Loading...
HomeMy WebLinkAbout20080118Application.pdf-Sxlga Syringa Networks, LLC 3795 S. Development Ave., Suite i 00 Boise, ID 83715 Phone: 208.229.6100 Fax: 208.229.61 i 0 szq--t-og-q Januar 18, 2008 Grace Seaman Idaho Public Utilties Commission 472 W. Washington P.O. Box 83720 Boise, In 83720-0074 Dear Grace, RE:Broaclandlnvfilìtment Tax Credit - Syrga Networks, LLC for 2007 r.c:c:co'-:i ;0% mnco m ~o w.) I have attached our ñlipg for the Broadband Investment Tax Credit for 2007. We invested a total of $769,513 for the year ended December 31,2007. I have attached the detailed report of our investments along with relevant footnotes for your purew. These assets were operational in 2007 Please let me know if you have any questions relating to the information that I have submitted. ~_. sJda .~ " On 21m8 JAN 18 Ph j: uj 3795 S. Development Avenue, Suite #100Boise, ID 83705 BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION IN THE MATTR OF THE APPLICATION OF SYRNGA NETWORK, LLC., FOR BROADBAND INVSTMENT TAX CREDIT CERTIFICATION Case No: SZ9-T-oC6-d SYRNGA NElWORK, LLC's APPLICATION syrnga Networks, LLCfiles this Application forån Idaho Public Utilities Commission ("Commission") order certifyng that certin telecommunications equipment is eligible for the broadband infrastructure tax credit authorized by Section 63-3029, Idao Code. In support of its Application, Syrnga Networks, LLC states as follows: 1) Syrnga Networks, LLC is a provider of wholesale broadband telecommunications servce, and other telecommunications servces in southern Idaho. 2) During the calendar year 2007, Syrnga Networks, LLC made certain investments that constitute "qualified broadband equipment" within the meaning of Section 63-3029(I)(3)(b), Idaho Code. Exhibit A - 2004 (B), attached hereto, describes Syringa Networks, LLC's qualified broadband equipment and contains the information and representation required by this Commission's Order No. 28784 in Case No. GNR-T-01-10. 3) Communications regarding this application should be addressed to: Bachchi Samahon-Oumar Syrnga Networks, LLC 3795 S. Development Ave, Suite #100 Boise, ID 83705 4) Applicant does not believe that the public interest requires a hearing on this matter, and therefore requests that the Commission approve the Application by Minute Order or under Modified Procedure. In the event the Commission determines that further proceedings are necessary, Applicant stands ready for immediate hearings. WHEREFORE, Syrnga Networks, LLC requests that the Commission issue its order determining that the installed equipment in Exhibit A constitutes qualified broadband equipment eligible for the investment tax credit authorized by Section 63-30291, Idaho Code. RESPECTFULLY SUBMITTED This 18 SY R I N G A N E T W O R K S , L L C To