Loading...
HomeMy WebLinkAbout20090121Application.pdf~ RECEiVED ~~t! .:91:~~~W~:!~: ~:, Syringa Networks LLC, 3795 S Development Ave, Suite 100, Boise, 1083705 Phone: (208) 229-6100 Fax: (208) 229'Tid..T itt) ...OMwi ì~Si\.I" January 19, 2009 Grace Seaman Idaho Public Utilities Commission 472 W. Washington P.O. Box 83720 Boise,ID 83720-0074 52 e¡ -T- 0'1-0 ( Dear Grace, RE: Broadband Investment Tax Credit - Syringa Networks, LLC for 2008 I have attached our filing for the Broadband Investment Tax Credit for 2008. We invested a total of $1,978,601 for the year ended December 31, 2008. I have attached the detailed report of our investments along with relevant footnotes for your purview. These assets were operational in 2008. Please let me know if you have any questions relating to the information that I have submitted. 'DAH~ ""-,,..,. ',-,I. l ~ .. l "J ;. ~ f ~,i f 1 l ~.v . v_h_.". . '''ILlT,i-C' C,"~,.!¡Hl~C:!rH,iU I -- ~::\: .t,..li11i'tiI0v; J'¡\3795 S. Development Avenue, Suite #100 Boise, ID 83705 ..SJ?a n...CE:¡\Ii:n r\ i: :.. t,' ¡,.. U 20D9 JAN 2 i AM 8: 07 BEFORE THE IDAHO PUBLIC UTLITIES COMMISSION IN THE MATIR OF THE APPUCATION OF SYRGA NElWORK, LLC., FOR BROADBAN INSTMENT TAX CREDIT CERTIFICATION Case No: Sz 9-i-ø9-o( SYRGA NElWORK, LLC's APPUCATION Syrnga Networks, LLC files this Application for an Idaho Public Utiities Commission ("Commission") order certfyg that certain telecommunications equipment is eligible for the broadband infrastructue ta credit authonzed by Secton 63-3029, Idaho Code. In support of its Application, Syrnga Networks, LLC states as follows: 1) Syrnga Networks, LLC is a provider of wholesale broadband telecommunications servce, and other telecommunications servces in southern Idaho. 2) Dunng the caendar year 2008, Syrnga Networks, LLC made certain investments that constitute "qualifed broadband equipment" within the meanig of Section 63-3029(I)(3)(b)~ Idao Code. Exibit A - 2004 (B), attched hereto, descnbes Syrnga Networks~ LLC's qualified broadband equipment and contans the information and representation required by this Commission's Order No. 28784 in Case No. GNR':T-01-10. 