HomeMy WebLinkAbout20080118Application.pdf-Sxlga Syringa Networks, LLC
3795 S. Development Ave., Suite i 00
Boise, ID 83715
Phone: 208.229.6100
Fax: 208.229.61 i 0 szq--t-og-q
Januar 18, 2008
Grace Seaman
Idaho Public Utilties Commission
472 W. Washington
P.O. Box 83720
Boise, In 83720-0074
Dear Grace,
RE:Broaclandlnvfilìtment Tax Credit - Syrga Networks, LLC for 2007
r.c:c:co'-:i ;0% mnco m
~o
w.)
I have attached our ñlipg for the Broadband Investment Tax Credit for 2007.
We invested a total of $769,513 for the year ended December 31,2007. I have
attached the detailed report of our investments along with relevant footnotes
for your purew. These assets were operational in 2007
Please let me know if you have any questions relating to the information that I
have submitted.
~_.
sJda .~ " On
21m8 JAN 18 Ph j: uj
3795 S. Development Avenue, Suite #100Boise, ID 83705
BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION
IN THE MATTR OF THE APPLICATION
OF SYRNGA NETWORK, LLC., FOR
BROADBAND INVSTMENT TAX CREDIT
CERTIFICATION
Case No: SZ9-T-oC6-d
SYRNGA NElWORK,
LLC's APPLICATION
syrnga Networks, LLCfiles this Application forån Idaho Public Utilities
Commission ("Commission") order certifyng that certin telecommunications
equipment is eligible for the broadband infrastructure tax credit authorized by
Section 63-3029, Idao Code. In support of its Application, Syrnga Networks,
LLC states as follows:
1) Syrnga Networks, LLC is a provider of wholesale broadband
telecommunications servce, and other telecommunications servces in southern
Idaho.
2) During the calendar year 2007, Syrnga Networks, LLC made
certain investments that constitute "qualified broadband equipment" within the
meaning of Section 63-3029(I)(3)(b), Idaho Code. Exhibit A - 2004 (B), attached
hereto, describes Syringa Networks, LLC's qualified broadband equipment and
contains the information and representation required by this Commission's
Order No. 28784 in Case No. GNR-T-01-10.
3) Communications regarding this application should be addressed to:
Bachchi Samahon-Oumar
Syrnga Networks, LLC
3795 S. Development Ave, Suite #100
Boise, ID 83705
4) Applicant does not believe that the public interest requires a
hearing on this matter, and therefore requests that the Commission approve the
Application by Minute Order or under Modified Procedure. In the event the
Commission determines that further proceedings are necessary, Applicant stands
ready for immediate hearings.
WHEREFORE, Syrnga Networks, LLC requests that the Commission
issue its order determining that the installed equipment in Exhibit A constitutes
qualified broadband equipment eligible for the investment tax credit authorized
by Section 63-30291, Idaho Code.
