avenue Suite 1900 Seattle, WA 98101 +1 206 214 3073 greg.j.miller@marsh.com www.marsh.com August 10th, 2021 Jeff Pleimann Insurance & Risk Administrator Idaho Power 1221 West Idaho St. Boise, ID 83702 Subject: Excess Liability Insurance Challenges Dear Jeff, This letter describes challenges Idacorp is facing in buying Excess Liability Insurance Limits. In summary, there is reduced appetite amongst liability underwriters to offer coverage to all electric utilities in wildfire-prone regions of the US, including Idacorp, due to the perceived risk; in addition, the challenge is compounded by the fact that there has been a significant reduction in the supply of liability insurance available in the market in general. Liability insurance covers claims of property damage and bodily injury to third parties for which the policyholder is legally liable. In the event a wildfire is caused by electric distribution equipment, the utility may be held liable for ensuing losses. California utilities have been held liable for several catastrophic wildfires over the past several years, resulting in billions of dollars of losses to utilities and their insurers. As catastrophic wildfires have become more common over the past few years in several western states outside of California, insurers have become increasingly concerned about such losses. Concerns about climate change, in addition to increasing development in wildfire-prone areas, suggest this trend will continue for the foreseeable future. As a result, insurers’ appetite to write coverage for such risks at reasonable pricing has greatly reduced. This perception has coincided with a general “hardening” of the broader commercial liability insurance market, meaning all buyers of commercial liability insurance are experiencing a reduction in capacity (capital available to write insurance) and significant price increases. Commercial liability insurers are experiencing rapidly increasing loss costs due to several factors including runaway jury verdicts, at the same time investment returns have reduced due to the prolonged low interest environment. As a result, capital providers in the insurance industry have pulled back. This means underwriters are being more selective about the types of risks they will write, resulting in less capacity available for higher risk buyers such as electric utilities in the western US. For this year, Idacorp was able to secure substantial capacity from the two utility industry mutual insurers. As mutuals, these insurers are obligated to provide coverage as they were created and continue to exist to serve the needs of the electric utilities that own them. The mutuals are providing $135m, except this is reduced to $110m in Oregon and Nevada. General concerns in these two states resulted in the mutuals providing less capacity than in Idaho, despite the fact that Idacorp’s exposures in these states are relatively small compared to Idaho. For additional capacity, Idacorp is reliant on the commercial insurers that make up the rest of the global market. We were able to fill the 25m gap in Oregon and Nevada using commercial insurers. However, after canvasing the global market, Idacorp’s brokers have found very little appetite to provide additional capacity except at pricing this is unreasonable. Therefore, Idacorp is exploring alternative methods for financing this risk, including the use of a captive. I trust this is helps communicate to others the situation. Please let me know if you have questions or would like additional information. Sincerely, Greg Miller Managing Director BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION CASE NO. IPC-E-22-27 IDAHO POWER COMPANY REQUEST NO. 31 ATTACHMENT NO. 1 SEE ATTACHED SPREADSHEET