3) Communications regarding this application should be addressed to: Bachchi Samahon-Oumar Syrnga Networks, LLC 3795 S. Development Ave, Suite #100 Boise, ID 83705 4) Applicat does not believe that the public interest requires a hearing on this matter, and therefore request that the Commission approve the Application by Minute Order or under Modified Procedure. In the event the Commission determines that furter proceedings are necessary, Applicat stands ready for immediate heanngs. WHEREFORE, Syrnga Networks, LLC requests that the Commission issue its order determining that the installed equipment in Exbit A constitutes qualified broadband equipment eligible for the investent ta credit authonzed by Section 63-30291, Idao Code. RESPECTFULLY SUBMITTD, This 1 ay of Januar, 2009. SY R I N G A N E T W O R K S , L L C 1. . / . . ; : . ~ ' . ' , " . : : I P A H P E l R 9 . A P B A N D I N y r : s T f v l § N T T A ~ C R E D I T ¡ ¡ E K t t l a I T A I To t a l In v e s t m e n t s i n t h e S y r i n g a F i b e r O p t i c N e t w o r k : J a n u a r y 1 - D e c e m b e r 3 1 , 2 0 0 8 ie m e n s . U i g i l ~ 1 S W i l c l No r t e l . A T M S w i t c h Zh o n e s . D A C S Fu j i t s u . S O N E T O C . 4 8 M u l t i p l e x e r s AD V A . M o v a z c D e n s e W a v e D i v i s i o n a l M u l t i p l e x e r s T e k e l e c . S T P Po w e r B o a r d Po w e r G e n e r a l o r Po w e r B a t t e r i e s Mls c B o i s e C e n t r a l O f f c e E q u i p m e n t iP S W i t c h . B o i s e C O i P C o r e U p g r a d e IP S e r v i c e s E q u i p m e n t i n I d a h o F a l l s Ha g e r m a n H u t ( E l e c t r o n i c s / E n g i n e e r i n g & O t i i ~ r C ¿ s t S ) Ha i l e y H u t ( E l e c t r o n i c s / E n g i n e e r i n g & O t h e r C o s t s ) Ca l d w e l l H u t ( E l e c t r o n i c s / E n g i n e e r i n g & O t h e r C o s t s ) Pa y e t t e H u t ( E l e c t r o n i c s / E n g i n e e r i n g & O t h e r C o s t s ) Em m e t t H u t ( E l e c t r o n i c s / E n g i n e e r i n g & O l h e r C o s t s ) Me r i d i a n I S P ( I d a h o S t a t e P o l i c e ) . W o r k O r d e r # 1 1 3 Eq u i p m e n t a t C u s t o m e r P r e m i s e s Ha i l e y P u b l i c S a f e t y Pa y e t t e C l a y s P e a k H u t Cit y o f P a y e t t e FI B E R O P T I C H O U T E S M i l e . Bli s s t o B u r l e y . W o r k O r d e r # 1 0 1 . a ã T Bl i s s t o B o i s e . W o r k O r d e r # 1 0 2 9 4 . 9 Bo i s e t o C a i d w e l l . W o r k O r d e r # 1 0 3 2 8 . 