RESPECTFULLY SUBMITTED This 18
SY
R
I
N
G
A
N
E
T
W
O
R
K
S
,
L
L
C
To
t
a
l
In
v
e
s
t
m
e
n
t
s
i
n
t
h
e
S
y
r
i
n
g
a
F
i
b
e
r
O
p
t
i
c
N
e
t
w
o
r
k
:
J
a
n
u
a
r
y
1
-
D
e
c
e
m
b
e
r
3
1
,
2
0
0
7
ie
m
e
n
s
-
D
i
g
i
t
a
l
i
t
c
h
1,
3
8
9
,
7
9
0
41
,
6
8
5
1,
4
3
1
,
4
7
5
,
,
7
5
1,
1
7
5
,
2
0
4
17
1
,
5
4
3
84
,
7
2
8
1,
4
3
1
,
4
7
5
No
r
t
e
l
-
A
T
M
S
w
i
t
c
h
67
9
,
0
2
4
26
,
6
2
5
70
5
,
6
4
9
70
5
,
6
4
9
0
63
0
,
0
6
2
50
,
6
7
1
24
,
9
1
6
70
5
,
6
4
9
Zh
o
n
e
s
-
D
A
C
S
93
,
2
5
7
0
93
,
2
5
7
93
,
2
5
7
0
77
,
8
4
1
9,
5
2
1
5,
8
9
5
93
,
2
5
7
Fu
j
i
t
s
u
-
S
O
N
E
T
O
C
-
4
8
M
u
l
t
i
p
l
e
x
e
r
s
1,
2
1
2
,
1
4
6
17
,
4
0
9
1,
7
1
2
,
8
7
3
1,
2
2
9
,
5
5
5
48
3
,
3
1
8
1,
4
7
5
,
4
1
7
15
8
,
9
4
9
78
,
5
0
7
1,
7
1
2
,
8
7
3
Mo
v
a
z
-
D
e
n
s
e
W
a
v
e
D
i
v
i
s
i
o
n
a
l
M
u
l
t
i
p
l
e
x
e
r
s
83
3
,
6
8
3
13
3
,
1
8
0
97
4
,
6
9
6
96
6
,
8
6
3
7,8
3
3
89
9
,
3
1
7
40
,
9
2
2
34
,
4
5
7
97
4
,
6
9
6
Te
k
e
l
e
c
-
S
T
P
70
4
,
2
2
2
0
70
4
,
2
2
2
70
4
,
2
2
2
0
56
5
,
1
3
9
93
,
7
9
0
45
,
2
9
3
70
4
,
2
2
2
Po
w
e
r
B
o
a
r
d
47
9
,
0
0
2
0
47
9
,
0
0
2
47
9
,
0
0
2
0
42
3
,
9
0
4
23
,
3
3
6
31
,
7
6
2
47
9
,
0
0
2
Po
w
e
r
G
e
n
e
r
a
t
o
r
56
,
5
3
9
0
56
,
5
3
9
56
,
5
3
9
0
44
,
2
7
0
8,6
5
7
3,
6
1
2
56
,
5
3
9
Po
w
e
r
B
a
t
t
e
r
i
e
s
87
,
7
3
5
0
87
,
7
3
5
87
,
7
3
5
0
71
,
3
2
1
10
,
9
6
7
5,
4
4
7
87
,
7
3
5
Mi
s
c
B
o
i
s
e
C
e
n
t
r
a
l
O
f
f
c
e
E
q
u
i
p
m
e
n
t
68
5
,
6
9
2
21
9
,
0
8
5
1,
0
4
2
,
4
9
7
90
4
,
7
7
7
13
7
,
7
2
0
1,
0
2
1
,
3
3
0
11
,
3
9
1
9,
7
7
6
1,
0
4
2
,
4
9
7
IP
S
e
r
v
i
c
e
s
E
q
u
i
p
m
e
n
t
i
n
I
d
a
h
o
F
a
l
l
s
13
3
,
7
8
6
17
,
8
8
2
19
9
,
2
7
8
15
1
,
6
6
8
47
,
6
1
0
19
9
,
2
7
8
0
0
19
9
,
2
7
8
Ha
g
e
r
m
a
n
H
u
t
(
E
l
e
c
t
r
o
n
i
c
s
l
E
n
g
i
n
e
e
r
i
n
g
&
O
t
h
e
r
C
o
s
t
s
)
13
2
,
9
5
1
1,
2
1
1
13
4
,
1
6
2
13
4
,
1
6
2
0
10
4
,
5
0
7
5,2
3
7
24
,
4
1
8
13
4
,
1
6
2
Ha
i
l
e
y
H
u
t
(
E
l
e
c
r
o
n
i
c
s
/
E
n
g
i
n
e
e
r
i
n
g
&
O
t
h
e
r
C
o
t
s
)
30
1
,
7
6
9
41
,
0
9
1
35
9
,
6
4
0
34
2
,
8
6
0
16
,
7
8
0
34
1
,
4
6
8
12
,
0
8
5
6,
0
8
7
35
9
,
6
4
0
Ca
l
d
w
e
l
l
H
u
t
(
E
l
e
c
t
r
o
n
i
c
s
/
E
n
g
i
n
e
e
r
i
n
g
&
O
t
h
e
r
C
o
s
t
s
)
85
,
4
5
7
0
85
,
4
5
7
85
,
4
5
7
0
66
,
6
0
4
6,3
0
6
12
,
5
4
7
85
,
4
5
7
Em
m
e
t
t
H
u
t
(
E
l
e
c
r
o
n
i
c
s
/
E
n
g
i
n
e
e
r
i
n
g
&
O
t
h
e
r
C
o
s
t
s
)
72
,
7
4
2
0
72
,
7
4
2
72
,
7
4
2
0
48
,
8
6
0
19
,
8
0
1
4,
0
8
1
72
,
7
4
2
Me
r
i
d
i
a
n
I
S
P
(
I
d
a
h
o
S
t
a
t
e
P
o
l
i
c
e
)
-
W
o
r
k
O
r
d
e
r
#1
1
3
13
7
,
3
8
6
0
13
7
,
3
8
6
13
7
,
3
8
6
0
98
,
4
2
9
25
,
9
2
1
13
,
0
3
6
13
7
,
3
8
6
FI
B
E
R
O
P
T
I
C
R
O
U
T
E
S
Mi
l
e
s
Bl
i
s
s
t
o
B
u
r
l
e
y
-
W
o
r
k
O
r
d
e
r
#
1
0
1
·
88
.
