HomeMy WebLinkAbout20090121Application.pdf~ RECEiVED
~~t! .:91:~~~W~:!~: ~:,
Syringa Networks LLC, 3795 S Development Ave, Suite 100, Boise, 1083705 Phone: (208) 229-6100 Fax: (208) 229'Tid..T itt) ...OMwi ì~Si\.I"
January 19, 2009
Grace Seaman
Idaho Public Utilities Commission
472 W. Washington
P.O. Box 83720
Boise,ID 83720-0074 52 e¡ -T- 0'1-0 (
Dear Grace,
RE: Broadband Investment Tax Credit - Syringa Networks, LLC for 2008
I have attached our filing for the Broadband Investment Tax Credit for 2008. We
invested a total of $1,978,601 for the year ended December 31, 2008. I have attached
the detailed report of our investments along with relevant footnotes for your purview.
These assets were operational in 2008.
Please let me know if you have any questions relating to the information that I have
submitted.
'DAH~ ""-,,..,. ',-,I. l ~ .. l "J ;. ~ f ~,i f 1 l ~.v . v_h_.".
. '''ILlT,i-C' C,"~,.!¡Hl~C:!rH,iU I -- ~::\: .t,..li11i'tiI0v; J'¡\3795 S. Development Avenue, Suite #100
Boise, ID 83705
..SJ?a
n...CE:¡\Ii:n
r\ i: :.. t,' ¡,.. U
20D9 JAN 2 i AM 8: 07
BEFORE THE IDAHO PUBLIC UTLITIES COMMISSION
IN THE MATIR OF THE APPUCATION
OF SYRGA NElWORK, LLC., FOR
BROADBAN INSTMENT TAX CREDIT
CERTIFICATION
Case No: Sz 9-i-ø9-o(
SYRGA NElWORK,
LLC's APPUCATION
Syrnga Networks, LLC files this Application for an Idaho Public Utiities
Commission ("Commission") order certfyg that certain telecommunications
equipment is eligible for the broadband infrastructue ta credit authonzed by
Secton 63-3029, Idaho Code. In support of its Application, Syrnga Networks,
LLC states as follows:
1) Syrnga Networks, LLC is a provider of wholesale broadband
telecommunications servce, and other telecommunications servces in southern
Idaho.
2) Dunng the caendar year 2008, Syrnga Networks, LLC made
certain investments that constitute "qualifed broadband equipment" within the
meanig of Section 63-3029(I)(3)(b)~ Idao Code. Exibit A - 2004 (B), attched
hereto, descnbes Syrnga Networks~ LLC's qualified broadband equipment and
contans the information and representation required by this Commission's
Order No. 28784 in Case No. GNR':T-01-10.
3) Communications regarding this application should be addressed to:
Bachchi Samahon-Oumar
Syrnga Networks, LLC
3795 S. Development Ave, Suite #100
Boise, ID 83705
4) Applicat does not believe that the public interest requires a
hearing on this matter, and therefore request that the Commission approve the
Application by Minute Order or under Modified Procedure. In the event the
Commission determines that furter proceedings are necessary, Applicat stands
ready for immediate heanngs.
WHEREFORE, Syrnga Networks, LLC requests that the Commission
issue its order determining that the installed equipment in Exbit A constitutes
qualified broadband equipment eligible for the investent ta credit authonzed
by Section 63-30291, Idao Code.
RESPECTFULLY SUBMITTD, This 1 ay of Januar, 2009.
SY
R
I
N
G
A
N
E
T
W
O
R
K
S
,
L
L
C
1.
.
/
.
.
;
:
.
~
'
.
'
,
"
.
:
:
I
P
A
H
P
E
l
R
9
.
A
P
B
A
N
D
I
N
y
r
:
s
T
f
v
l
§
N
T
T
A
~
C
R
E
D
I
T
¡
¡
E
K
t
t
l
a
I
T
A
I
To
t
a
l
In
v
e
s
t
m
e
n
t
s
i
n
t
h
e
S
y
r
i
n
g
a
F
i
b
e
r
O
p
t
i
c
N
e
t
w
o
r
k
:
J
a
n
u
a
r
y
1
-
D
e
c
e
m
b
e
r
3
1
,
2
0
0
8
ie
m
e
n
s
.
U
i
g
i
l
~
1
S
W
i
l
c
l
No
r
t
e
l
.
A
T
M
S
w
i
t
c
h
Zh
o
n
e
s
.
D
A
C
S
Fu
j
i
t
s
u
.
S
O
N
E
T
O
C
.
4
8
M
u
l
t
i
p
l
e
x
e
r
s
AD
V
A
.