5 Ca l d w e l l t o F r u i t l a n d . W o r k O r d e r # 1 0 4 2 5 . 1 Fr u i t l a n d t o W e i s e r . W o r k O r d e r # 1 ó 5 1 7 . 8 In d i a n V a l l e y t o E m m e t t . W o r k O r d e r # 1 0 6 3 . 2 Em m e t t t o E a g l e . W o r k O r d e r # 1 0 7 3 1 . 0 Du b o i s t o P a r k e r . W o r k O r d e r # 1 0 8 4 5 . 9 Mu d l a k e t o H o w e . W o r k O r d e r # 1 0 9 2 2 . 4 Ga l e n a t o K e t c h u m . W o r k O r d e r # 1 1 0 2 6 . 8 Ke t c h u m t o T i m m e r m a n H i l . W o r k O r d e r # 1 1 1 3 0 . Ti m m e r m a n H i l l t o F a i r l i e l d . W o r k O r d e r # 1 1 2 3 4 . Fib e r C o n n e c t i o n t o A l l e l C e l l T o w e r I n E m m e t t Fi b e r C o n n e c l i o n t o H a i l e y C o u r t H o u s e . . Fib e r C o n n e c t i n t o K e t c h u m W i r e l e s s le v e l 3 B o i s e I n t e r c o n n e c t i o n le v e l 3 M o u n t a i n H o m e I n t e r c n n e c t i o n Di v e r s e R o u l e I n t o S y r i n g a H e a d q u a r t e r s ... . . " I N V ~ S T M E N T S . . . . . . . . .A P ~ R O V E Q , I . . ~ E N D I N G .. . . . ' . C ( ) S I S B R E , , ~ I ) O W N 20 0 2 ; 2 0 0 5 20 0 8 2 0 0 7 ' ' 2 0 0 8 , . . . . . . . . T o l a l 20 0 , 1 - 2 0 0 7 . ' J 0 0 8 \ . · . Dir e c t I. E n g . ' I . A l l o c ' . 1 P e n d l " ~ To t a l 1,; l 8 S , f S O , 41 , 6 8 5 0 o . 1, 4 J 1 , 4 ( ~ 1, 4 J 1 , 4 ( ~ 0 1,1 7 5 , l O 4 11 1 , 5 4 3 84 , 2 l 0 1,4 3 1 , 4 ( 5 67 9 , 0 2 4 26 , 6 2 5 0 A 49 , 7 6 7 75 5 , 4 1 6 70 5 , 6 4 9 49 , 7 6 7 63 0 , 0 6 2 50 , 6 7 1 24 , 9 1 6 49 , 7 6 7 75 5 , 4 1 6 93 , 2 5 7 0 0 0 93 , 2 5 7 93 , 2 5 7 0 77 , 8 4 1 9,5 2 1 5, 8 9 5 0 93 , 2 5 7 1,2 1 2 , 1 4 6 17 , 4 0 9 48 3 , 3 1 8 B . 3 4 3 ; 1 7 5 2,0 5 6 , 0 4 8 1,7 1 2 , 8 7 3 34 3 , 1 7 5 1, 4 5 , 4 1 7 15 6 , 9 4 9 78 , 5 0 7 34 3 , 1 7 5 2, 0 5 6 , 0 4 8 83 3 , 6 8 3 13 3 , 1 8 0 7, 8 3 3 C 2 8 4 , 0 8 5 1,2 5 8 , 7 6 1 97 4 , 6 9 6 28 4 , 0 6 5 89 9 , 3 1 7 40 , 9 2 2 34 , 4 5 7 28 4 , 0 6 5 1, 2 5 8 , 7 6 1 70 4 , 2 2 2 0 0 . / ' 0 , ' " 70 4 , 2 2 2 70 4 , 2 2 2 0 56 5 , 1 3 9 93 , 7 9 0 45 , 2 9 3 0 70 4 , 2 2 2 47 9 , 0 0 2 0 0 o . . 47 9 , 0 0 2 47 9 , 0 0 2 0 42 3 , 9 0 4 23 , 3 3 6 31 , 7 6 2 0 47 9 , 0 0 2 56 , 5 3 9 0 0 O ' . 