2
7
5,9
7
7
,
2
4
6
0
5,9
7
7
,
2
4
6
5,
9
7
7
,
2
4
6
0
5,
0
2
2
,
6
2
3
53
6
,
0
9
0
41
8
,
5
3
3
5,
9
7
7
,
2
4
6
Bl
i
s
s
t
o
B
o
i
s
e
-
W
o
r
k
O
r
d
e
r
#
1
0
2
94
.
9
3
5,4
3
1
,
9
4
2
3,
1
0
1
5,4
3
5
,
0
4
3
5,
4
3
5
,
0
4
3
0
4,
8
6
0
,
6
9
0
14
4
,
6
7
9
42
9
,
6
7
4
5,
4
3
5
,
0
4
3
Bo
i
s
e
t
o
C
a
l
d
w
e
l
l
-
W
o
r
k
O
r
d
e
r
#
1
0
3
28
.
5
5
2,1
9
4
,
6
7
6
18
,
3
3
5
2,2
4
2
,
7
5
0
2,
2
1
3
,
0
1
1
29
,
7
3
9
1,
8
8
8
,
0
7
4
27
8
,
1
6
1
76
,
5
1
4
2,
2
4
2
,
7
5
0
Ca
l
d
w
e
l
l
t
o
F
r
u
i
t
l
a
n
d
-
W
o
r
k
O
r
d
e
r
#
1
0
4
25
.
1
8
63
6
,
8
3
0
63
6
,
8
4
3
63
6
,
8
4
3
0
48
6
,
9
6
3
83
,
8
8
2
65
,
9
9
8
63
6
,
8
4
3
Fr
u
i
t
l
a
n
d
t
o
W
e
i
s
e
r
-
W
o
r
k
O
r
d
e
r
#
1
0
5
17
.
8
8
68
7
,
6
3
8
0
68
7
,
6
3
8
68
7
,
6
3
8
0
48
7
,
2
9
8
15
7
,
3
6
1
42
,
9
7
9
68
7
,
6
3
8
In
d
i
a
n
V
a
l
l
e
y
t
o
E
m
m
e
t
t
-
W
o
r
k
O
r
d
e
r
#
1
0
6
3.
2
5
14
7
,
5
0
2
0
14
7
,
5
0
2
14
7
,
5
0
2
0
12
7
,
9
8
5
15
,
2
8
4
4,
2
3
3
14
7
,
5
0
2
Em
m
e
t
t
t
o
E
a
g
l
e
-
W
o
r
k
O
r
d
e
r
#
1
0
7
31
.
0
7
1,
4
5
0
,
9
1
8
0
1,
4
5
0
,
9
1
8
1,
4
5
0
,
9
1
8
0
1,
1
5
4
,
5
3
4
24
8
,
3
0
5
48
,
0
7
9
1,
4
5
0
,
9
1
8
Du
b
o
i
s
t
o
P
a
r
k
e
r
-
W
o
r
k
O
r
d
e
r
#
1
0
8
45
.
9
5
1,
7
8
8
,
8
3
1
0
1,
7
8
8
,
8
3
1
1,
7
8
8
,
8
3
1
0
1,
5
3
5
,
8
5
9
16
6
,
7
8
9
86
,
1
8
2
1,
7
8
8
,
8
3
1
Mu
d
L
a
k
e
t
o
H
o
w
e
-
W
o
r
k
O
r
d
e
r
#
1
0
9
22
.
4
1
86
2
,
9
6
5
0
86
2
,
9
6
5
86
2
,
9
6
5
0
75
0
,
2
3
9
82
,
4
6
2
30
,
2
6
4
86
2
,
9
6
5
Ga
l
e
n
a
t
o
K
e
t
c
h
u
m
-
W
o
r
k
O
r
d
e
r
#
1
1
0
26
.