t a l In v e s t m e n t s i n t h e S y r i n g a F i b e r O p t i c N e t w o r k : J a n u a r y 1 - D e c e m b e r 3 1 , 2 0 0 7 ie m e n s - D i g i t a l i t c h 1, 3 8 9 , 7 9 0 41 , 6 8 5 1, 4 3 1 , 4 7 5 , , 7 5 1, 1 7 5 , 2 0 4 17 1 , 5 4 3 84 , 7 2 8 1, 4 3 1 , 4 7 5 No r t e l - A T M S w i t c h 67 9 , 0 2 4 26 , 6 2 5 70 5 , 6 4 9 70 5 , 6 4 9 0 63 0 , 0 6 2 50 , 6 7 1 24 , 9 1 6 70 5 , 6 4 9 Zh o n e s - D A C S 93 , 2 5 7 0 93 , 2 5 7 93 , 2 5 7 0 77 , 8 4 1 9, 5 2 1 5, 8 9 5 93 , 2 5 7 Fu j i t s u - S O N E T O C - 4 8 M u l t i p l e x e r s 1, 2 1 2 , 1 4 6 17 , 4 0 9 1, 7 1 2 , 8 7 3 1, 2 2 9 , 5 5 5 48 3 , 3 1 8 1, 4 7 5 , 4 1 7 15 8 , 9 4 9 78 , 5 0 7 1, 7 1 2 , 8 7 3 Mo v a z - D e n s e W a v e D i v i s i o n a l M u l t i p l e x e r s 83 3 , 6 8 3 13 3 , 1 8 0 97 4 , 6 9 6 96 6 , 8 6 3 7,8 3 3 89 9 , 3 1 7 40 , 9 2 2 34 , 4 5 7 97 4 , 6 9 6 Te k e l e c - S T P 70 4 , 2 2 2 0 70 4 , 2 2 2 70 4 , 2 2 2 0 56 5 , 1 3 9 93 , 7 9 0 45 , 2 9 3 70 4 , 2 2 2 Po w e r B o a r d 47 9 , 0 0 2 0 47 9 , 0 0 2 47 9 , 0 0 2 0 42 3 , 9 0 4 23 , 3 3 6 31 , 7 6 2 47 9 , 0 0 2 Po w e r G e n e r a t o r 56 , 5 3 9 0 56 , 5 3 9 56 , 5 3 9 0 44 , 2 7 0 8,6 5 7 3, 6 1 2 56 , 5 3 9 Po w e r B a t t e r i e s 87 , 7 3 5 0 87 , 7 3 5 87 , 7 3 5 0 71 , 3 2 1 10 , 9 6 7 5, 4 4 7 87 , 7 3 5 Mi s c B o i s e C e n t r a l O f f c e E q u i p m e n t 68 5 , 6 9 2 21 9 , 0 8 5 1, 0 4 2 , 4 9 7 90 4 , 7 7 7 13 7 , 7 2 0 1, 0 2 1 , 3 3 0 11 , 3 9 1 9, 7 7 6 1, 0 4 2 , 4 9 7 IP S e r v i c e s E q u i p m e n t i n I d a h o F a l l s 13 3 , 7 8 6 17 , 8 8 2 19 9 , 2 7 8 15 1 , 6 6 8 47 , 6 1 0 19 9 , 2 7 8 0 0 19 9 , 2 7 8 Ha g e r m a n H u t ( E l e c t r o n i c s l E n g i n e e r i n g & O t h e r C o s t s ) 13 2 , 9 5 1 1, 2 1 1 13 4 , 1 6 2 13 4 , 1 6 2 0 10 4 , 5 0 7 5,2 3 7 24 , 4 1 8 13 4 , 1 6 2 Ha i l e y H u t ( E l e c r o n i c s / E n g i n e e r i n g & O t h e r C o t s ) 30 1 , 7 6 9 41 , 0 9 1 35 9 , 6 4 0 34 2 , 8 6 0 16 , 7 8 0 34 1 , 4 6 8 12 , 0 8 5 6, 0 8 7 35 9 , 6 4 0 Ca l d w e l l H u t ( E l e c t r o n i c s / E n g i n e e r i n g & O t h e r C o s t s ) 85 , 4 5 7 0 85 , 4 5 7 85 , 4 5 7 0 66 , 6 0 4 6,3 0 6 12 , 5 4 7 85 , 4 5 7 Em m e t t H u t ( E l e c r o n i c s / E n g i n e e r i n g & O t h e r C o s t s ) 72 , 7 4 2 0 72 , 7 4 2 72 , 7 4 2 0 48 , 8 6 0 19 , 8 0 1 4, 0 8 1 72 , 7 4 2 Me r i d i a n I S P ( I d a h o S t a t e P o l i c e ) - W o r k O r d e r #1 1 3 13 7 , 3 8 6 0 13 7 , 3 8 6 13 7 , 3 8 6 0 98 , 4 2 9 25 , 9 2 1 13 , 0 3 6 13 7 , 3 8 6 FI B E R O P T I C R O U T E S Mi l e s Bl i s s t o B u r l e y - W o r k O r d e r # 1 0 1 · 88 . 2 7 5,9 7 7 , 2 4 6 0 5,9 7 7 , 2 4 6 5, 9 7 7 , 2 4 6 0 5, 0 2 2 , 6 2 3 53 6 , 0 9 0 41 8 , 5 3 3 5, 9 7 7 , 2 4 6 Bl i s s t o B o i s e - W o r k O r d e r # 1 0 2 94 . 