56 , 5 3 9 56 , 5 3 9 0 44 , 2 7 0 8, 6 5 7 3,6 1 2 0 56 , 5 3 9 87 , 7 3 5 0 0 0 87 , 7 3 5 87 , 7 3 5 0 71 , 3 2 1 10 , 9 6 7 5,4 4 7 0 87 , 7 3 5 68 5 , 6 9 2 21 9 , 0 8 5 13 7 , 7 2 0 o . , 9 6 , 7 0 7 1,1 3 9 , 2 0 4 1, 0 4 2 , 4 9 7 96 , 7 0 7 1, 0 2 1 , 3 3 0 11 , 3 9 1 9,7 7 6 96 , 7 0 7 1,1 3 9 , 2 0 4 0 0 0 E d 8 9 , 5 7 0 " 89 , 5 7 0 0 89 , 5 7 0 0 0 0 89 , 5 7 0 89 , 5 7 0 0 0 0 F 27 , 1 8 5 27 7 , 1 8 5 0 27 , 1 8 5 0 0 0 27 , 1 8 5 27 , 1 8 5 13 3 , 7 8 6 17 , 8 8 2 47 , 6 1 0 G 18 9 , 9 7 1 38 9 , 2 4 9 19 9 , 2 7 8 18 9 , 9 7 1 19 9 , 2 7 8 0 0 18 9 , 9 7 1 38 9 , 2 4 9 13 2 , 9 5 1 1, 2 1 1 0 H . 8 , 6 1 2 14 2 , 7 7 13 4 , 1 6 2 8, 6 1 2 10 4 , 5 0 7 5, 2 3 7 24 , 4 1 8 8, 6 1 2 14 2 , 7 7 4 30 1 , 7 6 9 41 , 0 9 1 16 , 7 8 0 14 4 6 2 6 40 4 , 2 6 6 35 9 , 6 4 0 44 , 6 2 6 34 1 , 4 6 8 12 , 0 8 5 . 6 , 0 8 7 44 , 6 2 6 40 4 , 2 6 6 85 , 4 5 7 0 0 J 5 , 1 3 5 . , 91 , 1 9 2 85 , 4 5 7 5,7 3 5 66 , 6 0 4 6, 3 0 6 12 , 5 4 7 5, 7 3 5 91 , 1 9 2 0 0 0 K 88 , 6 6 a 66 , 6 6 0 0 66 , 6 6 0 66 , 6 6 0 66 , 6 6 0 72 , 7 4 2 0 0 0. . 72 , 7 4 2 72 , 7 4 2 0 48 , 8 6 0 19 , 8 0 1 4,0 8 1 0 72 , 7 4 2 13 7 , 3 8 6 0 0 O' 13 7 , 3 8 6 13 7 , 3 8 6 0 98 , 4 2 9 25 , 9 2 1 13 , 0 3 6 0 13 7 , 3 8 6 0 0 0 L 12 4 , 8 9 9 12 4 , 8 9 9 0 12 4 , 8 9 9 0 0 0 12 4 , 8 9 9 12 4 , 8 9 9 0 0 0 M! . ' 8 9 , 8 4 5 89 , 8 4 5 0 89 , 8 4 5 0 0 0 89 , 8 4 5 89 , 8 4 5 0 0 0 N 10 3 , 0 9 9 10 3 , 0 9 9 0 10 3 , 0 9 9 0 0 0 10 3 , 0 9 9 10 3 , 0 9 9 0 0 0 0 55 , 5 2 9 . 55 , 5 2 9 0 55 , 5 2 9 0 0 0 55 , 5 2 9 55 , 5 2 9 5, 9 7 7 , 2 4 6 '0 0 0 5,9 7 7 , 2 4 6 5, 9 7 7 , 2 4 6 0' 5, 0 2 2 , 6 2 3 53 6 , 0 9 0 41 8 , 5 3 3 0 5,9 7 7 , 2 4 6 5,3 1 , 9 4 2 3, l Ô l 0 0 5,4 3 5 , 0 4 3 5, 4 3 5 , 0 4 3 0 4, 8 6 0 , 6 9 0 14 4 , 6 7 9 42 9 , 6 7 4 0 5,4 3 5 , 0 4 3 2, 1 9 4 , 6 7 6 18 , 3 3 5 29 , 7 3 9 P 14 2 , 3 8 1 2, 3 8 5 , 1 1 1 2, 2 4 2 , 7 5 0 14 2 , 3 6 1 1, 8 8 8 , 0 7 4 27 8 , 1 6 1 76 , 5 1 4 14 2 , 3 6 1 2,3 8 5 , 1 1 1 63 6 , 8 4 3 0 0 0 63 6 , 8 4 3 63 6 , 8 4 3 0 48 6 , 9 6 3 83 , 8 8 2 65 , 9 9 8 0 63 6 , 8 4 3 68 7 , 6 3 8 0 0 .' 0 68 7 , 6 3 8 68 7 , 6 3 8 0 48 7 , 2 9 8 15 7 , 3 6 1 42 , 9 7 9 0 68 7 , 6 3 8 . 