8
1
1,
7
4
7
,
3
7
9
0
1,
7
4
7
,
3
7
9
1,7
4
7
,
3
7
9
0
1,
2
3
0
,
1
0
8
44
0
,
3
6
9
76
,
9
0
2
1,
7
4
7
,
3
7
9
Ke
t
c
h
u
m
t
o
T
i
m
m
e
r
m
a
n
H
i
l
-
W
o
r
k
O
r
d
e
r
#
1
1
1
30
.
2
2
1,
4
1
8
,
7
5
2
0
1,
4
1
8
,
7
5
2
1,4
1
8
,
7
5
2
0
1,
0
1
0
,
0
9
0
29
9
,
2
2
1
10
9
,
4
4
1
1,
4
1
8
,
7
5
2
Ti
m
m
e
r
m
a
n
H
i
l
t
o
F
a
i
r
f
i
e
l
d
-
W
o
r
k
O
r
d
e
r
#
1
1
2
34
.
7
9
1,
1
7
,
6
1
0
0
1,
1
7
,
6
1
0
1,
1
7
,
6
1
0
0
96
1
,
7
4
0
97
,
3
6
1
11
8
,
5
0
9
1,
1
7
,
6
1
0
Fi
b
e
r
C
o
n
n
e
c
i
o
n
t
o
A
l
l
t
e
l
C
e
l
l
T
o
w
e
r
i
n
E
m
m
e
t
t
0
0
11
,
5
9
7
0
11
,
5
9
7
11
,
5
9
7
0
0
11
,
5
9
7
Fi
b
e
r
C
o
n
n
e
c
i
o
n
t
o
H
a
i
l
e
y
C
o
u
r
t
H
o
u
s
e
0
0
27
,
0
8
6
0
27
,
0
8
6
27
,
0
8
6
0
0
27
,
0
8
6
Fi
b
e
r
C
o
n
n
e
c
t
i
o
n
t
o
K
e
t
c
h
u
m
W
i
r
e
l
e
s
s
0
0
7,
8
3
0
0
7,
8
3
0
7,8
3
0
0
0
7,
8
3
0
Le
v
e
l
3
B
o
i
s
e
I
n
t
e
r
c
o
n
n
e
c
t
i
o
n
91
,
0
8
3
0
91
,
0
8
3
91
,
0
8
3
0
71
,
2
3
4
15
,
8
4
4
4,
0
0
5
91
,
0
8
3
Le
v
e
l
3
M
o
u
n
t
a
i
n
H
o
m
e
I
n
t
e
r
c
o
n
n
e
c
t
i
o
n
41
,
3
3
5
0
41
,
3
3
5
41
,
3
3
5
0
33
,
7
6
3
6¡
5
0
6
1,
0
6
7
41
,
3
3
5
Di
v
e
r
s
e
R
o
u
t
e
i
n
t
o
S
y
r
i
n
g
a
H
e
a
d
q
u
a
r
t
e
r
s
21
,
0
3
2
0
21
,
0
3
2
21
,
0
3
2
0
15
,
9
8
3
5,
0
4
9
0
21
,
0
3
2
30
,
7
6
0
9
3
3
51
9
,
6
0
4
32
,
0
5
0
,
0
5
0
31
,
2
8
0
5
3
7
76
9
,
5
1
3
26
,
9
2
6
,
6
4
32
2
6
4
6
0
1,
8
9
6
,
9
4
32
,
0
5
0
,
0
4
Br
o
a
d
b
a
n
d
C
r
e
d
i
t
p
e
n
d
i
n
g
f
o
r
2
0
0
7
23
,
0
8
5
Br
o
a
d
b
a
n
d
C
r
e
d
i
t
a
p
p
r
o
v
e
d
f
o
r
2
0
0
1
&
2
0
0
2
To
t
l
B
r
o
a
d
b
a
n
d
I
n
v
e
s
t
m
e
n
t
T
a
x
C
r
e
i
t
P
e
n
d
i
n
g
2
0
0
7
=
23
,
0
8
5
Br
o
a
d
b
a
n
d
C
r
e
d
i
t
a
p
p
r
o
v
e
d
f
o
r
2
0
0
3
Br
o
a
d
b
a
n
d
C
r
e
d
i
t
a
p
p
r
o
v
e
d
f
o
r
2
0
0
4