M
o
v
a
z
c
D
e
n
s
e
W
a
v
e
D
i
v
i
s
i
o
n
a
l
M
u
l
t
i
p
l
e
x
e
r
s
T
e
k
e
l
e
c
.
S
T
P
Po
w
e
r
B
o
a
r
d
Po
w
e
r
G
e
n
e
r
a
l
o
r
Po
w
e
r
B
a
t
t
e
r
i
e
s
Mls
c
B
o
i
s
e
C
e
n
t
r
a
l
O
f
f
c
e
E
q
u
i
p
m
e
n
t
iP
S
W
i
t
c
h
.
B
o
i
s
e
C
O
i
P
C
o
r
e
U
p
g
r
a
d
e
IP
S
e
r
v
i
c
e
s
E
q
u
i
p
m
e
n
t
i
n
I
d
a
h
o
F
a
l
l
s
Ha
g
e
r
m
a
n
H
u
t
(
E
l
e
c
t
r
o
n
i
c
s
/
E
n
g
i
n
e
e
r
i
n
g
&
O
t
i
i
~
r
C
¿
s
t
S
)
Ha
i
l
e
y
H
u
t
(
E
l
e
c
t
r
o
n
i
c
s
/
E
n
g
i
n
e
e
r
i
n
g
&
O
t
h
e
r
C
o
s
t
s
)
Ca
l
d
w
e
l
l
H
u
t
(
E
l
e
c
t
r
o
n
i
c
s
/
E
n
g
i
n
e
e
r
i
n
g
&
O
t
h
e
r
C
o
s
t
s
)
Pa
y
e
t
t
e
H
u
t
(
E
l
e
c
t
r
o
n
i
c
s
/
E
n
g
i
n
e
e
r
i
n
g
&
O
t
h
e
r
C
o
s
t
s
)
Em
m
e
t
t
H
u
t
(
E
l
e
c
t
r
o
n
i
c
s
/
E
n
g
i
n
e
e
r
i
n
g
&
O
l
h
e
r
C
o
s
t
s
)
Me
r
i
d
i
a
n
I
S
P
(
I
d
a
h
o
S
t
a
t
e
P
o
l
i
c
e
)
.
W
o
r
k
O
r
d
e
r
#
1
1
3
Eq
u
i
p
m
e
n
t
a
t
C
u
s
t
o
m
e
r
P
r
e
m
i
s
e
s
Ha
i
l
e
y
P
u
b
l
i
c
S
a
f
e
t
y
Pa
y
e
t
t
e
C
l
a
y
s
P
e
a
k
H
u
t
Cit
y
o
f
P
a
y
e
t
t
e
FI
B
E
R
O
P
T
I
C
H
O
U
T
E
S
M
i
l
e
.
Bli
s
s
t
o
B
u
r
l
e
y
.
W
o
r
k
O
r
d
e
r
#
1
0
1
.
a
ã
T
Bl
i
s
s
t
o
B
o
i
s
e
.
W
o
r
k
O
r
d
e
r
#
1
0
2
9
4
.
9
Bo
i
s
e
t
o
C
a
i
d
w
e
l
l
.
W
o
r
k
O
r
d
e
r
#
1
0
3
2
8
.
5
Ca
l
d
w
e
l
l
t
o
F
r
u
i
t
l
a
n
d
.
W
o
r
k
O
r
d
e
r
#
1
0
4
2
5
.
1
Fr
u
i
t
l
a
n
d
t
o
W
e
i
s
e
r
.
W
o
r
k
O
r
d
e
r
#
1
ó
5
1
7
.
8
In
d
i
a
n
V
a
l
l
e
y
t
o
E
m
m
e
t
t
.
W
o
r
k
O
r
d
e
r
#
1
0
6
3
.
2
Em
m
e
t
t
t
o
E
a
g
l
e
.
W
o
r
k
O
r
d
e
r
#
1
0
7
3
1
.
0
Du
b
o
i
s
t
o
P
a
r
k
e
r
.
W
o
r
k
O
r
d
e
r
#
1
0
8
4
5
.
9
Mu
d
l
a
k
e
t
o
H
o
w
e
.
W
o
r
k
O
r
d
e
r
#
1
0
9
2
2
.
4
Ga
l
e
n
a
t
o
K
e
t
c
h
u
m
.
W
o
r
k
O
r
d
e
r
#
1
1
0
2
6
.
8
Ke
t
c
h
u
m
t
o
T
i
m
m
e
r
m
a
n
H
i
l
.
W
o
r
k
O
r
d
e
r
#
1
1
1
3
0
.