14 7 , 5 0 2 0 0 0 14 7 , 5 0 2 14 7 , 5 0 2 0 12 7 , 9 8 5 15 , 2 8 4 4, 2 3 3 0 14 7 , 5 0 2 1, 4 5 0 , 9 1 8 0 0 0 1,4 5 0 , 9 1 8 1, 4 5 0 , 9 1 8 0 1, 1 5 4 , 5 3 4 24 8 , 3 0 5 48 , 0 7 9 0 1,4 5 0 , 9 1 8 1; 7 8 8 , 8 3 1 0 0 0 1, 7 8 8 , 8 3 1 1,7 8 8 , 8 3 1 0 1, 5 3 5 , 8 5 9 16 6 , 7 8 9 86 , 1 8 2 0 1,7 8 8 , 8 3 1 86 2 , 9 6 5 0 0 0 86 2 , 9 6 5 86 2 , 9 6 5 0 75 0 , 2 3 9 82 , 4 6 2 30 , 2 6 4 0 86 2 , 9 6 5 1, 7 4 7 , 3 7 9 0 0 0 1,7 4 7 , 3 7 9 1, 7 4 7 , 3 7 9 0 1, 2 3 0 , 1 0 8 44 0 , 3 6 9 76 , 9 0 2 0 1,7 4 7 , 3 7 9 1,4 1 8 , 7 5 2 0 0 Q 6, 7 9 5 1,4 2 5 , 5 4 7 1, 4 1 8 , 7 5 2 6, 7 9 5 1, 0 1 0 , 0 9 0 29 9 , 2 2 1 10 9 , 4 4 1 6, 7 9 5 1,4 2 5 , 5 4 7 1, 1 7 , 6 1 0 0 0 0 1, 1 7 , 6 1 0 1,1 7 , 6 1 0 0 96 1 , 7 4 0 97 , 3 6 1 11 8 , 5 0 9 0 1, 1 7 , 6 1 0 0 0 11 , 5 9 7 11 , 5 9 7 11 , 5 9 7 0 11 , 5 9 7 0 0 0 11 , 5 9 7 0 0 27 , 0 8 6 27 , 0 8 6 27 , 0 8 6 0 27 , 0 8 6 0 0 0 27 , 0 8 6 0 0 7,8 3 0 7,8 3 0 7, 8 3 0 0 7, 8 3 0 0 0 0 7, 8 3 0 91 , 0 8 3 0 0 .' 91 , 0 8 3 91 , 0 8 3 0 71 , 2 3 4 15 , 8 4 4 4, 0 0 5 0 91 , 0 8 3 41 , 3 3 5 0 0 0 41 , 3 3 5 41 , 3 3 5 0 33 , 7 6 3 6, 5 0 6 1, 0 6 7 0 41 , 3 3 5 21 , 0 3 2 0 0 0 21 , 0 3 2 21 , 0 3 2 0 15 , 9 8 3 5, 0 4 9 0 0 21 , 0 3 2 ;s u , f b U , Y J J : : i U 1 1 j U 4 (t i 9 , 5 1 J 1, 9 7 8 , 6 0 1 3 4 , 0 2 8 , 6 5 1 12 , 0 5 0 , 0 5 0 1, 9 1 1 1 , t i 0 1 lt i , 9 2 6 , t i 4 5 3 , 2 2 6 , 4 6 0 1 , 8 9 6 , 9 4 3 - - 8 , 6 0 1 3 4 . 0 2 8 : 5 0 Br o a d b a n d C r e d i t p e n d i n g f o r 2 0 0 8 . 3 % o f 2 0 0 8 Q u a l i f i e d I n v e s t m e n t To t a l B r o a d b a n d I n v e s t m e n t T a x C r e d i t P e n d l n 9 2 0 0 7 = BR O A O B A N D , J N V S T _ C R E O I T _ 2 0 0 I o f 1 59 , 3 5 8~ Bro a d b a n d C r e d l l a p p r o v e d f o r 2 0 0 1 & 2 0 0 2 Bro a d b a n d C r e d i t a p p r o v e d f o r 2 0 0 3 Bro a d b a n d C r e d i t a p p r o v e d f o r 2 0 0 4 Bro a d b a n d C r e d i t a p p r o v e d f o r 2 0 0 5 Br o a d b a n d C r e d i t a p p r o v e d f o r 2 0 0 Br o a d b a n d C r e d i t a p p r o v e d f o r 2 0 7 Bro a d b a n d C r e d i t a p p r o v e d f o r 2 0 0 6 FI N A L (A ) N O R T E l A T M S W I T C H 1 3 2 . P o r t T - 1 A T M C a r d (B ) F U J I T S U O C - 4 8 S W I T C H 1 O C - 3 P r o t e c t C a r d ' 1 O C . 3 P i o t e c t C a r d 1 T r i b u t a r y S w K c h F a b r i c 1 O C - 4 8 D u a l C a r d Fu j i t s u N E C o n t r o l l e r C a r d 1 O C - 1 2 In t e r f a c e C a r d 1 O C - 1 9 2 C a r d 1 O C - 4 8 I n t e r f a c e C a r d Fu j i t s u 4 3 1 ) 0 M u l t i p l e x e r 1 O C - 4 8 C a r d 12 O S - I l r i t e r f a c e C a r d s 3 D a t a I n t e r f a c e C a r d s 16 F i l l e r C a r d s Fu j i t s u D C C U n l l 6 F u j i t s u T r i b u t a r y S w l l c h F a b r i c 6 D u a l O C - 4 8 C a r d s 7 O C . 