Br
o
a
d
b
a
n
d
C
r
e
d
i
t
a
p
p
r
o
v
e
d
f
o
r
2
0
0
5
Br
o
a
d
b
a
n
d
C
r
e
d
i
t
a
p
p
r
o
v
e
d
f
o
r
2
0
0
6
Br
o
a
d
b
a
n
d
C
r
e
d
i
t
p
e
n
d
i
n
g
f
o
r
2
0
0
7
31
,
9
3
7
,
0
6
7
BR
O
A
D
B
A
N
D
J
N
V
S
T
_
C
R
E
D
I
T
_
2
0
0
7
1
o
f
2
FIN
A
L
SY
R
I
N
G
A
N
E
T
W
O
R
K
S
,
L
t
C
To
t
a
l
In
v
e
s
t
m
e
n
t
s
i
n
t
h
e
S
y
r
i
n
g
a
F
i
b
e
r
O
p
t
i
c
N
e
t
w
o
r
k
:
J
a
n
u
a
r
y
1
-
D
e
c
e
m
b
e
r
3
1
,
2
0
0
7
FO
O
T
N
O
T
E
S
:
l
F
u
j
i
t
s
u
S
O
N
E
T
E
q
u
i
p
m
e
n
t
&
C
a
r
d
s
-
2
O
C
-
1
2
Q
u
a
d
P
o
r
t
C
a
r
d
s
-
2
O
C
-
1
2
D
u
a
l
P
o
r
t
C
a
r
d
s
-
1
D
S
-
3
&
2
D
S
-
3
P
o
r
t
C
a
r
d
s
- F
u
j
t
i
s
u
4
5
0
0
M
u
l
t
i
p
l
e
x
e
r
S
h
e
l
f
-
3
S
w
i
t
c
h
M
a
t
r
i
x
-
F
u
~
i
s
u
1
2
-
P
o
r
t
O
C
-
4
8
O
p
t
i
c
a
l
In
t
e
r
f
a
c
e
C
a
r
d
-
F
u
j
i
t
s
u
1
O
C
-
3
(
O
p
t
i
c
a
l
In
t
e
r
f
a
c
e
C
a
r
d
-
F
u
j
f
t
s
u
2
D
S
-
3
9
-
P
o
r
t
I
n
t
e
r
f
a
c
e
C
a
r
d
- F
u
j
i
t
s
u
T
i
m
i
n
g
&
A
l
a
r
m
i
n
g
C
a
b
l
e
s
-
F
u
j
i
t
s
u
1
2
E
n
h
a
n
c
e
d
D
S
-
1
1
4
-
P
o
r
t
C
a
r
d
s
-
F
u
j
i
t
s
u
2
D
S
-
1
P
r
o
t
e
c
t
1
4
-
P
o
r
t
C
a
r
d
s
- F
u
j
i
t
s
u
2
D
S
-
3
T
r
a
n
s
m
u
x
C
a
r
d
s
- F
u
j
i
t
s
u
M
i
s
e
C
a
b
l
e
A
s
s
e
m
b
l
y
- F
u
j
i
t
s
u
4
3
0
0
F
l
a
s
h
w
a
v
e
S
h
e
l
f
A
s
s
e
m
b
l
y
-
F
u
j
i
t
s
u
3
2
0
-
G
S
w
i
t
c
h
M
a
t
r
i
x
f
o
r
4
5
0
0
M
u
x
- F
u
j
i
t
s
u
3
E
n
h
a
n
c
e
d
O
C
-
1
2
C
a
r
d
s
-
F
u
j
i
t
s
u
3
O
C
-
1
2
L
R
2
C
a
r
d
s
-
F
u
j
i
t
s
u
3
D
S
-
3
C
a
r
d
s
-
F
u
j
i
t
u
4
5
0
0
M
u
l
t
i
p
l
e
x
e
r
C
P
U
-
F
u
j
i
t
u
1
D
S
-
3
8
-
P
o
r
t
C
a
r
d
&
p
r
o
c
s
u
n
i
t
-
F
u
j
t
i
s
u
4
5
0
0
C
P
U
-
F
u
j
i
t
s
u
1
8
-
P
o
r
t
D
S
-
3
C
a
r
d
-
F
u
j
i
t
s
u
2
T
i
m
i
n
g
U
n
i
t
s
-
F
u
j
i
t
s
u
2
2
0
-
G
V
T
1
.