Ti
m
m
e
r
m
a
n
H
i
l
l
t
o
F
a
i
r
l
i
e
l
d
.
W
o
r
k
O
r
d
e
r
#
1
1
2
3
4
.
Fib
e
r
C
o
n
n
e
c
t
i
o
n
t
o
A
l
l
e
l
C
e
l
l
T
o
w
e
r
I
n
E
m
m
e
t
t
Fi
b
e
r
C
o
n
n
e
c
l
i
o
n
t
o
H
a
i
l
e
y
C
o
u
r
t
H
o
u
s
e
.
.
Fib
e
r
C
o
n
n
e
c
t
i
n
t
o
K
e
t
c
h
u
m
W
i
r
e
l
e
s
s
le
v
e
l
3
B
o
i
s
e
I
n
t
e
r
c
o
n
n
e
c
t
i
o
n
le
v
e
l
3
M
o
u
n
t
a
i
n
H
o
m
e
I
n
t
e
r
c
n
n
e
c
t
i
o
n
Di
v
e
r
s
e
R
o
u
l
e
I
n
t
o
S
y
r
i
n
g
a
H
e
a
d
q
u
a
r
t
e
r
s
...
.
.
"
I
N
V
~
S
T
M
E
N
T
S
.
.
.
.
.
.
.
.
.A
P
~
R
O
V
E
Q
,
I
.
.
~
E
N
D
I
N
G
..
.
.
.
'
.
C
(
)
S
I
S
B
R
E
,
,
~
I
)
O
W
N
20
0
2
;
2
0
0
5
20
0
8
2
0
0
7
'
'
2
0
0
8
,
.
.
.
.
.
.
.
.
T
o
l
a
l
20
0
,
1
-
2
0
0
7
.
'
J
0
0
8
\
.
·
.
Dir
e
c
t
I.
E
n
g
.
'
I
.
A
l
l
o
c
'
.
1
P
e
n
d
l
"
~
To
t
a
l
1,;
l
8
S
,
f
S
O
,
41
,
6
8
5
0
o
.
1,
4
J
1
,
4
(
~
1,
4
J
1
,
4
(
~
0
1,1
7
5
,
l
O
4
11
1
,
5
4
3
84
,
2
l
0
1,4
3
1
,
4
(
5
67
9
,
0
2
4
26
,
6
2
5
0
A
49
,
7
6
7
75
5
,
4
1
6
70
5
,
6
4
9
49
,
7
6
7
63
0
,
0
6
2
50
,
6
7
1
24
,
9
1
6
49
,
7
6
7
75
5
,
4
1
6
93
,
2
5
7
0
0
0
93
,
2
5
7
93
,
2
5
7
0
77
,
8
4
1
9,5
2
1
5,
8
9
5
0
93
,
2
5
7
1,2
1
2
,
1
4
6
17
,
4
0
9
48
3
,
3
1
8
B .
3
4
3
;
1
7
5
2,0
5
6
,
0
4
8
1,7
1
2
,
8
7
3
34
3
,
1
7
5
1,
4
5
,
4
1
7
15
6
,
9
4
9
78
,
5
0
7
34
3
,
1
7
5
2,
0
5
6
,
0
4
8
83
3
,
6
8
3
13
3
,
1
8
0
7,
8
3
3
C
2
8
4
,
0
8
5
1,2
5
8
,
7
6
1
97
4
,
6
9
6
28
4
,
0
6
5
89
9
,
3
1
7
40
,
9
2
2
34
,
4
5
7
28
4
,
0
6
5
1,
2
5
8
,
7
6
1
70
4
,
2
2
2
0
0
. /
'
0
,
'
"
70
4
,
2
2
2
70
4
,
2
2
2
0
56
5
,
1
3
9
93
,
7
9
0
45
,
2
9
3
0
70
4
,
2
2
2
47
9
,
0
0
2
0
0
o
.
.
47
9
,
0
0
2
47
9
,
0
0
2
0
42
3
,
9
0
4
23
,
3
3
6
31
,
7
6
2
0
47
9
,
0
0
2
56
,
5
3
9
0
0
O
'
.
56
,
5
3
9
56
,
5
3
9
0
44
,
2
7
0
8,
6
5
7
3,6
1
2
0
56
,
5
3
9
87
,
7
3
5
0
0
0
87
,
7
3
5
87
,
7
3
5
0
71
,
3
2
1
10
,
9
6
7
5,4
4
7
0
87
,
7
3
5
68
5
,
6
9
2
21
9
,
0
8
5
13
7
,
7
2
0
o
.