9 3 5,4 3 1 , 9 4 2 3, 1 0 1 5,4 3 5 , 0 4 3 5, 4 3 5 , 0 4 3 0 4, 8 6 0 , 6 9 0 14 4 , 6 7 9 42 9 , 6 7 4 5, 4 3 5 , 0 4 3 Bo i s e t o C a l d w e l l - W o r k O r d e r # 1 0 3 28 . 5 5 2,1 9 4 , 6 7 6 18 , 3 3 5 2,2 4 2 , 7 5 0 2, 2 1 3 , 0 1 1 29 , 7 3 9 1, 8 8 8 , 0 7 4 27 8 , 1 6 1 76 , 5 1 4 2, 2 4 2 , 7 5 0 Ca l d w e l l t o F r u i t l a n d - W o r k O r d e r # 1 0 4 25 . 1 8 63 6 , 8 3 0 63 6 , 8 4 3 63 6 , 8 4 3 0 48 6 , 9 6 3 83 , 8 8 2 65 , 9 9 8 63 6 , 8 4 3 Fr u i t l a n d t o W e i s e r - W o r k O r d e r # 1 0 5 17 . 8 8 68 7 , 6 3 8 0 68 7 , 6 3 8 68 7 , 6 3 8 0 48 7 , 2 9 8 15 7 , 3 6 1 42 , 9 7 9 68 7 , 6 3 8 In d i a n V a l l e y t o E m m e t t - W o r k O r d e r # 1 0 6 3. 2 5 14 7 , 5 0 2 0 14 7 , 5 0 2 14 7 , 5 0 2 0 12 7 , 9 8 5 15 , 2 8 4 4, 2 3 3 14 7 , 5 0 2 Em m e t t t o E a g l e - W o r k O r d e r # 1 0 7 31 . 0 7 1, 4 5 0 , 9 1 8 0 1, 4 5 0 , 9 1 8 1, 4 5 0 , 9 1 8 0 1, 1 5 4 , 5 3 4 24 8 , 3 0 5 48 , 0 7 9 1, 4 5 0 , 9 1 8 Du b o i s t o P a r k e r - W o r k O r d e r # 1 0 8 45 . 9 5 1, 7 8 8 , 8 3 1 0 1, 7 8 8 , 8 3 1 1, 7 8 8 , 8 3 1 0 1, 5 3 5 , 8 5 9 16 6 , 7 8 9 86 , 1 8 2 1, 7 8 8 , 8 3 1 Mu d L a k e t o H o w e - W o r k O r d e r # 1 0 9 22 . 4 1 86 2 , 9 6 5 0 86 2 , 9 6 5 86 2 , 9 6 5 0 75 0 , 2 3 9 82 , 4 6 2 30 , 2 6 4 86 2 , 9 6 5 Ga l e n a t o K e t c h u m - W o r k O r d e r # 1 1 0 26 . 8 1 1, 7 4 7 , 3 7 9 0 1, 7 4 7 , 3 7 9 1,7 4 7 , 3 7 9 0 1, 2 3 0 , 1 0 8 44 0 , 3 6 9 76 , 9 0 2 1, 7 4 7 , 3 7 9 Ke t c h u m t o T i m m e r m a n H i l - W o r k O r d e r # 1 1 1 30 . 2 2 1, 4 1 8 , 7 5 2 0 1, 4 1 8 , 7 5 2 1,4 1 8 , 7 5 2 0 1, 0 1 0 , 0 9 0 29 9 , 2 2 1 10 9 , 4 4 1 1, 4 1 8 , 7 5 2 Ti m m e r m a n H i l t o F a i r f i e l d - W o r k O r d e r # 1 1 2 34 . 7 9 1, 1 7 , 6 1 0 0 1, 1 7 , 6 1 0 1, 1 7 , 6 1 0 0 96 1 , 7 4 0 97 , 3 6 1 11 8 , 5 0 9 1, 1 7 , 6 1 0 Fi b e r C o n n e c i o n t o A l l t e l C e l l T o w e r i n E m m e t t 0 0 11 , 5 9 7 0 11 , 5 9 7 11 , 5 9 7 0 0 11 , 5 9 7 Fi b e r C o n n e c i o n t o H a i l e y C o u r t H o u s e 0 0 27 , 0 8 6 0 27 , 0 8 6 27 , 0 8 6 0 0 27 , 0 8 6 Fi b e r C o n n e c t i o n t o K e t c h u m W i r e l e s s 0 0 7, 8 3 0 0 7, 8 3 0 7,8 3 0 0 0 7, 8 3 0 Le v e l 3 B o i s e I n t e r c o n n e c t i o n 91 , 0 8 3 0 91 , 0 8 3 91 , 0 8 3 0 71 , 2 3 4 15 , 8 4 4 4, 0 0 5 91 , 0 8 3 Le v e l 3 M o u n t a i n H o m e I n t e r c o n n e c t i o n 41 , 3 3 5 0 41 , 3 3 5 41 , 3 3 5 0 33 , 7 6 3 6¡ 5 0 6 1, 0 6 7 41 , 3 3 5 Di v e r s e R o u t e i n t o S y r i n g a H e a d q u a r t e r s 21 , 0 3 2 0 21 , 0 3 2 21 , 0 3 2 0 15 , 9 8 3 5, 0 4 9 0 21 , 0 3 2 30 , 7 6 0 9 3 3 51 9 , 6 0 4 32 , 0 5 0 , 0 5 0 31 , 2 8 0 5 3 7 76 9 , 5 1 3 26 , 9 2 6 , 6 4 32 2 6 4 6 0 1, 8 9 6 , 9 4 32 , 0 5 0 , 0 4 Br o a d b a n d C