1 9 2 C a r d s Fu J l l s u S w i t c h F a b r i c C U , S h e l v e 2 D S - 3 T r a n s m u x C a r d s tI M O V A Z D W D M Fib e r C h a r a c t e r i z a t i o n 8 F r e q u e n c y F i l l e r s OW D M M i s c E q u l p m e n l 60 A l I e n u i i t o r s 89 F i b e r J u m p e r s 10 A l I e n u i i t o r s AO V A I n l e l S e r v e r 4 T r a n s p o n d e r s Tr a n s c e l v o r Tr a n s p o n d e r a n d T r a n s c e i v e r 1/ 1 4 1 2 0 9 (D ) M I S C B O I S E C O A S S E T S sf p O p t i l a l C o n v e r t e r 2 F u s e P a n e l s Fl i e r S e r v e r Cis c o C A T 6 5 0 0 S w i t c h C a r d 2 I n t e r f a c e C a r d s QU A O C o r e S e r v e r 2 N O C T e l e v i s i o n S e t s Fir e S u p p r e s s i o n f o r C O (E ) I P S W l T C H ' B O I S E C O 2 D C P O W E R S u p p l y 1 C i s c o C A T 6 5 0 6 S w i t c h 1 C i s c o C A T 6 5 0 0 S w i t c h Ci s c o C A T 6 5 0 0 S w i l h c F a b r i c Ci s c o C A T 7 6 0 6 C h a s i s Cis c o C A T 7 6 0 Q S w i t c h 1 F l e x W a n M o d u l e Pw e r S u p p l y f o r 7 6 0 6 & 6 5 0 AT M O S - 3 p o r t A d p a t e r Cis c o C A T 3 7 5 0 S w i t c h & P o w e r SY R I N G A N E T W O R K S , L L C IP ~ . ' ~ B A H D i f f \ 7 ~ S J (F ) I P C O R E U P G R A D E Ci s c o 7 6 0 6 R o u t e r Cis c o C A T 6 5 0 0 F l e x w a n M o d u l e Cis c o C A T 6 5 0 0 S w l l c h Pa n e l s a n d f u s e s Cis c o C A T 7 6 0 0 C h a s l s 6 - S I o I Po w e r S u p p l i e s Cis c o C A T 6 5 0 0 G l g _ E M o d u l e Ci s c o C A T 6 5 0 0 G l g _ E M o d u l e Ca b l e , F a l r e A d a p t é r Ca b l e W i r e , A d a p t e r s & J u m p e r s 6 T r a n s c e i v e r s Ci s c o C a t 65 0 S w i t c h Ci s c o C a t 7 6 0 6 S w i t c h Ci s c o C A T 7 6 0 0 S w i t c h Ci s c o C A T 6 5 0 S w l l c h (G ) I P S E R V I C E S A S S E T S I D A H O F A l l S Cis c o 6 5 0 0 S w l l c h C a r d Cis c o 7 6 0 6 C h a s l s Gi g _ è C a r d & P o w e r S u p p l i e s 2 E n h a n c e d F l e x W a n F a b r i c Cis c o C A T 6 5 0 0 S w i t c h Cis c o C A T 7 6 0 R o u t e r C h a s i s 2 C i s c o C A T 7 6 0 P o w e r S u p p l y Cis c o C A T 7 6 0 6 G l g . E R o u t e