,
9
6
,
7
0
7
1,1
3
9
,
2
0
4
1,
0
4
2
,
4
9
7
96
,
7
0
7
1,
0
2
1
,
3
3
0
11
,
3
9
1
9,7
7
6
96
,
7
0
7
1,1
3
9
,
2
0
4
0
0
0
E
d
8
9
,
5
7
0
"
89
,
5
7
0
0
89
,
5
7
0
0
0
0
89
,
5
7
0
89
,
5
7
0
0
0
0
F
27
,
1
8
5
27
7
,
1
8
5
0
27
,
1
8
5
0
0
0
27
,
1
8
5
27
,
1
8
5
13
3
,
7
8
6
17
,
8
8
2
47
,
6
1
0
G
18
9
,
9
7
1
38
9
,
2
4
9
19
9
,
2
7
8
18
9
,
9
7
1
19
9
,
2
7
8
0
0
18
9
,
9
7
1
38
9
,
2
4
9
13
2
,
9
5
1
1,
2
1
1
0
H
.
8
,
6
1
2
14
2
,
7
7
13
4
,
1
6
2
8,
6
1
2
10
4
,
5
0
7
5,
2
3
7
24
,
4
1
8
8,
6
1
2
14
2
,
7
7
4
30
1
,
7
6
9
41
,
0
9
1
16
,
7
8
0
14
4
6
2
6
40
4
,
2
6
6
35
9
,
6
4
0
44
,
6
2
6
34
1
,
4
6
8
12
,
0
8
5
.
6
,
0
8
7
44
,
6
2
6
40
4
,
2
6
6
85
,
4
5
7
0
0
J
5
,
1
3
5
.
,
91
,
1
9
2
85
,
4
5
7
5,7
3
5
66
,
6
0
4
6,
3
0
6
12
,
5
4
7
5,
7
3
5
91
,
1
9
2
0
0
0
K
88
,
6
6
a
66
,
6
6
0
0
66
,
6
6
0
66
,
6
6
0
66
,
6
6
0
72
,
7
4
2
0
0
0.
.
72
,
7
4
2
72
,
7
4
2
0
48
,
8
6
0
19
,
8
0
1
4,0
8
1
0
72
,
7
4
2
13
7
,
3
8
6
0
0
O'
13
7
,
3
8
6
13
7
,
3
8
6
0
98
,
4
2
9
25
,
9
2
1
13
,
0
3
6
0
13
7
,
3
8
6
0
0
0
L
12
4
,
8
9
9
12
4
,
8
9
9
0
12
4
,
8
9
9
0
0
0
12
4
,
8
9
9
12
4
,
8
9
9
0
0
0
M!
.
'
8
9
,
8
4
5
89
,
8
4
5
0
89
,
8
4
5
0
0
0
89
,
8
4
5
89
,
8
4
5
0
0
0
N
10
3
,
0
9
9
10
3
,
0
9
9
0
10
3
,
0
9
9
0
0
0
10
3
,
0
9
9
10
3
,
0
9
9
0
0
0
0
55
,
5
2
9
.
55
,
5
2
9
0
55
,
5
2
9
0
0
0
55
,
5
2
9
55
,
5
2
9
5,
9
7
7
,
2
4
6
'0
0
0
5,9
7
7
,
2
4
6
5,
9
7
7
,
2
4
6
0'
5,
0
2
2
,
6
2
3
53
6
,
0
9
0
41
8
,
5
3
3
0
5,9
7
7
,
2
4
6
5,3
1
,
9
4
2
3,
l
Ô
l
0
0
5,4
3
5
,
0
4
3
5,
4
3
5
,
0
4
3
0
4,
8
6
0
,
6
9
0
14
4
,
6
7
9
42
9
,
6
7
4
0
5,4
3
5
,
0
4
3
2,
1
9
4
,
6
7
6
18
,
3
3
5
29
,
7
3
9
P
14
2
,
3
8
1
2,
3
8
5
,
1
1
1
2,
2
4
2
,
7
5
0
14
2
,
3
6
1
1,
8
8
8
,
0
7
4
27
8
,
1
6
1
76
,
5
1
4
14
2
,
3
6
1
2,3
8
5
,
1
1
1
63
6
,
8
4
3
0
0
0
63
6
,
8
4
3
63
6
,
8
4
3
0
48
6
,
9
6
3
83
,
8
8
2
65
,
9
9
8
0
63
6
,
8
4
3
68
7
,
6
3
8
0
0
.'
0
68
7
,
6
3
8
68
7
,
6
3
8
0
48
7
,
2
9
8
15
7
,
3
6
1
42
,
9
7
9
0
68
7
,
6
3
8
.