r e d i t p e n d i n g f o r 2 0 0 7 23 , 0 8 5 Br o a d b a n d C r e d i t a p p r o v e d f o r 2 0 0 1 & 2 0 0 2 To t l B r o a d b a n d I n v e s t m e n t T a x C r e i t P e n d i n g 2 0 0 7 = 23 , 0 8 5 Br o a d b a n d C r e d i t a p p r o v e d f o r 2 0 0 3 Br o a d b a n d C r e d i t a p p r o v e d f o r 2 0 0 4 Br o a d b a n d C r e d i t a p p r o v e d f o r 2 0 0 5 Br o a d b a n d C r e d i t a p p r o v e d f o r 2 0 0 6 Br o a d b a n d C r e d i t p e n d i n g f o r 2 0 0 7 31 , 9 3 7 , 0 6 7 BR O A D B A N D J N V S T _ C R E D I T _ 2 0 0 7 1 o f 2 FIN A L SY R I N G A N E T W O R K S , L t C To t a l In v e s t m e n t s i n t h e S y r i n g a F i b e r O p t i c N e t w o r k : J a n u a r y 1 - D e c e m b e r 3 1 , 2 0 0 7 FO O T N O T E S : l F u j i t s u S O N E T E q u i p m e n t & C a r d s - 2 O C - 1 2 Q u a d P o r t C a r d s - 2 O C - 1 2 D u a l P o r t C a r d s - 1 D S - 3 & 2 D S - 3 P o r t C a r d s - F u j t i s u 4 5 0 0 M u l t i p l e x e r S h e l f - 3 S w i t c h M a t r i x - F u ~ i s u 1 2 - P o r t O C - 4 8 O p t i c a l In t e r f a c e C a r d - F u j i t s u 1 O C - 3 ( O p t i c a l In t e r f a c e C a r d - F u j f t s u 2 D S - 3 9 - P o r t I n t e r f a c e C a r d - F u j i t s u T i m i n g & A l a r m i n g C a b l e s - F u j i t s u 1 2 E n h a n c e d D S - 1 1 4 - P o r t C a r d s - F u j i t s u 2 D S - 1 P r o t e c t 1 4 - P o r t C a r d s - F u j i t s u 2 D S - 3 T r a n s m u x C a r d s - F u j i t s u M i s e C a b l e A s s e m b l y - F u j i t s u 4 3 0 0 F l a s h w a v e S h e l f A s s e m b l y - F u j i t s u 3 2 0 - G S w i t c h M a t r i x f o r 4 5 0 0 M u x - F u j i t s u 3 E n h a n c e d O C - 1 2 C a r d s - F u j i t s u 3 O C - 1 2 L R 2 C a r d s - F u j i t s u 3 D S - 3 C a r d s - F u j i t u 4 5 0 0 M u l t i p l e x e r C P U - F u j i t u 1 D S - 3 8 - P o r t C a r d & p r o c s u n i t - F u j t i s u 4 5 0 0 C P U - F u j i t s u 1 8 - P o r t D S - 3 C a r d - F u j i t s u 2 T i m i n g U n i t s - F u j i t s u 2 2 0 - G V T 1 . 5 S w i t c h - F u j i t s u 2 D u a l O C - 4 8 Q u a d P o r t C a r d - F u j i t s u 2 O C - 3 Q u a d P o r t C a r d - F u j i t s u F a n U n i t - F u j i t s u 1 D S - 3 / e c 1 S w i t c h - F u j i t s u 2 3 0 - G S w i t c h M a t r i x - F u j i t s u 2 O C - 1 2 Q u a d P o r t C a r d - F u j i t s u 2 ( 2 . 5 - G ) V T S w i t c h F a b r i c - F u j i t s u 2 S T S S w i t c h F a b r i c - F u j i t s u 4 D S - 1 E n h a n c e d P a t h C a r d s - F u j i t s u 1 D S - 1 E n h a n c e P r o t e c t C a r d - F u j i t s u 1 V T 1 . 