5
S
w
i
t
c
h
-
F
u
j
i
t
s
u
2
D
u
a
l
O
C
-
4
8
Q
u
a
d
P
o
r
t
C
a
r
d
-
F
u
j
i
t
s
u
2
O
C
-
3
Q
u
a
d
P
o
r
t
C
a
r
d
-
F
u
j
i
t
s
u
F
a
n
U
n
i
t
-
F
u
j
i
t
s
u
1
D
S
-
3
/
e
c
1
S
w
i
t
c
h
-
F
u
j
i
t
s
u
2
3
0
-
G
S
w
i
t
c
h
M
a
t
r
i
x
-
F
u
j
i
t
s
u
2
O
C
-
1
2
Q
u
a
d
P
o
r
t
C
a
r
d
-
F
u
j
i
t
s
u
2
(
2
.
5
-
G
)
V
T
S
w
i
t
c
h
F
a
b
r
i
c
-
F
u
j
i
t
s
u
2
S
T
S
S
w
i
t
c
h
F
a
b
r
i
c
-
F
u
j
i
t
s
u
4
D
S
-
1
E
n
h
a
n
c
e
d
P
a
t
h
C
a
r
d
s
-
F
u
j
i
t
s
u
1
D
S
-
1
E
n
h
a
n
c
e
P
r
o
t
e
c
t
C
a
r
d
-
F
u
j
i
t
s
u
1
V
T
1
.
5
S
w
i
t
c
h
M
a
t
r
x
-
F
u
j
i
t
s
u
2
O
C
-
1
2
Q
u
a
d
P
o
r
t
C
a
r
d
s
-
F
u
j
i
t
s
u
2
O
C
-
3
C
a
r
d
s
&
2
S
w
i
t
c
h
M
a
t
r
i
x
-
F
u
j
i
t
s
u
2
P
r
e
l
o
a
d
e
d
S
o
f
t
a
r
e
U
p
g
r
a
d
e
-
F
u
j
i
t
s
u
2
D
u
a
l
O
C
-
4
8
C
a
r
d
s
-
F
u
j
i
t
s
u
2
3
0
0
-
G
S
T
S
1
S
w
i
t
c
h
M
a
t
r
i
-
F
u
j
i
t
s
u
1
O
C
-
4
8
I
n
t
e
r
f
a
c
e
C
a
r
d
s
-
F
u
j
i
t
s
u
1
O
C
-
4
8
D
u
a
l
P
o
r
t
C
a
r
d
s
!l
M
o
v
a
z
-
D
e
n
s
e
W
a
v
e
D
i
v
i
s
i
o
n
a
l
M
u
l
t
p
l
e
x
e
r
Mu
l
t
i
p
i
e
O
p
t
i
c
a
l
C
o
v
e
r
t
e
r
s
&
F
u
s
e
P
a
n
e
l
s
.!
M
i
s
c
e
l
l
a
n
e
o
u
s
B
o
i
s
e
C
e
n
t
r
a
l
O
f
f
c
e
E
q
u
i
p
m
e
t
20
0
A
m
p
s
R
e
c
t
i
f
i
e
r
4 3
0
0
-
G
i
g
D
i
s
k
D
r
i
v
e
s
Da
t
a
C
o
m
m
C
h
a
n
n
e
l
U
n
i
t
Fu
j
i
t
s
u
C
e
n
t
r
a
l
P
r
o
c
e
s
i
n
g
U
n
i
t
3
3
7
5
0
R
o
u
t
e
r
U
p
g
r
a
d
e
s
4 3
7
5
0
S
w
i
t
c
h
e
s
3
D
S
X
P
a
n
e
i
s
HP
P
r
o
l
i
a
n
t
D
L
3
6
0
D
N
S
S
y
s
t
e
m
1
D
S
X
-
3
P
a
n
e
l
3
D
S
X
P
a
n
e
i
s
1
D
S
X
-
4
R
M
o
d
u
l
e
s
l
l
n
s
e
r
t
11
-
P
o
r
t
E
n
h
a
n
c
e
d
A
I
M
D
S
-
3
P
o
r
t
1
E
n
h
a
n
c
e
d
F
l
e
x
W
A
N
V
i
d
e
o
M
o
d
u
l
e
3
M
o
d
u
l
e
s
S
u
r
g
e
P
r
o
t
e
c
t
o
r
s
&
I
n
s
t
a
l
l
a
t
i
o
n
Cis
c
o
R
o
u
t
e
r
W
S
-
S
U
P
7
2
0
R
e
f
u
r
b
i
s
h
e
d
S
w
i
t
c
h
Cis
c
o
6
5
0
6
S
w
i
t
c
h
&
F
a
n
T
r
a
y
s!