14
7
,
5
0
2
0
0
0
14
7
,
5
0
2
14
7
,
5
0
2
0
12
7
,
9
8
5
15
,
2
8
4
4,
2
3
3
0
14
7
,
5
0
2
1,
4
5
0
,
9
1
8
0
0
0
1,4
5
0
,
9
1
8
1,
4
5
0
,
9
1
8
0
1,
1
5
4
,
5
3
4
24
8
,
3
0
5
48
,
0
7
9
0
1,4
5
0
,
9
1
8
1;
7
8
8
,
8
3
1
0
0
0
1,
7
8
8
,
8
3
1
1,7
8
8
,
8
3
1
0
1,
5
3
5
,
8
5
9
16
6
,
7
8
9
86
,
1
8
2
0
1,7
8
8
,
8
3
1
86
2
,
9
6
5
0
0
0
86
2
,
9
6
5
86
2
,
9
6
5
0
75
0
,
2
3
9
82
,
4
6
2
30
,
2
6
4
0
86
2
,
9
6
5
1,
7
4
7
,
3
7
9
0
0
0
1,7
4
7
,
3
7
9
1,
7
4
7
,
3
7
9
0
1,
2
3
0
,
1
0
8
44
0
,
3
6
9
76
,
9
0
2
0
1,7
4
7
,
3
7
9
1,4
1
8
,
7
5
2
0
0
Q
6,
7
9
5
1,4
2
5
,
5
4
7
1,
4
1
8
,
7
5
2
6,
7
9
5
1,
0
1
0
,
0
9
0
29
9
,
2
2
1
10
9
,
4
4
1
6,
7
9
5
1,4
2
5
,
5
4
7
1,
1
7
,
6
1
0
0
0
0
1,
1
7
,
6
1
0
1,1
7
,
6
1
0
0
96
1
,
7
4
0
97
,
3
6
1
11
8
,
5
0
9
0
1,
1
7
,
6
1
0
0
0
11
,
5
9
7
11
,
5
9
7
11
,
5
9
7
0
11
,
5
9
7
0
0
0
11
,
5
9
7
0
0
27
,
0
8
6
27
,
0
8
6
27
,
0
8
6
0
27
,
0
8
6
0
0
0
27
,
0
8
6
0
0
7,8
3
0
7,8
3
0
7,
8
3
0
0
7,
8
3
0
0
0
0
7,
8
3
0
91
,
0
8
3
0
0
.'
91
,
0
8
3
91
,
0
8
3
0
71
,
2
3
4
15
,
8
4
4
4,
0
0
5
0
91
,
0
8
3
41
,
3
3
5
0
0
0
41
,
3
3
5
41
,
3
3
5
0
33
,
7
6
3
6,
5
0
6
1,
0
6
7
0
41
,
3
3
5
21
,
0
3
2
0
0
0
21
,
0
3
2
21
,
0
3
2
0
15
,
9
8
3
5,
0
4
9
0
0
21
,
0
3
2
;s
u
,
f
b
U
,
Y
J
J
:
:
i
U
1
1
j
U
4
(t
i
9
,
5
1
J
1,
9
7
8
,
6
0
1
3
4
,
0
2
8
,
6
5
1
12
,
0
5
0
,
0
5
0
1,
9
1
1
1
,
t
i
0
1
lt
i
,
9
2
6
,
t
i
4
5
3
,
2
2
6
,
4
6
0
1
,
8
9
6
,
9
4
3
-
-
8
,
6
0
1
3
4
.
0
2
8
:
5
0
Br
o
a
d
b
a
n
d
C
r
e
d
i
t
p
e
n
d
i
n
g
f
o
r
2
0
0
8
.
3
%
o
f
2
0
0
8
Q
u
a
l
i
f
i
e
d
I
n
v
e
s
t
m
e
n
t
To
t
a
l
B
r
o
a
d
b
a
n
d
I
n
v
e
s
t
m
e
n
t
T
a
x
C
r
e
d
i
t
P
e
n
d
l
n
9
2
0
0
7
=
BR
O
A
O
B
A
N
D
,
J
N
V
S
T
_
C
R
E
O
I
T
_
2
0
0
I
o
f
1
59
,
3
5
8~
Bro
a
d
b
a
n
d
C
r
e
d
l
l
a
p
p
r
o
v
e
d
f
o
r
2
0
0
1
&
2
0
0
2
Bro
a
d
b
a
n
d
C
r
e
d
i
t
a
p
p
r
o
v
e
d
f
o
r
2
0
0
3
Bro
a
d
b
a
n
d
C
r
e
d
i
t
a
p
p
r
o
v
e
d
f
o
r
2
0
0
4
Bro
a
d
b
a
n
d
C
r
e
d
i
t
a
p
p
r
o
v
e
d
f
o
r
2
0
0
5
Br
o
a
d
b
a
n
d
C
r
e
d
i
t
a
p
p
r
o
v
e
d
f
o
r
2
0
0
Br
o
a
d
b
a
n
d
C
r
e
d
i
t
a
p
p
r
o
v
e
d
f
o
r
2
0
7
Bro
a
d
b
a
n
d
C
r
e
d
i
t
a
p
p
r
o
v
e
d
f
o
r
2
0
0
6
FI
N
A
L
(A
)
N
O
R
T
E
l
A
T
M
S
W
I
T
C
H
1
3
2
.