5 S w i t c h M a t r x - F u j i t s u 2 O C - 1 2 Q u a d P o r t C a r d s - F u j i t s u 2 O C - 3 C a r d s & 2 S w i t c h M a t r i x - F u j i t s u 2 P r e l o a d e d S o f t a r e U p g r a d e - F u j i t s u 2 D u a l O C - 4 8 C a r d s - F u j i t s u 2 3 0 0 - G S T S 1 S w i t c h M a t r i - F u j i t s u 1 O C - 4 8 I n t e r f a c e C a r d s - F u j i t s u 1 O C - 4 8 D u a l P o r t C a r d s !l M o v a z - D e n s e W a v e D i v i s i o n a l M u l t p l e x e r Mu l t i p i e O p t i c a l C o v e r t e r s & F u s e P a n e l s .! M i s c e l l a n e o u s B o i s e C e n t r a l O f f c e E q u i p m e t 20 0 A m p s R e c t i f i e r 4 3 0 0 - G i g D i s k D r i v e s Da t a C o m m C h a n n e l U n i t Fu j i t s u C e n t r a l P r o c e s i n g U n i t 3 3 7 5 0 R o u t e r U p g r a d e s 4 3 7 5 0 S w i t c h e s 3 D S X P a n e i s HP P r o l i a n t D L 3 6 0 D N S S y s t e m 1 D S X - 3 P a n e l 3 D S X P a n e i s 1 D S X - 4 R M o d u l e s l l n s e r t 11 - P o r t E n h a n c e d A I M D S - 3 P o r t 1 E n h a n c e d F l e x W A N V i d e o M o d u l e 3 M o d u l e s S u r g e P r o t e c t o r s & I n s t a l l a t i o n Cis c o R o u t e r W S - S U P 7 2 0 R e f u r b i s h e d S w i t c h Cis c o 6 5 0 6 S w i t c h & F a n T r a y s! I P S e r v i c e s E q u i p m e n t i n I d a h o F a l l s Ba r r a c u d e W e b F i l t e r i n g CA T 6 5 0 0 S w i t c h CA T 7 6 0 0 S w i t c h CA T 6 5 0 6 C h a s s i s 2 2 5 0 0 - W P o w e r S u p p l y CA T 6 5 0 0 S w i t c h Fu s e P a n e l 3 W a l l C h a s s i s 2 U P S U n i f i e d P o w e r S u p p l y U n i t s Ci s c o C a t a l y s t 3 7 5 0 S w i t c h Ci s c o C a t a l y s t 3 7 5 0 S w i t c h En h a n c e F l e x W A N M o d u l e FIN A L l Ha i l e y H u t ( E l e c t r o n i c s / E n g i n e e r i n g & O t h e r C o s t s ) Bi- L e v e l C a b i n e t Ci r c u t i B r e a k e r s , P a n e l s & P a r t s Ci s c o C a t a l y t 3 7 5 0 S w i t c h Fu j i t s u O C - 4 8 In t e r f a c e C a r d s f Bo i s e t o C a l d w e l l - W o r k O r d e r # 1 0 3 Co s t t o r e l o c a t e f i b e r a t L o c u s t G r o v e 1 - 8 4 Co s t t o r e l o c t e f i b e r a t F r a n k l i n & 1 - 8 4 N a m p a Fib e r C o n n e c i o n t o A l l t e l C e l l T o w e r i n E m m e t t Co s t t o p l a c e d u c t & f i b e r t o c o n n e c t t o A l l t e l ' s c e i l t o w e r i n E m m e t t . 9 .! Fib e r C o n n e c i o n t o H a i l e y C o u r t H o u s e Co s t o f c o n n e c t t o C o u r t H o u s e i n H a i l e y , I D Co s t o f d u c t a n d f i b e r Co s t o f H a n d H o l e Co s t o f S p l i c e T r a y s Cis c o C a t a l y s t 3 7 5 0 S w i t c h Ele c t r i c a l C o s t s Fi b e r C o n n e c t i o n t o K e t c h u m W i r e l e s s Co s t t o d u c V f i b e r , t r e n c h i n g a n d c o n t r a c t l a b o r c o t s BR O A D B A N D J N V S T _ C R E D I T _ 2 0 0 7 2 o f 2