I
P
S
e
r
v
i
c
e
s
E
q
u
i
p
m
e
n
t
i
n
I
d
a
h
o
F
a
l
l
s
Ba
r
r
a
c
u
d
e
W
e
b
F
i
l
t
e
r
i
n
g
CA
T
6
5
0
0
S
w
i
t
c
h
CA
T
7
6
0
0
S
w
i
t
c
h
CA
T
6
5
0
6
C
h
a
s
s
i
s
2
2
5
0
0
-
W
P
o
w
e
r
S
u
p
p
l
y
CA
T
6
5
0
0
S
w
i
t
c
h
Fu
s
e
P
a
n
e
l
3
W
a
l
l
C
h
a
s
s
i
s
2
U
P
S
U
n
i
f
i
e
d
P
o
w
e
r
S
u
p
p
l
y
U
n
i
t
s
Ci
s
c
o
C
a
t
a
l
y
s
t
3
7
5
0
S
w
i
t
c
h
Ci
s
c
o
C
a
t
a
l
y
s
t
3
7
5
0
S
w
i
t
c
h
En
h
a
n
c
e
F
l
e
x
W
A
N
M
o
d
u
l
e
FIN
A
L
l
Ha
i
l
e
y
H
u
t
(
E
l
e
c
t
r
o
n
i
c
s
/
E
n
g
i
n
e
e
r
i
n
g
&
O
t
h
e
r
C
o
s
t
s
)
Bi-
L
e
v
e
l
C
a
b
i
n
e
t
Ci
r
c
u
t
i
B
r
e
a
k
e
r
s
,
P
a
n
e
l
s
&
P
a
r
t
s
Ci
s
c
o
C
a
t
a
l
y
t
3
7
5
0
S
w
i
t
c
h
Fu
j
i
t
s
u
O
C
-
4
8
In
t
e
r
f
a
c
e
C
a
r
d
s
f
Bo
i
s
e
t
o
C
a
l
d
w
e
l
l
-
W
o
r
k
O
r
d
e
r
#
1
0
3
Co
s
t
t
o
r
e
l
o
c
a
t
e
f
i
b
e
r
a
t
L
o
c
u
s
t
G
r
o
v
e
1
-
8
4
Co
s
t
t
o
r
e
l
o
c
t
e
f
i
b
e
r
a
t
F
r
a
n
k
l
i
n
&
1
-
8
4
N
a
m
p
a
Fib
e
r
C
o
n
n
e
c
i
o
n
t
o
A
l
l
t
e
l
C
e
l
l
T
o
w
e
r
i
n
E
m
m
e
t
t
Co
s
t
t
o
p
l
a
c
e
d
u
c
t
&
f
i
b
e
r
t
o
c
o
n
n
e
c
t
t
o
A
l
l
t
e
l
'
s
c
e
i
l
t
o
w
e
r
i
n
E
m
m
e
t
t
.
9 .!
Fib
e
r
C
o
n
n
e
c
i
o
n
t
o
H
a
i
l
e
y
C
o
u
r
t
H
o
u
s
e
Co
s
t
o
f
c
o
n
n
e
c
t
t
o
C
o
u
r
t
H
o
u
s
e
i
n
H
a
i
l
e
y
,
I
D
Co
s
t
o
f
d
u
c
t
a
n
d
f
i
b
e
r
Co
s
t
o
f
H
a
n
d
H
o
l
e
Co
s
t
o
f
S
p
l
i
c
e
T
r
a
y
s
Cis
c
o
C
a
t
a
l
y
s
t
3
7
5
0
S
w
i
t
c
h
Ele
c
t
r
i
c
a
l
C
o
s
t
s
Fi
b
e
r
C
o
n
n
e
c
t
i
o
n
t
o
K
e
t
c
h
u
m
W
i
r
e
l
e
s
s
Co
s
t
t
o
d
u
c
V
f
i
b
e
r
,
t
r
e
n
c
h
i
n
g
a
n
d
c
o
n
t
r
a
c
t
l
a
b
o
r
c
o
t
s
BR
O
A
D
B
A
N
D
J
N
V
S
T
_
C
R
E
D
I
T
_
2
0
0
7
2
o
f
2