P
o
r
t
T
-
1
A
T
M
C
a
r
d
(B
)
F
U
J
I
T
S
U
O
C
-
4
8
S
W
I
T
C
H
1
O
C
-
3
P
r
o
t
e
c
t
C
a
r
d
'
1
O
C
.
3
P
i
o
t
e
c
t
C
a
r
d
1
T
r
i
b
u
t
a
r
y
S
w
K
c
h
F
a
b
r
i
c
1
O
C
-
4
8
D
u
a
l
C
a
r
d
Fu
j
i
t
s
u
N
E
C
o
n
t
r
o
l
l
e
r
C
a
r
d
1
O
C
-
1
2
In
t
e
r
f
a
c
e
C
a
r
d
1 O
C
-
1
9
2
C
a
r
d
1 O
C
-
4
8
I
n
t
e
r
f
a
c
e
C
a
r
d
Fu
j
i
t
s
u
4
3
1
)
0
M
u
l
t
i
p
l
e
x
e
r
1 O
C
-
4
8
C
a
r
d
12
O
S
-
I
l
r
i
t
e
r
f
a
c
e
C
a
r
d
s
3
D
a
t
a
I
n
t
e
r
f
a
c
e
C
a
r
d
s
16
F
i
l
l
e
r
C
a
r
d
s
Fu
j
i
t
s
u
D
C
C
U
n
l
l
6 F
u
j
i
t
s
u
T
r
i
b
u
t
a
r
y
S
w
l
l
c
h
F
a
b
r
i
c
6
D
u
a
l
O
C
-
4
8
C
a
r
d
s
7
O
C
.
1
9
2
C
a
r
d
s
Fu
J
l
l
s
u
S
w
i
t
c
h
F
a
b
r
i
c
C
U
,
S
h
e
l
v
e
2 D
S
-
3
T
r
a
n
s
m
u
x
C
a
r
d
s
tI
M
O
V
A
Z
D
W
D
M
Fib
e
r
C
h
a
r
a
c
t
e
r
i
z
a
t
i
o
n
8 F
r
e
q
u
e
n
c
y
F
i
l
l
e
r
s
OW
D
M
M
i
s
c
E
q
u
l
p
m
e
n
l
60
A
l
I
e
n
u
i
i
t
o
r
s
89
F
i
b
e
r
J
u
m
p
e
r
s
10
A
l
I
e
n
u
i
i
t
o
r
s
AO
V
A
I
n
l
e
l
S
e
r
v
e
r
4 T
r
a
n
s
p
o
n
d
e
r
s
Tr
a
n
s
c
e
l
v
o
r
Tr
a
n
s
p
o
n
d
e
r
a
n
d
T
r
a
n
s
c
e
i
v
e
r
1/
1
4
1
2
0
9
(D
)
M
I
S
C
B
O
I
S
E
C
O
A
S
S
E
T
S
sf
p
O
p
t
i
l
a
l
C
o
n
v
e
r
t
e
r
2 F
u
s
e
P
a
n
e
l
s
Fl
i
e
r
S
e
r
v
e
r
Cis
c
o
C
A
T
6
5
0
0
S
w
i
t
c
h
C
a
r
d
2 I
n
t
e
r
f
a
c
e
C
a
r
d
s
QU
A
O
C
o
r
e
S
e
r
v
e
r
2
N
O
C
T
e
l
e
v
i
s
i
o
n
S
e
t
s
Fir
e
S
u
p
p
r
e
s
s
i
o
n
f
o
r
C
O
(E
)
I
P
S
W
l
T
C
H
'
B
O
I
S
E
C
O
2
D
C
P
O
W
E
R
S
u
p
p
l
y
1 C
i
s
c
o
C
A
T
6
5
0
6
S
w
i
t
c
h
1 C
i
s
c
o
C
A
T
6
5
0
0
S
w
i
t
c
h
Ci
s
c
o
C
A
T
6
5
0
0
S
w
i
l
h
c
F
a
b
r
i
c
Ci
s
c
o
C
A
T
7
6
0
6
C
h
a
s
i
s
Cis
c
o
C
A
T
7
6
0
Q
S
w
i
t
c
h
1 F
l
e
x
W
a
n
M
o
d
u
l
e
Pw
e
r
S
u
p
p
l
y
f
o
r
7
6
0
6
&
6
5
0
AT
M
O
S
-
3
p
o
r
t
A
d
p
a
t
e
r
Cis
c
o
C
A
T
3
7
5
0
S
w
i
t
c
h
&
P
o
w
e
r
SY
R
I
N
G
A
N
E
T
W
O
R
K
S
,
L
L
C
IP
~
.