r 2 F l a s h M e m o r y Op t i c a l C o n v e r t e r (H ) H A G E R M A N H U T Cis c o C A T 3 7 5 0 S w l l c h 1 OC - 1 2 Ca r d (I ) H A i l E Y H U T 1 3 - P o r t O S - 3 A T M C a r d Co r e S w l l c h F a n T r a y , C h a s i s , P o w e r Et h e r n e t R o u t e r (J ) C A L D W E l l H U T 1 O C - 3 I n l e r f a c e C a r d 2 D S - 3 T r a n s m u x C a r d s (K ) P A Y E T T E H U T 2 A l r c o n d i t i o n l n g U n i t s Ca b l n e r s , R a c k , C a b l e & P a n e l s Po w e r S y s t e m (l ) E Q U I P M E N T A T C U S T O M E R P R E M I S E S Fib e r R a c k E n c l o s u r e s UP S N e t w o r k 18 S F P G b i c M o d u l e s 5 C i s c o 3 7 5 0 S w i t c h e s 5 C a b i n e t s Fu j i t s u F l a s h w a v e M u l t i p l e x e r 4 W a l l . M o u n t S p l i c e C e n t e r 2 O S . 1 C a r d s & T i m i n g C a b l e s 2 C i s c o C A T 3 7 5 0 S w l l c h e s In t a r f a c M u x C a r d 3 O S X P a n e l s Cis c o C A T 3 7 5 0 S w K c h Ro u t e r a n d T - l C a r d Fu J t l s u 5 O S - I C a r d s Fu j t l s u 4 O C - 1 2 C a r d s (M ) H A I I . E Y P U B L I C S A F E T Y Sm a r t U P S , F i b e r R a c k s , B u l k h e a d 4 S F P G b i c M o d u l e s Ca b i n e t s Co n c r e l e B o x e s , I r o n R i n g s Fib e r S p l i c i n g Fi b e r C m s t r u c t i o n C o s t s Co s t o f C o n d u i t (N ) C L A Y S P E A K P A Y E T T E Co s t o f C o n d u i t Co s t o f F i b e r Fi b e r C o n s t r u c l l o n Co s t o f S p l i c i n g Su r v e y n g C o s l s Pe r m i t s & E a s e m e n t s Ha n d H o l e s & O t h e r M i s c (0 ) C I T Y O F P A Y E T T E Co s t o f C o n d u i t & ! F i b e r Fi b e r C o n s t r u c t i o n Co s t o f S p l i c i n g Pe r m li s & S u r v e y i n g C o s t s Ju m p e r s , A l l e n u a t o r s & H a n d h o l e s (P ) B O I S E T O C A L D W E l l F I B E R R O U T E 1.8 4 S o u n d W a l l S t a k i n g Re l o c a t e F i b e r & H y d r o S e e d Re p a i r F i b e r a l o n g 1 - 8 4 Fib e r S p l i c i n g Co s t s o f 4 8 c o u n t F i b e r Co n s t r u e t l o n o f F i b e r P l a c e m e n t (Q ) K E T C H U M - T I M M E R M A N H i l L F I B E R Fib e r I n s t a l l a t i o n & S p l i c i n g C:\ U s e r s \ b a c h c h i \ o c u m e n l s \ P J D \ B R O A O B A N D . J N V S T _ C R E D I T _ 2 0 0 8