'
~
B
A
H
D
i
f
f
\
7
~
S
J
(F
)
I
P
C
O
R
E
U
P
G
R
A
D
E
Ci
s
c
o
7
6
0
6
R
o
u
t
e
r
Cis
c
o
C
A
T
6
5
0
0
F
l
e
x
w
a
n
M
o
d
u
l
e
Cis
c
o
C
A
T
6
5
0
0
S
w
l
l
c
h
Pa
n
e
l
s
a
n
d
f
u
s
e
s
Cis
c
o
C
A
T
7
6
0
0
C
h
a
s
l
s
6
-
S
I
o
I
Po
w
e
r
S
u
p
p
l
i
e
s
Cis
c
o
C
A
T
6
5
0
0
G
l
g
_
E
M
o
d
u
l
e
Ci
s
c
o
C
A
T
6
5
0
0
G
l
g
_
E
M
o
d
u
l
e
Ca
b
l
e
,
F
a
l
r
e
A
d
a
p
t
é
r
Ca
b
l
e
W
i
r
e
,
A
d
a
p
t
e
r
s
&
J
u
m
p
e
r
s
6
T
r
a
n
s
c
e
i
v
e
r
s
Ci
s
c
o
C
a
t
65
0
S
w
i
t
c
h
Ci
s
c
o
C
a
t
7
6
0
6
S
w
i
t
c
h
Ci
s
c
o
C
A
T
7
6
0
0
S
w
i
t
c
h
Ci
s
c
o
C
A
T
6
5
0
S
w
l
l
c
h
(G
)
I
P
S
E
R
V
I
C
E
S
A
S
S
E
T
S
I
D
A
H
O
F
A
l
l
S
Cis
c
o
6
5
0
0
S
w
l
l
c
h
C
a
r
d
Cis
c
o
7
6
0
6
C
h
a
s
l
s
Gi
g
_
è
C
a
r
d
&
P
o
w
e
r
S
u
p
p
l
i
e
s
2 E
n
h
a
n
c
e
d
F
l
e
x
W
a
n
F
a
b
r
i
c
Cis
c
o
C
A
T
6
5
0
0
S
w
i
t
c
h
Cis
c
o
C
A
T
7
6
0
R
o
u
t
e
r
C
h
a
s
i
s
2 C
i
s
c
o
C
A
T
7
6
0
P
o
w
e
r
S
u
p
p
l
y
Cis
c
o
C
A
T
7
6
0
6
G
l
g
.
E
R
o
u
t
e
r
2
F
l
a
s
h
M
e
m
o
r
y
Op
t
i
c
a
l
C
o
n
v
e
r
t
e
r
(H
)
H
A
G
E
R
M
A
N
H
U
T
Cis
c
o
C
A
T
3
7
5
0
S
w
l
l
c
h
1
OC
-
1
2
Ca
r
d
(I
)
H
A
i
l
E
Y
H
U
T
1
3
-
P
o
r
t
O
S
-
3
A
T
M
C
a
r
d
Co
r
e
S
w
l
l
c
h
F
a
n
T
r
a
y
,
C
h
a
s
i
s
,
P
o
w
e
r
Et
h
e
r
n
e
t
R
o
u
t
e
r
(J
)
C
A
L
D
W
E
l
l
H
U
T
1
O
C
-
3
I
n
l
e
r
f
a
c
e
C
a
r
d
2
D
S
-
3
T
r
a
n
s
m
u
x
C
a
r
d
s
(K
)
P
A
Y
E
T
T
E
H
U
T
2
A
l
r
c
o
n
d
i
t
i
o
n
l
n
g
U
n
i
t
s
Ca
b
l
n
e
r
s
,
R
a
c
k
,
C
a
b
l
e
&
P
a
n
e
l
s
Po
w
e
r
S
y
s
t
e
m
(l
)
E
Q
U
I
P
M
E
N
T
A
T
C
U
S
T
O
M
E
R
P
R
E
M
I
S
E
S
Fib
e
r
R
a
c
k
E
n
c
l
o
s
u
r
e
s
UP
S
N
e
t
w
o
r
k
18
S
F
P
G
b
i
c
M
o
d
u
l
e
s
5
C
i
s
c
o
3
7
5
0
S
w
i
t
c
h
e
s
5
C
a
b
i
n
e
t
s
Fu
j
i
t
s
u
F
l
a
s
h
w
a
v
e
M
u
l
t
i
p
l
e
x
e
r
4 W
a
l
l
.
M
o
u
n
t
S
p
l
i
c
e
C
e
n
t
e
r
2 O
S
.
1
C
a
r
d
s
&
T
i
m
i
n
g
C
a
b
l
e
s
2 C
i
s
c
o
C
A
T
3
7
5
0
S
w
l
l
c
h
e
s
In
t
a
r
f
a
c
M
u
x
C
a
r
d
3 O
S
X
P
a
n
e
l
s
Cis
c
o
C
A
T
3
7
5
0
S
w
K
c
h
Ro
u
t
e
r
a
n
d
T
-
l
C
a
r
d
Fu
J
t
l
s
u
5
O
S
-
I
C
a
r
d
s
Fu
j
t
l
s
u
4
O
C
-
1
2
C
a
r
d
s
(M
)
H
A
I
I
.
E
Y
P
U
B
L
I
C
S
A
F
E
T
Y
Sm
a
r
t
U
P
S
,
F
i
b
e
r
R
a
c
k
s
,
B
u
l
k
h
e
a
d
4 S
F
P
G
b
i
c
M
o
d
u
l
e
s
Ca
b
i
n
e
t
s
Co
n
c
r
e
l
e
B
o
x
e
s
,
I
r
o
n
R
i
n
g
s
Fib
e
r
S
p
l
i
c
i
n
g
Fi
b
e
r
C
m
s
t
r
u
c
t
i
o
n
C
o
s
t
s
Co
s
t
o
f
C
o
n
d
u
i
t
(N
)
C
L
A
Y
S
P
E
A
K
P
A
Y
E
T
T
E
Co
s
t
o
f
C
o
n
d
u
i
t
Co
s
t
o
f
F
i
b
e
r
Fi
b
e
r
C
o
n
s
t
r
u
c
l
l
o
n
Co
s
t
o
f
S
p
l
i
c
i
n
g
Su
r
v
e
y
n
g
C
o
s
l
s
Pe
r
m
i
t
s
&
E
a
s
e
m
e
n
t
s
Ha
n
d
H
o
l
e
s
&
O
t
h
e
r
M
i
s
c
(0
)
C
I
T
Y
O
F
P
A
Y
E
T
T
E
Co
s
t
o
f
C
o
n
d
u
i
t
&
!
F
i
b
e
r
Fi
b
e
r
C
o
n
s
t
r
u
c
t
i
o
n
Co
s
t
o
f
S
p
l
i
c
i
n
g
Pe
r
m
li
s
&
S
u
r
v
e
y
i
n
g
C
o
s
t
s
Ju
m
p
e
r
s
,
A
l
l
e
n
u
a
t
o
r
s
&
H
a
n
d
h
o
l
e
s
(P
)
B
O
I
S
E
T
O
C
A
L
D
W
E
l
l
F
I
B
E
R
R
O
U
T
E
1.8
4
S
o
u
n
d
W
a
l
l
S
t
a
k
i
n
g
Re
l
o
c
a
t
e
F
i
b
e
r
&
H
y
d
r
o
S
e
e
d
Re
p
a
i
r
F
i
b
e
r
a
l
o
n
g
1
-
8
4
Fib
e
r
S
p
l
i
c
i
n
g
Co
s
t
s
o
f
4
8
c
o
u
n
t
F
i
b
e
r
Co
n
s
t
r
u
e
t
l
o
n
o
f
F
i
b
e
r
P
l
a
c
e
m
e
n
t
(Q
)
K
E
T
C
H
U
M
-
T
I
M
M
E
R
M
A
N
H
i
l
L
F
I
B
E
R
Fib
e
r
I
n
s
t
a
l
l
a
t
i
o
n
&
S
p
l
i
c
i
n
g
C:\
U
s
e
r
s
\
b
a
c
h
c
h
i
\
o
c
u
m
e
n
l
s
\
P
J
D
\
B
R
O
A
O
B
A
N
D
.
J
N
V
S
T
_
C
R
E
D
I
T
_
2
0
0
8